THE LAURENT EXTENSION OF A NOETHERIAN INTEGRAL DOMAIN

MITSUO KANEMITSU, KIYOSHI BABA, AND KEN-Ichi YOSHIDA

Received February 7, 2000

ABSTRACT. Let $R[\alpha, \alpha^{-1}]$ be an extension of a Noetherian integral domain R where α is an element of an algebraic field extension over the quotient field of R. In the case α is an anti-integral element over R we will give a condition for a prime ideal p of R to be $pR[\alpha, \alpha^{-1}] = R[\alpha, \alpha^{-1}]$. By making use of this we will proceed mainly with the study of flatness and faithful flatness of the extension $R[\alpha, \alpha^{-1}]/R$. Let η_1, \cdots, η_d be the coefficients of the minimal polynomial of α over the quotient field of R. Then we will also investigate the extension $R[\eta_1, \cdots, \eta_d]/R$.

§1. Laurent extensions and ideals $J_{[\alpha]}$, γ

Let R be a Noetherian integral domain with the quotient field K. Let α be an element which is algebraic over K and set $d = [K(\alpha) : K]$. We denote the minimal polynomial of α over K by

$$\phi_\alpha(X) = X^d + \eta_1 X^{d-1} + \cdots + \eta_d,$$

$$\eta_1, \cdots, \eta_d \in K.$$

Set $I_{\eta_i} = R : R \eta_i$ for $1 \leq i \leq d$ and $I_{[\alpha]} = \cap_{i=1}^d I_{\eta_i}$. We call $I_{[\alpha]}$ the generalized denominator ideal of α. Furthermore we will set

$$J_{[\alpha], \eta} = I_{[\alpha]}(\eta_1, \cdots, \eta_d)$$

where (η_1, \cdots, η_d) is a fractional ideal of R generated by the elements $\eta_1, \cdots, \eta_{d-1}, \eta_d$ and

$$J_{[\alpha], i} = I_{[\alpha]}(1, \eta_1, \cdots, \eta_{i-1}, \eta_{i+1}, \cdots, \eta_d)$$

for $1 \leq i \leq d$. Sometimes we will use the notation $\widetilde{J}_{[\alpha]}$ instead of $J_{[\alpha], \eta}$. Set $J_{[\alpha]} = I_{[\alpha]} + J_{[\alpha], 0} = I_{[\alpha]}(1, \eta_1, \eta_2, \cdots, \eta_d)$.

We call $R[\alpha, \alpha^{-1}]$ the Laurent extension of α over R.

Let $R[X]$ be a polynomial ring over R in an indeterminate X and $\pi : R[X] \rightarrow R[\alpha]$ the R-algebra homomorphism defined by $\pi(X) = \alpha$. We say that α is an anti-integral element over R of degree d if $\text{Ker}(\pi) = I_{[\alpha]}\phi_\alpha(X)R[X]$. Set

$$\Gamma_{J_{[\alpha]}} = \{ p \in \text{Spec}(R) \mid p + J_{[\alpha]} = R \}$$

and

$$V(\widetilde{J}_{[\alpha]}) = \{ p \in \text{Spec}(R) \mid p \supset \widetilde{J}_{[\alpha]} \}.$$
Our notation is standard and our general reference for unexplained technical terms is H. Matsumura [2]. We will list the following results for later use.

Lemma 1.1 (M. Kanemitsu and K. Yoshida [1, Theorem 7 (2)]). Assume that \(\alpha \) is an anti-integral element over \(R \) of degree \(d \). Then

\[
\{ p \in \text{Spec}(R) \mid pR[\alpha] = R[\alpha] \} = V(J_{[\alpha]}) \cap \Gamma_{J_{[\alpha]}},
\]

An element \(\gamma \) in \(R[\alpha] \) is said to be an excellent element if there exist elements \(c_0, c_1, \ldots, c_n \in R \) such that

\[
\gamma = c_0 + c_1 \alpha + \cdots + c_n \alpha^n \text{ and } (c_0, c_1, \ldots, c_n)R = R.
\]

Lemma 1.2 (J. Sato, S. Oda and K. Yoshida [5, Corollary 5]). Assume that \(\alpha \) is an anti-integral element over \(R \) of degree \(d \). Then the following statements are equivalent.

