ON THE HYERS-ULAM STABILITY OF A DIFFERENTIABLE MAP

TAKESHI MIURA

Received December 16, 2000

Abstract. We consider a differentiable map \(f \) from an open interval \(I \) to a uniformly closed linear subspace \(A \) of \(C(X) \), the Banach space of all complex-valued bounded continuous functions on a topological space \(X \). Let \(\varepsilon \) be a non-negative real number, \(\lambda \) a complex number so that \(\Re \lambda \neq 0 \). Then we show that \(f \) can be approximated by the solution to \(A \)-valued differential equation \(x' (t) = \lambda x(t) \), if \(\| f'(t) - \lambda f(t) \| \leq \varepsilon \) holds for every \(t \in I \).

1. Introduction

In this paper, \(I \) denotes an open interval of the real number field \(\mathbb{R} \), unless the contrary is explicitly stated. That is \(I = (a, b) \) for some \(-\infty \leq a < b \leq +\infty \). The letters \(\varepsilon \) and \(\lambda \) denote a non-negative real number and a complex number, respectively. Let \(X \) be a topological space, \(C(X) \) a Banach space of all complex-valued bounded continuous functions on \(X \) with respect to the pointwise operations and the supremum norm \(\| \cdot \|_\infty \) on \(X \). Throughout this paper, \(A \) denotes a uniformly closed linear subspace of \(C(X) \).

Definition 1.1. Let \(B \) be a Banach space. If a map from \(I \) into \(B \). We say that \(f \) is differentiable, if for every \(t \in I \) there exists an \(f'(t) \in B \) so that

\[
\lim_{s \to 0} \left\| \frac{f(t + s) - f(t) - f'(t) s}{s} \right\|_B = 0,
\]

where \(\| \cdot \|_B \) denotes the norm on \(B \).

Let \(f \) be a differentiable function on \(I \) into \(\mathbb{R} \). Alsina and Ger [1] gave all the solutions to the inequality \(|f'(t) - f(t)| \leq \varepsilon \) for every \(t \in I \). Then they showed that each solution to the inequality above was approximated by a solution to the differential equation \(x'(t) = x(t) \). In accordance with [1], we define the Hyers-Ulam stability of Banach space valued differentiable map:

Definition 1.2. Let \(B \) be a Banach space, \(f \) a differentiable map on \(I \) into \(B \) so that

\[
\| f'(t) - \lambda f(t) \|_B \leq \varepsilon, \quad (t \in I).
\]

We say that the Hyers-Ulam stability holds for \(f \), if there exist a \(k \geq 0 \) and a differentiable map \(x \) on \(I \) into \(B \) such that

\[
x'(t) = \lambda x(t) \text{ and } \| f(t) - x(t) \|_B \leq k \varepsilon
\]

holds for every \(t \in I \).

Let \(C(X, \mathbb{R}) \) be the Banach space of all real-valued bounded continuous functions on \(X \) and \(C_0(X, \mathbb{R}) \) the Banach space of all functions of \(C(X, \mathbb{R}) \) which vanish at infinity. Let \(r \) be a non-zero real number. In [2], we considered a differentiable map \(f \) on \(I \) into \(C(X, \mathbb{R}) \).

\begin{footnotesize}
2000 Mathematics Subject Classification. Primary 34K20; Secondary 26D10.

Key words and phrases. Exponential functions, Hyers-Ulam stability.
\end{footnotesize}
(resp. \(C_d(X, \mathbb{R}) \)) with the inequality \(\| f'(t) - r f(t) \|_\infty \leq \varepsilon \). Then we showed that the Hyers-Ulam stability held for \(f \). That is, \(f \) can be approximated by a solution to \(C(X, \mathbb{R}) \) (resp. \(C_d(X, \mathbb{R}) \)) valued differential equation \(x'(t) = rx(t) \).

In this paper, we consider a differentiable map \(f \) on \(I \) into \(A \) so that the inequality \(\| f'(t) - \lambda f(t) \|_\infty \leq \varepsilon \) holds for every \(t \in I \). Unless \(\text{Re} \lambda = 0 \), we show that the Hyers-Ulam stability holds for \(f \). If \(\text{Re} \lambda = 0 \), we give an example so that the Hyers-Ulam stability does not hold. Also we consider the Hyers-Ulam stability of an entire function.

