ON ATOMS OF BCK-ALGEBRAS

DAJUN SUN

Received January 31, 2000

Abstract. Atoms in BCK-algebras are considered. The notions of the star BCK-algebras and the star part of BCK-algebras are introduced. The properties of some substructures which consist of atoms are investigated. Furthermore, by isomorphic view, there are and only \(n + 1 \) BCK-algebras \(X \) with \(|X| = n + 1 \) and \(|\text{St}(X)| = n \).

1. Introduction By a BCK-algebra we mean an algebra \((X; *, 0) \) of type \((2, 0)\) satisfying the axioms:

(1) \(((x * y) * (x * z)) * (z * y) = 0 \),
(2) \(x * (x * y) * y = 0 \),
(3) \(x * x = 0 \),
(4) \(x * y = y * x = 0 \) implies \(x = y \),
(5) \(0 * x = 0 \)

for any \(x, y \) and \(z \) in \(X \). For any BCK-algebra \(X \), the relation \(\leq \) defined by \(x \leq y \) if and only if \(x * y = 0 \) is a partial order on \(X \) (see [1]).

A BCK-algebra \(X \) has the following properties for any \(x, y, z \in X \):

(6) \(x * 0 = x \),
(7) \((x * y) * z = (x * z) * y \),
(8) \(x \leq y \) implies that \(x * z \leq y * z \) and \(z * y \leq z * x \).

In a BCK-algebra \(X \), if an element \(a \) satisfying:

(a) \(a \neq 0 \),
(b) \(x \in X \setminus \{0\} \) and \(x \leq a \) imply \(x = a \)

then the element \(a \) is called an atom of \(X \). Since \(0 \) is the least element of \(X \), it is obvious that an atom of \(X \) is a minimal element of \(X \).

Let \((X; *, 0) \) be a BCK-algebra. A non-empty subset \(S \) of \(X \) is called a subalgebra if \(x, y \in S \) implies \(x * y \in S \). By an ideal \(I \) of \(X \) we mean \(0 \in I \) and \(x * y \in I \) imply \(x \in I \). If an ideal \(I \) of \(X \) is also a subalgebra of \(X \), then \(I \) is called a close ideal of \(X \). It has been known that an ideal of a BCK-algebra is a close ideal (see [2]).

2. Star subalgebras of BCK-algebras Let \(X \) be a BCK-algebra. We define

\[\text{St}_I(X) = \{ a \in X; a = 0 \text{ or } a \text{ is an atom of } X \}. \]
The subset \(S_t(X) \) is called the star part of \(X \).

Proposition 2.1. Let \(X \) be a BCK-algebra. If \(a, b \in S_t(X) \) and \(a \neq b \), then \(a \ast b = a \).

Proof. In case \(a = 0 \) or \(b = 0 \), the proof is trivial. Assume \(a \neq 0 \) and \(b \neq 0 \), by \(a \ast b \leq a \) and \(a \) is an atom of \(X \), we get \(a \ast b = 0 \) or \(a \ast b = a \). If \(a \ast b = 0 \), then \(a = 0 \) or \(a = b \) since \(b \) is an atom of \(X \). It is a contradiction, hence \(a \ast b = a \). The proof is completed.

By Proposition 2.1 we can immediately get

Theorem 2.2. For any BCK-algebra \(X \), \(S_t(X) \) is a subalgebra of \(X \).

Let \(X \) be a BCK-algebra and \(S \) be a subalgebra of \(X \). \(S \) is called a star subalgebra of \(X \) if \(S_t(S) = S \). Particularly \(X \) is called a star BCK-algebra if \(X = S_t(X) \).

Remark. \(S_t(X) \) may be not a maximal star subalgebra.

Example 1. Let \(X = \{0, \ldots, -n - 1, -n, -n + 1, \ldots, -3, -2, -1\} \) and partial order \(\leq \) as follows \(0 \leq \cdots \leq -n - 1 \leq -n \leq -n + 1 \leq \cdots \leq -3 \leq -2 \leq -1 \). Define operation \(\ast \) by

\[
x \ast y = \begin{cases} 0, & x \leq y \\ x, & \text{otherwise} \end{cases}
\]

for any \(x, y \) in \(X \). Then \((X; \ast, 0) \) is a BCK-algebra and \(S_t(X) = \{0\} \). If take the subalgebra \(S = \{0, 1\} \) of \(X \), then \(S_t(S) = S \). In this example, \(S_t(X) \) is not a maximal star subalgebra of \(X \).