(i) \(R[\alpha] / R \) is a flat extension.
(ii) \(R[\alpha, \alpha^{-1}] / R \) is a flat extension.
(iii) \(\alpha \in \text{rad}(J_{[\alpha]}R[\alpha]) \).
(iv) \(J_{[\alpha]} = R \).
(iv) Every excellent element belongs to \(\text{rad}(J_{[\alpha]}R[\alpha]) \).

Our key result is the following.

Theorem 1.3. Let \(R \) be a Noetherian integral domain and \(\alpha \) an anti-integral element over \(R \) of degree \(d \geq 2 \). For a prime ideal \(p \) of \(R \) the following are equivalent to each other.

(i) \(pR[\alpha, \alpha^{-1}] = pR[\alpha, \alpha^{-1}] \).
(ii) \(p + J_{[\alpha]} = R \) and there exists an integer \(i \) \((1 \leq i \leq d)\) such that \(p \supset J_{[\alpha]}, i \).

Proof: Set \(A = R[\alpha, \alpha^{-1}] \).

(i) \(\Rightarrow \) (ii). First we will prove that \(p + J_{[\alpha]} = R \). The condition \(pA = A \) implies that \(\alpha \) is in \(\text{rad}(pR[\alpha]) \). Then there exists a natural number \(n \) such that \(\alpha^n = a_0 + a_1 \alpha + \cdots + a_m \alpha^m \) and \(a_0, a_1, \ldots, a_m \in p \) for some \(m \). Let

\[
f(X) = X^n - (a_0 + a_1 X + \cdots + a_m X^m).
\]

Then \(f(X) \) is in \(\text{Ker}(\pi) \). This shows that there exist elements \(b_0, \ldots, b_d \in J_{[\alpha]} \) and \(g(X) \in R[X] \) satisfying

\[
f(X) = (b_0 + b_1 X + \cdots + b_d X^d)g(X).
\]

Hence \(1 \) is in \(p + J_{[\alpha]} \), and so \(p + J_{[\alpha]} = R \).

Secondly we will show that there exists an integer \(i \) \((1 \leq i \leq d)\) with \(p \supset J_{[\alpha]}, i \). Suppose that \(p \not\supset J_{[\alpha]}, i \) for every \(i \) with \(1 \leq i \leq d \). We will prove that \(pR[\alpha] \neq R[\alpha] \). If \(pR[\alpha] = R[\alpha] \), then by Lemma 1.1, we get \(p \supset J_{[\alpha]} = J_{[\alpha]} \). This is a contradiction.

We know that

\[
\alpha^d + \eta_1 \alpha^{d-1} + \cdots + \eta_d = 0.
\]
We will prove that there exists an element c of $I_{[\alpha]}$ such that $c \eta_i$ and $c \eta_j$ are not in p for some $i \neq j$ ($1 \leq i, j \leq d$). Note that $J_{[\alpha]}$, $1 = I_{[\alpha]}(1, \eta_2, \ldots, \eta_d)$. Since $J_{[\alpha]} \not\subset p$, there exists an integer i ($2 \leq i \leq d$) such that $a \in I_{[\alpha]}$ and $a \eta_i \not\in p$. If we can take an integer j ($j \neq i$ and $1 \leq j \leq d$) satisfying $a \eta_j \not\in p$, then the assertion is proved. So we may assume that

$$a(\eta_1, \ldots, \eta_{i-1}, \eta_{i+1}, \ldots, \eta_d) \subset p.$$

Furthermore, there exists an integer j ($j \neq i$ and $1 \leq j \leq d$) such that $b \in I_{[\alpha]}$ and $b \eta_j \not\in p$. Similarly as above we may assume that

$$b(\eta_1, \ldots, \eta_{i-1}, \eta_{i+1}, \ldots, \eta_d) \subset p.$$

Set $c = a + b$. Then $c \eta_i \not\in p$ and $c \eta_j \not\in p$.