2. Preliminaries

We give a characterization of the inequality \(\| f'(t) - \lambda f(t) \| \leq \varepsilon \).

Proposition 2.1. Let \(B \) be a Banach space, \(f \) a differentiable map on \(I \) into \(B \). Then the following conditions are equivalent.

(i) \(\| f'(t) - \lambda f(t) \|_B \leq \varepsilon \), \((t \in I) \).

(ii) There exists a differentiable map \(g \) on \(I \) into \(B \) such that \(f(t) = g(t)e^{\lambda t} \) and \(\| g'(t) \|_B \leq \varepsilon e^{-(\text{Re} \lambda)t} \), for every \(t \in I \).

Proof. (i) \(\Rightarrow \) (ii) Put \(g(t) = f(t)e^{-\lambda t} \) for every \(t \in I \). Then we see that \(g \) is differentiable and

\[g'(t) = \{ f'(t) - \lambda f(t) \} e^{-\lambda t}, \quad (t \in I). \]

By hypothesis, we have the inequality

\[\| g'(t) \|_B \leq \varepsilon e^{-(\text{Re} \lambda)t} \]

for every \(t \in I \).

(ii) \(\Rightarrow \) (i) If \(f(t) = g(t)e^{\lambda t} \), we have

\[f'(t) = \{ g'(t) + \lambda g(t) \} e^{\lambda t} = g'(t)e^{\lambda t} + \lambda f(t) \]

for every \(t \in I \). Since \(\| g'(t) \|_B \leq \varepsilon e^{-(\text{Re} \lambda)t} \),

\[\| f'(t) - \lambda f(t) \|_B \leq \varepsilon \]

holds for every \(t \in I \).

In particular, if we consider the case where \(\varepsilon = 0 \), then we have a solution of Banach space valued differential equation \(f'(t) = \lambda f(t) \). For the completeness we give a proof.

Proposition 2.2. Let \(B \) be a Banach space, \(f \) a differentiable map on \(I \) into \(B \). Then the following conditions are equivalent.

(i) \(f'(t) = \lambda f(t) \), \((t \in I) \).

(ii) There exists \(a \in B \) so that \(f(t) = ae^{\lambda t} \), \((t \in I) \).

Proof. It is enough to show that the map \(g(t) \) given in the condition (ii) of Proposition 2.1 is constant, if \(g'(t) = 0 \) for every \(t \in I \). Fix any \(t_0 \in I \), then we define the function \(\hat{g} \) on \(I \) into \(\mathbb{R} \) as

\[\hat{g}(t) = \| g(t) - g(t_0) \|_B, \quad (t \in I). \]

We see that \(\hat{g} \) is differentiable and \(\hat{g}'(t) = 0 \) for every \(t \in I \), since \(g'(t) = 0 \). Therefore, \(\hat{g} \) is a constant function. Since \(\hat{g}(t_0) = 0 \), we have \(g(t) = g(t_0) \). Thus \(g(t) \) is a constant function and this completes the proof.
3. ONE POINT CASE

The results below are proved in case where $\text{Re}\lambda > 0$, while corresponding ones hold in case where $\text{Re}\lambda < 0$ and we omit them. In this section we consider the case where X is a singleton. In Lemma 3.1 and 3.2, g denotes a differentiable function on I into \mathbb{C} so that

$$|g'(t)| \leq \varepsilon e^{-(\text{Re}\lambda)t}$$

for every $t \in I$. Let u and v be the real part and the imaginary part of g, respectively. Unless $\text{Re}\lambda = 0$, we define the functions \hat{u} and \hat{v} on I into \mathbb{C} as

$$\hat{u}(t) = u(t) - \frac{\varepsilon}{\text{Re}\lambda} e^{-(\text{Re}\lambda)t},$$

$$\hat{v}(t) = v(t) - \frac{\varepsilon}{\text{Re}\lambda} e^{-(\text{Re}\lambda)t}.$$

Lemma 3.1. Let $\text{Re}\lambda \neq 0$ and $t_0 \in I$. Then we have the inequalities

$$0 \leq \hat{u}(s) - \hat{u}(t_0) \leq \frac{2\varepsilon}{\text{Re}\lambda} \left\{ e^{-(\text{Re}\lambda) t_0} - e^{-(\text{Re}\lambda) s} \right\},$$

$$0 \leq \hat{v}(s) - \hat{v}(t_0) \leq \frac{2\varepsilon}{\text{Re}\lambda} \left\{ e^{-(\text{Re}\lambda) t_0} - e^{-(\text{Re}\lambda) s} \right\}$$

for every $s \in I$ with $t_0 \leq s$.