Example 2. Let \(X = \{0, 1, 2, 3\} \). Take the operation table of \(X \) as follows

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

Then \((X; \ast, 0) \) is a BCK-algebra. \(S_t(X) = \{0, 1, 3\} \) is a maximal star subalgebra of \(X \) but not the largest star subalgebra of \(X \) since \(S = \{0, 2\} \) is a star subalgebra of \(X \).

Theorem 2.3. Let \(X \) be a BCK-algebra and \(S \) be a subalgebra of \(X \). Then \(S \) is a star subalgebra of \(X \) if and only if for any \(a, b \in S \), \(a \neq b \) implies \(a \ast b = a \).

Proof. By Proposition 2.1, the necessity part is obvious. In the sufficiency part, for any \(b \in S \setminus \{0\} \), if there exists \(x_0 \in S \setminus \{0\} \) such that \(x_0 \leq b \), then we have \(x_0 = b \) or \(x_0 \neq b \). If \(x_0 \neq b \), then we get \(x_0 \ast b = 0 \) by \(x_0 \leq b \) and \(x_0 \ast b = x_0 \) by the condition of the Theorem, hence \(x_0 = 0 \). It is contradictory that \(x_0 \in S \setminus \{0\} \). Hence \(x_0 = b \) and \(b \) is an atom of \(S \). The proof is completed.

Theorem 2.4. Let \(X \) be a BCK-algebra. Then \(S_t(X) \) is a maximal star subalgebra of \(X \) if and only if for any element \(x \) in \(X \setminus S_t(X) \), there exists an element \(a \) in \(S_t(X) \setminus \{0\} \) such that \(a \leq x \).

Proof. Assume \(S \) be a star subalgebra of \(X \) and \(S_t(X) \subseteq S \). If there exists an element \(x_0 \) of \(X \) in \(S \setminus S_t(X) \), then there exists an element \(a \) in \(S_t(X) \setminus \{0\} \subseteq S \) such that \(a \leq x_0 \). Hence the element \(x_0 \) is not an atom of \(S \). It is contradictory that \(S \) is a star subalgebra of \(X \). And the sufficient part is proved. On the other hand, if there exists \(x_0 \) in \(X \setminus S_t(X) \) such that for all \(a \) in \(S_t(X) \setminus \{0\} \), \(a \ast x_0 \neq 0 \), then we have \(a \ast x_0 = a \) by \(a \ast x_0 \leq a \) and \(a \in S_t(X) \setminus \{0\} \). Assume \(x_0 \ast a = b \), we get

\[
(x_0 \ast b) \ast a = (x_0 \ast a) \ast b = b \ast b = 0,
\]
that is \(x_0 \ast b \leq a \), hence \(x_0 \ast b = 0 \) or \(x_0 \ast b = a \). If \(x_0 \ast b = a \), then
\[
a \ast x_0 = (x_0 \ast b) \ast x_0 = (x_0 \ast x_0) \ast b = 0 \ast b = 0.
\]
It is a contradiction. Hence \(x_0 \ast b = 0 \). By \(b \ast x_0 = (x_0 \ast a) \ast x_0 = (x_0 \ast x_0) \ast a = 0 \ast a = 0 \), we have \(x_0 = b \neq x_0 \ast a \). Then we get \(x_0 \ast a = x_0 \) and \(a \ast x_0 = a \) for all \(a \in S_1(X) \). Therefore \(S = S_1(X) \cup \{x_0\} \) is a star subalgebra of \(X \) by Theorem 2.3. It is contradictory that \(S_1(X) \) is a maximal star subalgebra. The proof is completed.

Corollary 2.5. For a finite BCK-algebra \(X \), \(S_1(X) \) is a maximal star subalgebra of \(X \).

Theorem 2.6. Let \(X \) be a BCK-algebra. \(S_1(X) \) is the largest star subalgebra of \(X \) if and only if \(X = S_1(X) \).