From the argument above we see that there are at least two non-zero terms in $c \phi_\alpha(\alpha)$ modulo $p R_p[\alpha]$. Since $J_{[\alpha]} R_p = R_p$, the ideal $I_{[\alpha]} R_p$ is invertible, so $I_{[\alpha]} R_p$ is principal. Hence we may assume that c is a generator of $I_{[\alpha]}$. Let π' be the $R-$algebra homomorphism of $R_p[X]$ into $R_p[\alpha]$ defined by $\pi'(X) = \alpha$. Then $\text{Ker}(\pi') = I_{[\alpha]} \phi_\alpha(\alpha) R_p[X] = (c \phi_\alpha(\alpha))$. Hence $R_p[\alpha] \cong R_p[X]/(c \phi_\alpha(X))$. On the other hand

$$R_p[\alpha]/p R_p[\alpha] \cong k(p)[\pi'] \cong k(p)[X]/(c \phi_\alpha(X))$$

where $k(p)$ is the residue field of p. Let Q be the prime ideal of $R_p[\alpha]$ which corresponds to the irreducible factor of $c \phi_\alpha(X)$ different from \overline{X}. Then Q does not contain α and $Q \supset p R_p[\alpha]$. Set $P = Q \cap R[\alpha]$. Then $P \supset p R[\alpha]$ and $P \not\supset \alpha$. This is absurd from the fact $P \supset \text{rad}(p R[\alpha]) \supset \alpha$.

(ii) \Rightarrow (i). Assume that $p A \neq A$. Then there exists a prime ideal P of A such that $P \supset p A$. By the condition $p + J_{[\alpha]} = R$, there exists elements b of p and c of $J_{[\alpha]}$ such that $b + c = 1$. Since c is in $J_{[\alpha]} = J_{[\alpha]}(1, \eta_1, \ldots, \eta_d)$, we can write

$$c = c_0 + c_1 \eta_1 + \cdots + c_d \eta_d$$

and $c_0, c_1, \ldots, c_d \in I_{[\alpha]}$.

By the condition (ii), there exists an integer i ($1 \leq i \leq d$) such that $p \supset J_{[\alpha], i}$. Multiplying the equality

$$\alpha^d + \eta_1 \alpha^{d-1} + \cdots + \eta_d = 0,$$

by c_i, we have

$$c_i \alpha^d + c_i \eta_1 \alpha^{d-1} + \cdots + c_i \eta_d = 0.$$

We know that $c_i, c_i \eta_1, \ldots, c_i \eta_d$ other than $c_i \eta_i$ are in $J_{[\alpha], i}$, and so in P. Hence $c_i \eta_i \alpha^{d-i}$ is in P. Then in the equation

$$\alpha^{d-i} = c_0 \alpha^{d-i} + c_1 \eta_1 \alpha^{d-i} + \cdots + c_d \eta_d \alpha^{d-i},$$

$c_0, c_1 \eta_1, \ldots, c_d \eta_d$ other than $c_i \eta_i$ are in $J_{[\alpha], i}$, and so in P. Therefore α^{d-i} is in P. Using $c = 1 - b$, we get $\alpha^{d-i} \in P$. If $p \supset J_{[\alpha], a} = J_{[\alpha]}$, then by Lemma 1.1, we know $p R[\alpha] = R[\alpha]$. This claims that $p A = A$. This is absurd. Hence $i \neq d$. This shows that α is in P. This contradicts to the fact α is a unit of A. □

Remark 1.4. (1) By Theorem 1.3, we obtain:
\[
\{ p \in \text{Spec}(R) \mid pR[\alpha, \alpha^{-1}] = R[\alpha, \alpha^{-1}] \} = (\cup_{i=1}^{d} V(J_{[\alpha], i})) \cap \Gamma_{J_{[\alpha]}}.
\]

If \(J_{[\alpha]} = R \), then we have
\[
\{ p \in \text{Spec}(R) \mid pR[\alpha, \alpha^{-1}] = R[\alpha, \alpha^{-1}] \} = \cup_{i=1}^{d} V(J_{[\alpha], i}).
\]

It is a closed set.

(2) In the case \(d = 1 \), we have the following Theorem 1.3'.