Proof. Since $g'(t) = u'(t) + iv'(t)$, we have

$$|u'(t)|, |v'(t)| \leq |g'(t)| \leq \varepsilon e^{-(\text{Re}\lambda)t}$$

for every $t \in I$. By definition,

$$\hat{u}'(t) = u'(t) + \varepsilon e^{-(\text{Re}\lambda)t}, \quad (t \in I).$$

Hence, we obtain the inequality

$$0 \leq \hat{u}'(t) \leq 2\varepsilon e^{-(\text{Re}\lambda)t}$$

for every $t \in I$. We define the function U on I into \mathbb{C} as

$$U(s) = \hat{u}(s) - \frac{2\varepsilon}{\text{Re}\lambda} e^{-(\text{Re}\lambda)s} + \hat{u}(t_0) + \frac{2\varepsilon}{\text{Re}\lambda} e^{-(\text{Re}\lambda)t_0}, \quad (s \in I).$$

Then U is differentiable and

$$U'(s) = -\hat{u}'(s) + 2\varepsilon e^{-(\text{Re}\lambda)s} \geq 0$$

for every $s \in I$. Since $U(t_0) = 0$, we have $U(s) \geq 0$ if $s \geq t_0$. Since $\hat{u}'(s) \geq 0$, the inequality $\hat{u}(t_0) \leq \hat{u}(s)$ holds if $t_0 \leq s$. Therefore, we have

$$0 \leq \hat{u}(s) - \hat{u}(t_0) \leq \frac{2\varepsilon}{\text{Re}\lambda} \left\{ e^{-(\text{Re}\lambda)t_0} - e^{-(\text{Re}\lambda)s} \right\},$$

if $t_0 \leq s$. In a way similar to the above, we see that

$$0 \leq \hat{v}(s) - \hat{v}(t_0) \leq \frac{2\varepsilon}{\text{Re}\lambda} \left\{ e^{-(\text{Re}\lambda)t} - e^{-(\text{Re}\lambda)s} \right\}$$

holds, if $t_0 \leq s$ and a proof is omitted. \(\square\)

Lemma 3.2. Let $\text{Re}\lambda > 0$, then both $\lim_{s \to t, s \neq t} \hat{u}(s)$ and $\lim_{s \to t, s \neq t} \hat{v}(s)$ exist.
Proof. As a first step, we show that sup_{t \in I} \hat{u}(t) is finite. To this end fix any t_0 \in I, then by Lemma 3.1 we have the inequality
\[
\hat{u}(t) \leq \hat{u}(t_0) + \frac{2\varepsilon}{\text{Re} \lambda} \left\{ e^{-(\text{Re} \lambda) t_0} - e^{-(\text{Re} \lambda) t} \right\}
\]
< \hat{u}(t_0) + \frac{2\varepsilon}{\text{Re} \lambda} e^{-(\text{Re} \lambda) t_0},
if t_0 \leq t. Since \hat{u}'(t) \geq 0 for every t \in I, we obtain \hat{u}(t) \leq \hat{u}(t_0) if t < t_0. Therefore,
\[
\hat{u}(t) \leq \hat{u}(t_0) + \frac{2\varepsilon}{\text{Re} \lambda} e^{-(\text{Re} \lambda) t_0}
\]
holds for every t \in I. Thus sup_{t \in I} \hat{u}(t) is finite.