Proof. The sufficiency part is obvious. Conversely, for any \(x \in X \setminus \{0\} \), \(S = \{0, x\} \) is a star subalgebra of \(X \), hence \(x \in S_1(X) \) since \(S_1(X) \) is the largest star subalgebra. The proof is completed.

Let \((X; *_1, 0, \cdot) \), \((Y; *_2, 0) \) be two BCK-algebras. The set \(X \times Y = \{(x, y); x \in X, y \in Y\} \) about operation \(*: (x_1, y_1) \ast (x_2, y_2) = (x_1 \ast x_2, y_1 \ast y_2) \) becomes a BCK-algebra, and \((0,0)\) is the zero element of \(X \times Y \).

Generally, \(S_1(X \times Y) \neq S_1(X) \times S_1(Y) \), but we have

Theorem 2.7. Let \(X, Y \) be two BCK-algebras. Then
\[
S_1(X \times Y) = (S_1(X) \times \{0\}) \cup (\{0\} \times S_1(Y))
\]

Proof. It is obvious that \(S_1(X \times Y) \supseteq (S_1(X) \times \{0\}) \cup (\{0\} \times S_1(Y)) \). Furthermore, for any \((x_0, y_0) \in S_1(X \times Y) \), if \(x_0 \neq 0 \) and \(y_0 \neq 0 \), then we get \((x_0, 0) \ast (x_0, y_0) = (0, 0) \). It is contradictory that \((x_0, y_0) \in S_1(X \times Y) \). Hence we get \(x_0 = 0 \) or \(y_0 = 0 \). If \(x_0 = 0 \), then it is easy to prove that \(y_0 \in S_1(Y) \). Similarly, if \(y_0 = 0 \), then \(x_0 \in S_1(X) \). The proof is completed.

Corollary 2.8. For any finite BCK-algebra \(X, Y \), we have \(|S_1(X \times Y)| = |S_1(X)| + |S_1(Y)| - 1 \).

Corollary 2.9. Let \(X, Y \) be two BCK-algebras. Then \(S_1(X \times Y) = S_1(X) \times S_1(Y) \) if and only if \(S_1(x) = \{0\} \) or \(S_1(y) = \{0\} \).

Let \(X \) be a BCK-algebra. If an atom \(b \) of \(X \) satisfies that \(b \ast x = b \) for any \(x \in X \setminus \{b\} \), then we call \(b \) a strong atom of \(X \). Take the subset of \(X \)

\[
D(X) = \{ b \in S_1(X); \ b \ is \ a \ strong \ atom \ of \ X \ or \ b = 0 \}
\]

we have

Theorem 2.10. For any BCK-algebra \(X \), \(D(X) \) is a closed ideal of \(X \).

Proof. We need to prove that \(D(X) \) is an ideal of \(X \) only. Assume \(y, x \ast y \in D(X) \), if \(x \ast y = x \), then \(x \in D(X) \). If \(x \ast y \neq x \), then \((x \ast y) \ast x = x \ast y \) by the definition of \(D(X) \). On the other hand,
\[
(x \ast y) \ast x = (x \ast x) \ast y = 0 \ast 0 = 0,
\]
hence we get \(x \ast y = 0 \). By \(y \in D(X) \) and \(x \ast y = 0 \), we have \(x = 0 \) or \(x = y \), hence \(x \in D(X) \).

The proof is completed.

3. **On star BCK-algebras** Suppose \((X; *_0, 0) \) be a BCK-algebra. For any \(a \in X \), we use \(a^{-1} \) denote the selfmap of defined by \(xa^{-1} = x \ast a \). Let \(M(X) \) denote the set of all finite
product $a^{-1} \cdots b^{-1}$ of selfmaps with $a, \ldots, b \in X$. It is clear that $M(X)$ becomes a commutative monoid under composition of maps and 0^{-1} is the identity. We define a relation \leq_1 on $M(X)$ as follows:

$$u^{-1} \cdots v^{-1} \leq_1 a^{-1} \cdots b^{-1} \iff (xu^{-1} \cdots v^{-1}) \ast (xa^{-1} \cdots b^{-1}) = 0$$

for any $x \in X$. We call $M(X)$ the adjoint semigroup of X (see [3]). It is obvious that $M(S) = \{u^{-1} \cdots v^{-1}; u, \ldots, v \in S\}$ becomes a subsemigroup of $M(X)$ for any non-empty subset S of X.