Theorem 1.3'. Let \(R \) be a Noetherian integral domain and \(\alpha \) an anti-integral element over \(R \) of degree 1. For a prime ideal \(p \) of \(R \), the following are equivalent to each other:

(i) \(pR[\alpha, \alpha^{-1}] = R[\alpha, \alpha^{-1}] \),
(ii) \(p + J_{[\alpha], i} = R \) and there exists an integer \(i (i = 0, 1) \) such that \(p \supset J_{[\alpha], i} \).

Proof. We will prove that \(p \supset J_{[\alpha], i} \) for some \(i (i = 0, 1) \) in the proof (i) \(\Rightarrow \) (ii) because the rest of the proof is the same argument as in Theorem 1.3. Assume that \(p \not\supset J_{[\alpha], i} \cap I_{[\alpha]} \). Then there exists an element \(c \) of \(I_{[\alpha]} \) such that \(c \eta \not\in p \) and \(c \eta \not\in I_{[\alpha]} \). The fact \(c \eta \not\in I_{[\alpha]} \) implies \(c \eta^2 \not\in R \). Since \(c \cdot c \eta^2 = (c \eta)^2 \) is not in \(p \), we see that \(c \) is not in \(p \). Hence \(\alpha = -c \eta \in R_p \). Furthermore, \(\alpha^{-1} = -c/c \eta \) is in \(R_p \) because \(c \eta \not\in p \). Therefore \(R_p \supset R[\alpha, \alpha^{-1}] = A \). Thus \(pR_p \supset pA = A \). This is a contradiction. \(\square \)

(3) For another characterization of \(pR[\alpha, \alpha^{-1}] = R[\alpha, \alpha^{-1}] \) in the case \(d = 1 \), see [1, p. 55, Remark].

(4) From now on we will assume \(d \geq 2 \).

Proposition 1.5. Let \(R \) be a Noetherian integral domain and \(\alpha \) an anti-integral element over \(R \) of degree \(d \). Let \(A = R[\alpha, \alpha^{-1}] \) and \(\phi \) the contraction mapping of \(\text{Spec}(A) \) into \(\text{Spec}(R) \). Then the following are equivalent.

(i) The contraction mapping \(\phi \) is surjective.
(ii) For every \(i \) with \(1 \leq i \leq d \), the equality \(\text{rad}(J_{[\alpha], i}) = \text{rad}(J_{[\alpha], i}) \) holds.

Proof. (i) \(\Rightarrow \) (ii). Suppose that there exists an integer \(i (1 \leq i \leq d) \) such that \(\text{rad}(J_{[\alpha], i}) \neq \text{rad}(J_{[\alpha], i}) \). By the definitions of \(J_{[\alpha]} \) and \(J_{[\alpha], i} \), we have \(J_{[\alpha], i} \subset J_{[\alpha]} \). Hence \(\text{rad}(J_{[\alpha], i}) \subset \text{rad}(J_{[\alpha]}) \). Then there exists a prime ideal \(p \) of \(R \) such that \(J_{[\alpha], i} \subset p \) and \(J_{[\alpha]} \not\subset p \). This implies that \(pR_p \supset J_{[\alpha], i} \). By Theorem 1.3 to \(A_p = R_p[\alpha, \alpha^{-1}] \), we obtain \(pA_p = A_p \). This shows that \(p \notin \text{Im}(\phi) \). This is a contradiction.

(ii) \(\Rightarrow \) (i). We have only to prove that \(pA_p \neq A_p \) for arbitrary prime ideal \(p \) of \(R \). Assume that \(pA_p = A_p \). Then Theorem 1.3 asserts that \(pR_p + J_{[\alpha], i} R_p = R_p \). Hence \(J_{[\alpha]} R_p = R_p \). Besides, there exists an integer \(i (1 \leq i \leq d) \) such that \(pR_p \supset J_{[\alpha], i} R_p \) by Theorem 1.3. Hence we see that \(\text{rad}(J_{[\alpha]} R_p) \supset \text{rad}(J_{[\alpha], i} R_p) \), hence \(\text{rad}(J_{[\alpha]}) \supset \text{rad}(J_{[\alpha], i}) \). This is absurd. \(\square \)

Corollary 1.6. Let \(R \) be a Noetherian integral domain and \(\alpha \) an anti-integral element over \(R \) of degree \(d \). Set \(A = R[\alpha, \alpha^{-1}] \). Then \(A/R \) is a faithfully flat extension if and only if \(J_{[\alpha], i} = R \) for every \(i (1 \leq i \leq d) \).