Next we show that \lim_{s \to \sup_{t \in I} \hat{u}} \hat{u}(s) = \sup_{t \in I} \hat{u}(t). In fact, for every \eta > 0 there exists an
s_0 \in I such that sup_{t \in I} \hat{u}(t) - \eta < \hat{u}(s_0). Since \hat{u}'(t) \geq 0 for every t \in I, we have
\[
\sup_{t \in I} \hat{u}(t) - \eta < \hat{u}(s) < \sup_{t \in I} \hat{u}(t) + \eta,
if s_0 \leq s. Therefore,
\[
\lim_{s \to \sup_{t \in I} \hat{u}} \hat{u}(s) = \sup_{t \in I} \hat{u}(t)
\]
holds. In a way similar to the above, we see that \lim_{s \to \sup_{t \in I} \hat{u}} \hat{u}(s) = \sup_{t \in I} \hat{u}(t) and a proof
is omitted. □

Theorem 3.3. Let \text{Re} \lambda > 0, f a differentiable function on I into \mathbb{C} so that
\[
|f'(t) - \lambda f(t)| \leq \varepsilon, \quad (t \in I).
\]
Then there exists a \theta \in \mathbb{C} such that
\[
|f(t) - \theta e^{\lambda t}| \leq \frac{\sqrt{2}\varepsilon}{\text{Re} \lambda}
\]
holds for every t \in I.

Proof. By Proposition 2.1, there exists a differentiable function g on I into \mathbb{C} such that
\[
f(t) = g(t)e^{\lambda t} \quad \text{and} \quad |g'(t)| \leq \varepsilon e^{-(\text{Re} \lambda) t}, \quad (t \in I).
\]
Let u and v be the real part and the imaginary part of g, respectively. We define the functions on I into \mathbb{C} as
\[
\hat{u}(t) = u(t) - \frac{\varepsilon}{\text{Re} \lambda} e^{-(\text{Re} \lambda) t},
\]
\[
\hat{v}(t) = v(t) - \frac{\varepsilon}{\text{Re} \lambda} e^{-(\text{Re} \lambda) t}.
\]
Then we see that both \lim_{s \to \sup_{t \in I} \hat{u}(t) and \lim_{s \to \sup_{t \in I} \hat{v}(t)} exist, by Lemma 3.2. Note that
for every t \in I we have
\[
0 \leq \hat{u}(s) - \hat{u}(t) < \frac{2\varepsilon}{\text{Re} \lambda} e^{-(\text{Re} \lambda) t},
\]
if t \leq s, by Lemma 3.1. Therefore, we obtain the inequality
\[
\left| u(t) - \lim_{s \to \sup_{t \in I} \hat{u}(s) \right| = \lim_{s \to \sup_{t \in I} \hat{u}(s) \left| \hat{u}(t) + \frac{\varepsilon}{\text{Re} \lambda} e^{-(\text{Re} \lambda) t} - \hat{u}(s) \right| \leq \frac{\varepsilon}{\text{Re} \lambda} e^{-(\text{Re} \lambda) t}
\]
for every t \in I. In a way similar to the above, we see that
\[
\left| v(t) - \lim_{s \to \sup_{t \in I} \hat{v}(s) \right| \leq \frac{\varepsilon}{\text{Re} \lambda} e^{-(\text{Re} \lambda) t}, \quad (t \in I).
\]
Therefore, we have the inequality
\[
\left| f(t) - \lim_{s \to \text{sup} I} \left\{ \tilde{u}(t) + i \tilde{v}(t) \right\} e^{\lambda t} \right| \\
= \sqrt{\left\{ u(t) - \lim_{s \to \text{sup} I} \tilde{u}(s) \right\}^2 + \left\{ v(t) - \lim_{s \to \text{sup} I} \tilde{v}(s) \right\}^2} e^{\text{Re} \lambda t} \\
\leq \frac{\sqrt{2} \varepsilon}{\text{Re} \lambda} e^{-(\text{Re} \lambda) t} e^{(\text{Re} \lambda) t} = \frac{\sqrt{2} \varepsilon}{\text{Re} \lambda}
\]
for every \(t \in I \). This completes the proof. \(\square \)

4. General Case

In this section we consider the case where \(X \) is any topological space.

Theorem 4.1. Let \(\text{Re} \lambda > 0 \), \(f \) a differentiable map on \(I \) into \(A \) so that
\[
\| f'(t) - \lambda f(t) \|_{\infty} \leq \varepsilon, \quad (t \in I).
\]
If \(A \) has constant functions, then there exists a \(\theta \in A \) such that
\[
\| f(t) - \theta e^{\lambda t} \|_{\infty} \leq \frac{\sqrt{2} \varepsilon}{\text{Re} \lambda}
\]
holds for every \(t \in I \). Unless \(A \) has constant functions, then there exists a \(\hat{\theta} \in A \) such that
\[
\| f(t) - \hat{\theta} e^{\lambda t} \|_{\infty} \leq \frac{2\sqrt{2} \varepsilon}{\text{Re} \lambda}
\]
for every \(t \in I \).