Lemma 3.1. Let X be a BCK-algebra and $\sigma = a_1^{-1} \cdots a_n^{-1} \in M(S_1(X))$. If $S_1(X)$ is an ideal of X, then $\text{Ker}\sigma = \{0, a_1, a_2, \ldots, a_n\}$

Proof. It is obvious that $\{0, a_1, a_2, \ldots, a_n\} \subseteq \text{Ker}\sigma$ by Section 1. Conversely, if $\sigma = a_1^{-1}$ and $b \in \text{Ker}\sigma$, then $ba_1^{-1} = b \ast a_1 = 0$. We get $b = 0$ or $b = a_1$ by $a_1 \in S_1(X)$, hence $b \in \{0, a_1\}$ and the Lemma holds for $n = 1$. Now we assume the Lemma has already been proved for $n = k$, then we prove the case of $\sigma = a_1^{-1} \cdots a_k^{-1}a_{k+1}^{-1}$. If $b \in \text{Ker}\sigma$, $b \ast c = 0$, then we have $b \in S_k(X)$ by $S_k(X)$ is an ideal of X and $a_1, \ldots, a_{k+1} \in S_k(X)$. Since $(b \ast a_{k+1}) \ast b = 0$ and $b \in S_k(X)$, we get $b \ast a_{k+1} = 0$ or $b \ast a_{k+1} = b$. If $b \ast a_{k+1} = 0$, then $b = a_{k+1} \ast b = 0$ hence $b \in \{0, a_1, \ldots, a_{k+1}\}$. If $b \ast a_{k+1} = b$, then

$$0 = b \ast c = ba_1^{-1} \cdots a_{k+1}^{-1}a_{k+1} = (ba_{k+1})a_1^{-1} \cdots a_{k+1}^{-1} = ba_1^{-1} \cdots a_{k+1}^{-1},$$

we have $b \in \{0, a_1, \ldots, a_k\} \subseteq \{0, a_1, \ldots, a_k, a_{k+1}\}$ by our assumption. The proof is completed.

Theorem 3.2. Let X be a BCK-algebra. Then X is a star BCK-algebra if and only if for all $\sigma = a_1^{-1} \cdots a_n^{-1} \in M(X)$, $\text{Ker}\sigma = \{0, a_1, \ldots, a_n\}$.

Proof. By Lemma 3.1, the necessity part is obvious. In sufficiency part, for any element $a \in X \setminus \{0\}$, if there exists $x \in X$ such that $x \leq a$, then $x \in \text{Ker}\sigma^{-1} = \{0, a\}$, hence $x = 0$ or $x = a$, and a is an atom of X. The proof is completed.

By a positive implicatve BCK-algebra, we mean a BCK-algebra $(X; \ast, 0)$ such that for all $x, y, z \in X$, $(x \ast y) \ast z = (x \ast z) \ast (y \ast z)$. If for all $x, y \in X$, $y \ast (y \ast x) = x \ast (y \ast y)$, then X is said to be a commutative BCK-algebra. It is also noteworthy that X is a positive implicatve BCK-algebra if and only if $(x \ast y) \ast y = x \ast y$ for all $x, y \in X$ (see [4]). By using these results, we have

Theorem 3.3. If X is a star BCK-algebra, then the following results hold:

(a) X is a positive implicatve BCK-algebra;

(b) X is a commutative BCK-algebra.

Proof. (a) For any $x, y \in X$, if $x \ast y = 0$, it is obvious that $(x \ast y) \ast y = x \ast y$. Assume $x \ast y \neq 0$, then we have $x \ast y = y \ast x \leq x$ and x is an atom of X. Hence $(x \ast y) \ast y = x \ast y$.