Proof. Let \(\phi \) the contraction mapping of \(\text{Spec}(A) \) into \(\text{Spec}(R) \).
(\(\Rightarrow\)). Since \(A/R\) is faithfully flat, the homomorphism \(\phi\) is surjective by H. Matsumura [2, (4D) Theorem 3]. Then Proposition 1.5 implies that \(\text{rad}(J_{[\alpha]}^i) = \text{rad}(J_{[\alpha]}^i, i)\) for every integer \(i\) \((1 \leq i \leq d)\). Furthermore, by Lemma 1.2, \(J_{[\alpha]} = R\) because \(A/R\) is a flat extension. Hence \(J_{[\alpha]}^i = R\) for every \(i\) \((1 \leq i \leq d)\).

(\(\Leftarrow\)). It is easily verified that \(J_{[\alpha]} = R\) because \(J_{[\alpha]} \supset J_{[\alpha]}^i\). Then \(A/R\) is a flat extension by Lemma 1.2. Moreover, we know that \(\text{rad}(J_{[\alpha]}^i) = R = \text{rad}(J_{[\alpha]}^i, i)\). By Proposition 1.5, the contraction mapping \(\phi\) is surjective. Hence \(A/R\) is a faithfully flat extension by H. Matsumura [2, (4D) Theorem 3]. □

The following holds about \(R[\alpha]\).

Theorem 1.7. Let \(R\) be a Noetherian integral domain and \(\alpha\) an anti-integral element over \(R\) of degree \(d\). Set \(B = R[\alpha]\). Then the following are equivalent.

(i) \(J_{[\alpha]} = R\).

(ii) \(J_{[\alpha]}B = B\).

(iii) \(\overline{J_{[\alpha]}B} = B\).

Proof. (i) \(\Rightarrow\) (ii) is obvious.

(ii) \(\Rightarrow\) (i). Since \(J_{[\alpha]}B = B\), we know that \(\alpha\) is in \(\text{rad}(J_{[\alpha]}B)\) by Lemma 1.2, we have \(J_{[\alpha]} = R\).

(iii) \(\Rightarrow\) (ii) is clear from the fact \(J_{[\alpha]} \supset \overline{J_{[\alpha]}B}\).

(ii) \(\Rightarrow\) (iii). Let \(p\) be a prime divisor of \(\overline{J_{[\alpha]}B}\). By (ii) \(\Rightarrow\) (i), we get \(J_{[\alpha]} = R\). Therefore Lemma 1.1 implies that \(pB = B\). Hence \(\text{rad}(J_{[\alpha]}B) = B\), and so \(\overline{J_{[\alpha]}B} = B\). □

An analogous result to Theorem 1.7 holds in the case \(R[\alpha, \alpha^{-1}]\).

Theorem 1.8. Let \(R\) be a Noetherian integral domain and \(\alpha\) an anti-integral element over \(R\) of degree \(d\). Set \(A = R[\alpha, \alpha^{-1}]\). Then the following are equivalent.

(i) \(J_{[\alpha]} = R\), i.e., the extension \(A/R\) is a flat extension.

(ii) \(J_{[\alpha]}A = A\).

(iii) \(\overline{J_{[\alpha]}A} = A\).

Proof. (i) \(\Rightarrow\) (ii) is immediate.

(ii) \(\Rightarrow\) (i). We will prove that \(A/R\) is a flat extension. Let \(P\) be a prime ideal of \(A\) and set \(p = P \cap R\). Then \(p \not\supset J_{[\alpha]}\) because \(J_{[\alpha]}A = A\). Hence \(J_{[\alpha]}R_p = R_p\). By Lemma 1.2 we see that \(A_p = R_p[\alpha, \alpha^{-1}] / R_p\) is a flat extension. Moreover, \(A_p / A_p\) is also a flat extension. Therefore \(A_p / R_p\) is a flat extension. So is \(A/R\).