Proof. For every \(x \in X \) we define the induced function \(f_x \) on \(I \) into \(\mathbb{C} \) as
\[
f_x(t) = f(t)(x), \quad (t \in I).
\]
Then \(f_x \) is a differentiable function, and for every \(x \in X \)
\[
(f_x)'(t) = f'(t)(x), \quad (t \in I)
\]
holds, by definition. Therefore, for every \(x \in X \) we see that
\[
\| (f_x)'(t) - \lambda f_x(t) \| \leq \| f'(t) - \lambda f(t) \|_{\infty} \leq \varepsilon, \quad (t \in I).
\]
By Proposition 2.1, for every \(x \in X \) there corresponds a differentiable function \(g_x \) on \(I \) into \(\mathbb{C} \) such that
\[
f_x(t) = g_x(t) e^{\lambda t} \quad \text{and} \quad |(g_x)'(t)| \leq \varepsilon e^{-(\text{Re} \lambda) t}
\]
for every \(t \in I \). Let \(u_x \) and \(v_x \) be the real part and the imaginary part of \(g_x \), respectively. We define the functions on \(I \) into \(\mathbb{C} \) as
\[
u_x(t) = u_x(t) - \frac{\varepsilon}{\text{Re} \lambda} e^{-(\text{Re} \lambda) t}, \\
v_x(t) = v_x(t) - \frac{\varepsilon}{\text{Re} \lambda} e^{-(\text{Re} \lambda) t}.
\]
By the proof of Theorem 3.3, for every \(x \in X \) we have
\[
\left| f_x(t) - \lim_{s \to \text{sup} I} \{ u_x(s) + i v_x(s) \} e^{\lambda t} \right| \leq \frac{\sqrt{2} \varepsilon}{\text{Re} \lambda}, \quad (t \in I).
\]
We define the function \(\theta \) on \(X \) into \(\mathbb{C} \) as
\[
\theta(x) = \lim_{s \to \text{sup} I} \{ u_x(s) + i v_x(s) \}.
\]
By definition, the inequality
\[\| f(t) - \theta e^{\lambda t} \|_{\infty} \leq \frac{\sqrt{\tau} \varepsilon}{\Re \lambda} \]
holds for every \(t \in I \).

Let \(\{ t_n \} \) be a sequence of \(I \) so that \(t_n \not\to \sup I \). Then we define the function \(\theta_n \) on \(X \) into \(\mathbb{C} \) as
\[\theta_n(x) = \hat{u}_x(t_n) + i \hat{v}_x(t_n), \quad (x \in X). \]
Since \(g_x(t_n) = f_x(t_n) e^{-\lambda t_n} \), we see that the function \(x \mapsto g_x(t_n) \) belongs to \(A \) for every \(n \in \mathbb{N} \).

We show that \(\theta \) is an element of \(A \), if \(A \) has constant functions. In fact, \(\theta_n \) is an element of \(A \) for every \(n \in \mathbb{N} \) by the definition of \(\hat{u}_x \) and \(\hat{v}_x \). Note that
\[|\hat{u}_x(s) - \hat{u}_x(t)|, |\hat{v}_x(s) - \hat{v}_x(t)| \leq \frac{2\varepsilon}{\Re \lambda} |e^{-(\Re \lambda) s} - e^{-(\Re \lambda) t}|, \]
if \(t \leq s \), by Lemma 3.1. Therefore, we have
\[\| \theta(x) - \theta_n(x) \| = \lim_{s \not\to \sup I} \sqrt{|\hat{u}_x(s) - \hat{u}_x(t_n)|^2 + |\hat{v}_x(s) - \hat{v}_x(t_n)|^2} \leq \frac{2\sqrt{\tau} \varepsilon}{\Re \lambda} \left| \lim_{s \not\to \sup I} e^{-(\Re \lambda) s} - e^{-(\Re \lambda) t_n} \right| \]
for every \(x \in X \) and every \(n \in \mathbb{N} \). Hence \(\theta \) is a uniform limit of \(\{ \theta_n \} \subset A \). Since \(A \) is uniformly closed, \(\theta \) is an element of \(A \).