(b) For any $x, y \in X$, if $x \ast y = 0$ or $y \ast x = 0$, then we get $x = 0$ or $x = y$ or $y = 0$, hence it is obvious that $y \ast (y \ast x) = x \ast (x \ast x)$. Assume $x \ast y \neq 0$ and $y \ast x \neq 0$, then we get $x \ast y = x$ and $y \ast x = y$ by $x \ast y \leq y$ and $y \ast x \leq y$, hence $x \ast (x \ast y) = 0 = y \ast (y \ast x)$. The proof is completed.

4. The count of a class finite BCK-algebras Let u be an element in BCK-algebra X. If for any $x \in X$, $u \ast x = 0$ implies $u = x$, then u is called a maximal element of X.

Theorem 4.1. Let X be a BCK-algebra. If $u \in X \setminus D(X)$ is a maximal element of X, then for any $b \in D(X)$, $u \ast b = u$.
Proof. It is trivial to see the case $b = 0$. If $b \neq 0$, then we have $(u * (u * b)) * b = 0$ by BCK axiom (2), hence $u * (u * b) = 0$ or b, since b is an atom of X. If $u * (u * b) = b$, then we can get

$$b * u = (u * (u * b)) * u = (u * u) * (u * b) = 0 * (u * b) = 0,$$

it is contradictory that b is a strong atom of X. Hence $u * (u * b) = 0$. Therefore $u * b = u$ by u is a maximal element of X. The proof is completed.

Lemma 4.2. If $X = \{0, a_1, \cdots, a_n \}$ is a BCK-algebra with $S_t(X) = \{0, a_1, \cdots, a_{n-1} \}$ and $D(X) = \{0, a_1, \cdots, a_i \}$ $(0 \leq i \leq n - 2)$, then for all $a_k \in S_t(X) \setminus D(X)$, $a_k * a_n = 0$.

Proof. By $(a_k * a_n) * a_k = (a_k * a_k) * a_n = 0 * a_n = 0$, we get $a_k * a_n = 0$ or $a_k * a_n = a_k$ since a_k is an atom of X. If $a_k * a_n = a_k$, then we have $a_k \in D(X)$ by Proposition 2.1, it is contradictory that $a_k \notin D(X)$. Hence $a_k * a_n = 0$. The proof is completed.

Corollary 4.3. In Lemma 4.2, the element a_n is a maximal element of X.

Let X be a BCK-algebra with $|X| = n + 1$, $|S_t(X)| = n$ and $|D(X)| = i + 1$ $(0 \leq i \leq n - 2)$. Assuming $X = \{0, a_1, a_2, \cdots, a_n \}$, $S_t(X) = \{0, a_1, \cdots, a_{n-1} \}$ and $D(X) = \{0, a_1, \cdots, a_i \}$, by above discussing, the operation table of X must be as table one.

In table one, $a_n * a_k = a_n * a_k (i + 1 \leq k \leq n - 1)$. After, we shall give the number of this class BCK-algebras by determining the value of a_{nk} in table one.

Lemma 4.4. Let BCK-algebra $X = \{0, a_1, a_2, \cdots, a_n \}$ with $S_t(X) = \{0, a_1, a_2, \cdots, a_{n-1} \}$ and $D(X) = \{0, a_1, a_2, a_n \}$ If $|S_t(X) \setminus D(X)| \geq 2$, then the following conclusions hold:

(a) For any $a_k \in S_t(X) \setminus D(X)$, $a_n * a_k \neq a_k$;

(b) If there exists $a_k \in S_t(X) \setminus D(X)$ such that $a_n * a_k = a_l$, and $a_l \neq a_n$, then $a_n * a_l = a_k$;

(c) If there exists $a_k, a_l \in S_t(X) \setminus D(X)$ and $a_k \neq a_l$ such that $a_n * a_k = a_l$, $a_n * a_l = a_k$, then for all $a_p \in S_t(X) \setminus D(X) \cup \{a_k, a_l \}$, $a_n * a_p = a_n$.

Proof. (a) If there exists $a_k \in S_t(X) \setminus D(X)$, such that $a_n * a_k = a_k$, then take $a_l \in S_t(X) \setminus D(X)$, $a_l \neq a_k$, we have

$$0 = ((a_l * a_k) * (a_l * a_n)) * (a_n * a_k) \quad (by \ axiom \ (1))$$
$$= (a_l * a_k) * (a_n * a_k) \quad (by \ Proposition \ 2.1)$$
$$= (a_l * 0) * (a_n * a_k) \quad (by \ Lemma \ 4.2)$$
$$= a_l * (a_n * a_k)$$
$$= a_l * a_k \quad (by \ our \ assumption)$$
$$= a_l \quad (by \ Proposition \ 2.1)$$

It is a contradiction. Hence (a) holds.