(iii) \(\Rightarrow\) (ii) is clear from \(J_{[\alpha]} \supset \overline{J_{[\alpha]}A}\).

(ii) \(\Rightarrow\) (iii). Let \(p\) be a prime divisor of \(\overline{J_{[\alpha]}A}\). Then \(J_{[\alpha]} = R\) by (ii) \(\Rightarrow\) (i). Hence Lemma 1.1 shows that \(\alpha R[\alpha] = R[\alpha]\). This means that \(pA = A\). Therefore \(\text{rad}(\overline{J_{[\alpha]}A}) = A\), and so \(\overline{J_{[\alpha]}A} = A\). □

Remark 1.9. \(\overline{J_{[\alpha]} = R}\) does not hold necessarily even if \(J_{[\alpha]} = R\).

Corollary 1.10. Let \(R\) be a Noetherian integral domain and \(\alpha\) an anti-integral element over \(R\) of degree \(d\). Set \(A = R[\alpha, \alpha^{-1}]\). Then the following are equivalent to the conditions in Theorem 1.8.

(iv) There exists an integer \(i\) \((1 \leq i \leq d)\) such that \(J_{[\alpha]}^i A = A\).
(v) $J_{[\alpha]}$, $\mathfrak{a}A = A$ for every i $(1 \leq i \leq d)$.

Proof. (iv) \implies (ii) is clear from $J_{[\alpha]}$, $\mathfrak{a} \subset J_{[\alpha]}$.

(iii) \implies (iv) is immediate from $\overline{J}_{[\alpha]} = J_{[\alpha]}$, \mathfrak{a}.

(v) \implies (iv) is obvious.

(i) \implies (v). Let p be a prime divisor of $J_{[\alpha]}$, i. By the condition (i) we know that $J_{[\alpha]} = R$. Hence by Lemma 1.1, we get $pR[\alpha] = R[\alpha]$. Hence $pA = A$. This implies that $J_{[\alpha]}$, $\mathfrak{a}A = A$. □

§ 2. Shifting a generator by an element of A.

We denote by $U(A)$ the unit group of A. We will find a condition for A to coincide with $R[\alpha a, (\alpha a)^{-1}]$.

Lemma 2.1. Let R be a Noetherian integral domain with the quotient field K. Let α be an element of an algebraic field extension over K and set $A = R[\alpha, \alpha^{-1}]$. If a is an element of A and $A = R[\alpha a, \alpha^{-1}]$, then a is in $U(A)$.

Proof. Since $a^{-1} = \alpha(\alpha a)^{-1}$ is in A, we know that a is in $U(A)$. □

Proposition 2.2. Let R be a Noetherian domain and α an anti-integral element over R of degree d. Set $A = R[\alpha, \alpha^{-1}]$. If grade($J_{[\alpha]}$, i) > 1 for every i $(1 \leq i \leq d)$, then $U(A) \cap R = U(R)$.

Proof. It is clear that $U(A) \cap R \supset U(R)$. Assume that

$$U(A) \cap R \supsetneq U(R).$$

Then there exists an element a of $U(A) \cap R$ such that $a \not\in U(R)$. Since a is in $U(A)$, we have $aA = A$. Hence there exists a prime divisor p of $\text{rad}(aR)$ such that $pA = A$. Then by Theorem 1.3, we see that $p \supset J_{[\alpha]}$, i for some i with $1 \leq i \leq d$. By K. Yoshida [6, Proposition 1.10], we obtain depth($R_p) = 1$ because p is a prime divisor of $\text{rad}(aR)$. On the other hand grade($J_{[\alpha]}$, i) > 1 and $p \supset J_{[\alpha]}$, i. This shows that depth($R_p) > 1$, and we reach a contradiction. □

Theorem 2.3. Let R be a Noetherian domain and α an anti-integral element over R of degree d. Let a be an element of R. Set $A = R[\alpha, \alpha^{-1}]$ and assume that grade($J_{[\alpha]}$, i) > 1 for every i with $1 \leq i \leq d$. Then $A = R[\alpha a, (\alpha a)^{-1}]$ if and only if a is in $U(R)$.