Next we consider the case where \(A \) does not have constant functions. We define the functions \(\hat{\theta} \) and \(\hat{\theta}_n \) on \(X \) into \(\mathbb{C} \) as
\[\hat{\theta}_n(x) = \theta_n(x) + \frac{1 + i}{\Re \lambda} \lim_{s \not\to \sup I} e^{-(\Re \lambda) s}, \]
\[\hat{\theta}_n(x) = \theta_n(x) + \frac{1 + i}{\Re \lambda} e^{-(\Re \lambda) t_n}. \]
Note that \(\hat{\theta}_n(x) = g_x(t_n) \) holds for every \(x \in X \) and every \(n \in \mathbb{N} \), hence \(\{ \hat{\theta}_n \} \subset A \). Then we have
\[\| \hat{\theta}(x) - \hat{\theta}_n(x) \| \leq \| \theta(x) - \theta_n(x) \| + \frac{1 + i}{\Re \lambda} \left| \lim_{s \not\to \sup I} e^{-(\Re \lambda) s} - e^{-(\Re \lambda) t_n} \right| \]
for every \(x \in X \) and every \(n \in \mathbb{N} \). Since \(A \) is uniform closed, \(\hat{\theta} \) belongs to \(A \). Moreover,
\[\| f(t) - \hat{\theta} e^{\lambda t} \|_{\infty} \leq \| f(t) - \theta e^{\lambda t} \|_{\infty} + \frac{1 + i}{\Re \lambda} \left| \lim_{s \not\to \sup I} e^{-(\Re \lambda) s} e^{\lambda t} \right| \]
holds for every \(t \in I \). This completes the proof.

Corollary 4.2. Let \(\Re \lambda > 0 \), \(f \) a differentiable map on \((a, +\infty)\), for some \(-\infty \leq a < +\infty\), into \(A \) so that
\[\| f(t) - \lambda f(t) \|_{\infty} \leq \varepsilon, \quad (t \in (a, +\infty)). \]
Then \(f \) is uniquely approximated by a function of \(A \) in the sense of Theorem 4.1.
Proof. By Theorem 4.1, it is enough to show that if $\theta_1, \theta_2 \in A$ so that
\[
\|f(t) - \theta_j e^{\lambda t}\|_\infty \leq k_j \varepsilon, \quad (t \in (a, +\infty))
\]
for some $k_j \geq 0$, $(j = 1, 2)$ then $\theta_1 = \theta_2$. In fact,
\[
\|\theta_1 - \theta_2\|_\infty \leq \|\theta_1 - f(t)e^{\lambda t}\|_\infty + \|f(t)e^{\lambda t} - \theta_2\|_\infty \\
\leq (k_1 + k_2)\varepsilon e^{-(\Re \lambda)t} \to 0, \quad (t \to +\infty).
\]
Thus we have $\theta_1 = \theta_2$. This completes the proof. \hfill \Box

In general, the Hyers-Ulam stability does not hold if $\Re \lambda = 0$.

Example 4.1. Let $I = (0, +\infty)$, $\varepsilon > 0$ and f be the function on I into \mathbb{C} defined by
\[
f(t) = \varepsilon t e^{i t}, \quad (t \in I).
\]
Then the inequality $|f'(t) - i f(t)| = \varepsilon$ holds for every $t \in I$. On the other hand, the Hyers-Ulam stability does not hold. In fact, assume to the contrary that there exist a $c \in \mathbb{C}$ and $k \geq 0$ such that
\[
|f(t) - ce^{i t}| \leq k \varepsilon, \quad (t \in I).
\]
By the triangle inequality
\[
|f(t)| \leq k \varepsilon + |c|
\]
holds for every $t \in I$. Though this is a contradiction, since $|f(t)| = \varepsilon t$ and since $I = (0, +\infty)$.

If we consider the case where I is a finite interval, then the situation is different:

Theorem 4.3. Let $I = (a, b)$, where $-\infty < a < b < +\infty$, $\varepsilon \geq 0$ and $\lambda \in \mathbb{C}$ with $\Re \lambda = 0$. If f is a differentiable map on I into A so that
\[
\|f'(t) - \lambda f(t)\|_\infty \leq \varepsilon, \quad (t \in I),
\]
then there exists a $\theta \in A$ such that
\[
\|f(t) - \theta e^{\lambda t}\|_\infty \leq \frac{(b - a)\varepsilon}{\sqrt{2}}
\]
holds for every $t \in I$.

Proof. Let f_x, g_x, u_x and v_x be the differentiable function on I into \mathbb{C}, defined in the proof of Theorem 4.1. Then for every $x \in X$ we see that
\[
f_x(t) = g_x(t) e^{\lambda t} \quad \text{and} \quad \|g_x\|_\infty \leq \varepsilon, \quad (t \in I),
\]
by definition. Apply the mean value theorem to u_x and v_x respectively, then we have
\[
\left| g_x(t) - g_x \left(\frac{a + b}{2} \right) \right| = \left| (u_x)'(p) \left(t - \frac{a + b}{2} \right) + i(v_x)'(q) \left(t - \frac{a + b}{2} \right) \right| \\
< \sqrt{2} \epsilon \frac{b - a}{2} = \frac{(b - a)\varepsilon}{\sqrt{2}}
\]
for some $p, q \in I$. Since $\Re \lambda = 0$, the inequality
\[
\left\| f(t) - g \left(\frac{a + b}{2} \right) e^{\lambda t} \right\|_\infty \leq \frac{(b - a)\varepsilon}{\sqrt{2}}
\]
holds for every $t \in I$. \hfill \Box
5.HYERS-ULAM STABILITY OF AN ENTIRE FUNCTION

Recall that a function is entire if it is holomorphic in the whole plane \mathbb{C}. We may consider the Hyers-Ulam stability of an entire function.

Theorem 5.1. Let f be an entire function so that

$$|f'(z) - \lambda f(z)| \leq \varepsilon, \quad (z \in \mathbb{C}).$$

Unless $\lambda = 0$, there exists a $\theta \in \mathbb{C}$ such that

$$|f(z) - \theta e^{\lambda z}| \leq \frac{\varepsilon}{|\lambda|},$$

holds for every $z \in \mathbb{C}$. If we consider the case where $\lambda = 0$, then the Hyers-Ulam stability holds for f if and only if f is a constant function.

Proof. In a way similar to the proof of Proposition 2.1, we see that the inequality $|f'(z) - \lambda f(z)| \leq \varepsilon$ holds for every $z \in \mathbb{C}$ if and only if there corresponds an entire function g so that

$$f(z) = g(z) e^{\lambda z} \quad \text{and} \quad |g'(z)| \leq \varepsilon |e^{-\lambda z}|, \quad (z \in \mathbb{C}).$$

Therefore $g'(z) e^{\lambda z}$ is a bounded entire function. Thus $g'(z) e^{\lambda z}$ is constant, by Liouville’s theorem. Put $c_1 = g'(z) e^{\lambda z}$, then $|c_1| \leq \varepsilon$.

Unless $\lambda = 0$, there exists a $c_2 \in \mathbb{C}$ such that

$$g(z) = c_2 - \frac{c_1}{\lambda} e^{-\lambda z}, \quad (z \in \mathbb{C}).$$

Therefore, we have the equality

$$f(z) = c_2 e^{\lambda z} - \frac{c_1}{\lambda}$$

for every $z \in \mathbb{C}$. Hence

$$|f(z) - c_2 e^{\lambda z}| \leq \frac{\varepsilon}{|\lambda|}, \quad (z \in \mathbb{C}).$$

Next we consider the case where $\lambda = 0$. Then there exists a $c_3 \in \mathbb{C}$ so that

$$g(z) = c_1 z + c_3, \quad (z \in \mathbb{C}).$$

Therefore $f(z) = c_1 z + c_3$ for every $z \in \mathbb{C}$, since $\lambda = 0$. Then it is easy to see that the Hyers-Ulam stability holds for f, if and only if f is a constant function, and a proof is omitted.

References

Department of Basic Technology, Applied Mathematics and Physics, Yamagata University, Yonezawa 992-8510, Japan

E-mail address: miura@ipm.yamagata-u.ac.jp