Proof. (\implies) Lemma 2.1 implies that a is in $U(A)$. Hence a is in $U(A) \cap R$. By Proposition 2.2, we know that $U(A) \cap R = U(R)$. Therefore a is in $U(R)$.

(\impliedby) Since a is in $U(R)$, we see that $(\alpha a)^{-1}$ is in A. Hence

$$R[\alpha a, (\alpha a)^{-1}] \subset A.$$ Note that $\alpha = (\alpha a)a^{-1}$ and $\alpha^{-1} = (\alpha a)^{-1}a$. Then we get $A \subset R[\alpha a, (\alpha a)^{-1}]$. Therefore $A = R[\alpha a, (\alpha a)^{-1}]$. □
§3. Generalized denominator ideals.

We will consider the ring $R[\eta_1, \ldots, \eta_d]$. We can refer to S. Oda and K. Yoshida [3, Corollary 15.2] and S. Oda and K. Yoshida [4, Corollary 1.2] for the condition $I_{[\alpha]} R[\alpha] = R[\alpha]$ and the ring $R[\eta_1, \ldots, \eta_d]$. In this section we will study the ring $R[\eta_1, \ldots, \eta_d]$ in the case the condition $I_{[\alpha]} R[\alpha, \alpha^{-1}] = R[\alpha, \alpha^{-1}]$ holds.

Lemma 3.1. Set $C = R[\eta_1, \ldots, \eta_d]$. If $I_{[\alpha]} R[\alpha, \alpha^{-1}] = R[\alpha, \alpha^{-1}]$, then $C \subset R[\alpha, \alpha^{-1}]$.

Proof. By definition of $I_{[\alpha]}$, it is easily seen that η_1, \ldots, η_d are in $I_{[\alpha]}^{-1}$. We know that

$$I_{[\alpha]}^{-1} \subset I_{[\alpha]}^{-1} R[\alpha, \alpha^{-1}] = I_{[\alpha]}^{-1} I_{[\alpha]} R[\alpha, \alpha^{-1}] \subset R[\alpha, \alpha^{-1}]$$

Hence $C \subset R[\alpha, \alpha^{-1}]$. □

Proposition 3.2. Let R be a Noetherian integral domain and α an anti-integral element over R of degree d. If $I_{[\alpha]} R[\alpha, \alpha^{-1}] = R[\alpha, \alpha^{-1}]$, then $J_{[\alpha]} = R$ and $R[\alpha, \alpha^{-1}]/R$ is a flat extension.

Proof. We will show that $R[\alpha, \alpha^{-1}]/R$ is a flat extension. Let P be a prime ideal of $R[\alpha, \alpha^{-1}]$ and set $p = P \cap R$. By the condition $I_{[\alpha]} R[\alpha, \alpha^{-1}] = R[\alpha, \alpha^{-1}]$, we know that $I_{[\alpha]} \nsubseteq p$. So $J_{[\alpha]} \nsubseteq p$ because $I_{[\alpha]} \subset J_{[\alpha]}$. Hence $J_{[\alpha]} R_p = R_p$. Then Lemma 1.2 shows that $R_p[\alpha, \alpha^{-1}]/R_p$ is a flat extension. Hence $R[\alpha, \alpha^{-1}]/R$ is also a flat extension. By Lemma 1.2, we get $J_{[\alpha]} = R$. □

The following is an analogous result to S. Oda and K. Yoshida [3, Theorem 11].

Theorem 3.3. Let R be a Noetherian integral domain and α an anti-integral element over R of degree d. Set $C = R[\eta_1, \ldots, \eta_d]$. If $I_{[\alpha]} R[\alpha, \alpha^{-1}] = R[\alpha, \alpha^{-1}]$, then the following conditions hold.

1. $C \subset R[\alpha, \alpha^{-1}]$.
2. $I_{[\alpha]} C = C$.
3. C/R is a birational and flat extension.

Proof. We have already proved (1) in Lemma 3.1.

(2) Proposition 3.2 says that $J_{[\alpha]} = R$.

Moreover, $J_{[\alpha]} = I_{[\alpha]}(1, \eta_1, \ldots, \eta_d)$. Then we get $I_{[\alpha]} C = C$.

(3) It is clear that C/R is a birational extension. Let p be a prime ideal of R. Then we will show that $pC = C$ or $C \subset R_p$. From this fact it is easily seen that C/R is a flat extension. If $p \supseteq I_{[\alpha]}$, then $I_{[\alpha]} C = C$ means that $pC = C$. If $p \nsubseteq I_{[\alpha]}$, then η_1, \ldots, η_d are in R_p because $I_{[\alpha]} = \cap_{i=1}^d J_{[\alpha]_i}$. Hence $C \subset R_p$. □

Theorem 3.4. Let R be a Noetherian integral domain and α an anti-integral element over R of degree d. Assume that $J_{[\alpha]} = R$. Then the following two statements hold.

1. $I_{[\alpha]} R[\alpha] = R[\alpha]$ if and only if $\text{rad}(I_{[\alpha]}) = \text{rad}(J_{[\alpha]_1}, \ldots, J_{[\alpha]_d})$.
2. $I_{[\alpha]} R[\alpha, \alpha^{-1}] = R[\alpha, \alpha^{-1}]$ if and only if $\text{rad}(I_{[\alpha]}) = \text{rad}(J_{[\alpha]_1}, \ldots, J_{[\alpha]_d})$.

Proof. (1) (\Rightarrow) It is immediate from $\text{rad}(I_{[\alpha]}) \subset \text{rad}(J_{[\alpha]_1}, \ldots, J_{[\alpha]_d})$ that $I_{[\alpha]} \subset J_{[\alpha]_1}$. Let p be a prime divisor of $I_{[\alpha]}$. Then we have $p R[\alpha] = R[\alpha]$ because $I_{[\alpha]} R[\alpha] = R[\alpha]$. By Lemma 1.1, we get $p \supseteq J_{[\alpha]}_1$. Therefore $\text{rad}(J_{[\alpha]_1}, \ldots, J_{[\alpha]_d}) \subset \text{rad}(I_{[\alpha]})$, and so $\text{rad}(I_{[\alpha]}) = (J_{[\alpha]_1}, \ldots, J_{[\alpha]_d})$.

(\Leftarrow) Let p be a prime divisor of $I_{[\alpha]}$. Then
\[p \triangleright \text{rad}(I_{[d]}), \, \alpha \triangleright J_{[d]}, \, \alpha. \]

Hence by Lemma 1.1, we obtain \(pR[\alpha] = R[\alpha] \). Therefore \(\text{rad}(I_{[d]}(\alpha))R[\alpha] = R[\alpha] \). This means that \(I_{[d]}(\alpha) \triangleright \alpha \).

(2) Since \(J_{[d]} \triangleright \alpha \), by Lemma 1.3, the following holds:

\[pR[\alpha, \alpha^{-1}] = R[\alpha, \alpha^{-1}] \] if and only if there exists an integer \(i \) \((1 \leq i \leq d)\) such that \(p \triangleright J_{[d], i} \).

Note that \(p \triangleright \bigcap_{i=1}^{d} J_{[d], i} \), if and only if there exists an integer \(i \) \((1 \leq i \leq d)\) satisfying \(p \triangleright J_{[d], i} \). By making use of these facts we can prove the assertion (2) in a similar way to the proof of (1). \(\square \)

Remark 3.5. In the case \(d = 1 \), Proposition 1.5, Corollary 1.6, 1.10, Proposition 2.2 and Theorem 2.3 hold by rewriting \(i = 0, 1 \) instead of \(i = 1, \cdots, d \). Theorem 3.4 (2) does not hold even if we rewrite \(i = 0, 1 \) because \(I_{[d]} \not\in I_{[d]}\eta_1 \).

References

Mitsuo Kanemitsu
Department of Mathematics
Aichi University of Education
Igaya-cho, Kariya, 448-8542, JAPAN

Kiyoshi Baba
Department of Mathematics Faculty of Education and Welfare Science
Oita University
Oita 870-1192, JAPAN

Ken-ichi Yoshida
Department of Applied Mathematics
Okayama University of Science Okayama 700-0005, JAPAN