(b) By BCK axioms (2), we have $0 = (a_n * (a_n * a_k)) * a_k = (a_n * a_l) * a_k$. Hence $a_n * a_l = 0$ or $a_n * a_l = a_k$. If $a_n * a_l = 0$, then we get $a_n = a_l$. By Lemma 4.2. It is contradictory that $a_l \neq a_n$. Therefore $a_n * a_l = a_k$, and the proof of (b) is completed.

(c) If there exists $a_p \in S_t(X) \setminus \{D(X) \cup \{a_k, a_l \} \}$ such that $a_n * a_p = a_q$ and $a_q \neq a_n$, then by BCK axioms (1) we have $0 = ((a_n * a_p) * (a_n * a_k)) * (a_k * a_p) = (a_q * a_l) * a_k$. If $a_q \neq a_l$, then $a_q * a_l = a_q$ by Proposition 2.1. Hence $0 = a_q * a_k$ and $a_q = a_k$, therefore we get

$$0 = (a_n * (a_n * a_p)) * a_p = (a_n * a_q) * a_p = (a_n * a_k) * a_p = a_l * a_p = a_l.$$

It is a contradiction. If $a_q = a_l$, then it is contradictory that

$$0 = (a_n * (a_n * a_p)) * a_p = (a_n * a_q) * a_p = (a_n * a_l) * a_p = a_k * a_p = a_k.$$
Hence (c) holds. And the proof of the Lemma is completed.

Theorem 4.5. By isomorphic view, there are total \(n + 1 \) BCK-algebras \(X \) with \(|X| = n + 1 \) and \(|S_t(X)| = n \).

Proof. Assuming \(X = \{0, a_1, a_2, \ldots, a_n\} \) with \(S_t(X) = \{0, a_1, a_2, \ldots, a_{n-1}\} \) and \(D(X) = \{0, a_1, a_2, \ldots, a_i\} \) \((0 \leq i \leq n - 2)\), we determine the operation tables of \(X \) according to the order of \(D(X) \).

Case 1. \(|D(X)| = n - 1\), that is \(D(X) = \{0, a_1, a_2, \ldots, a_{n-2}\} \). In this case, we only need to determine the value of \(a_n(n-1) = a_{n-1} * a_{n-1} \) in table one. By \(a_n * a_{n-1} \neq 0 \) and \(a_n * a_{n-1} \leq a_n \), we have \(a_n * a_{n-1} = a_{n-1} \) or \(a_n * a_{n-1} = a_n \). Taking \(a_n(n-1) = a_{n-1} \) and \(a_n(n-1) = a_n \) each, we get two different operation tables—table two and table three.

By BCK-algebra axioms (1)—(5) we can verify that table two and table three indeed give two BCK-algebras. Hence, there are and only two BCK-algebras in Case 1.

Case 2. \(|D(X)| = n - 2\), that is \(|S_t(X) \setminus D(X)| = 2\). In this case, if \(a_n * a_{n-2} = a_n * a_{n-1} = a_n \), then by table one we get the operation table of \(X \) as table four.

If the operation table of \(X \) is different from table four, then we have \(a_n * a_{n-2} = a_{n-1} \) and \(a_n * a_{n-1} = a_{n-2} \) by Lemma 4.4. Hence by table one the operation table must be as table five.

By BCK-algebra axioms (1)—(5) we can verify \(X \) which are given by table four and table five are BCK-algebras. Hence, there are and only two BCK-algebras in Case 2.

Case 3. \(|D(X)| < n - 2\), that is \(|S_t(X) \setminus D(X)| > 2\). In this case, if \(a_n * a_i = a_n \), \(k = i + 1, \ldots, n - 1 \), then by table one we get the operation table of \(X \) as table six.

By BCK-algebra axioms (1)—(5) we can verify \(X \) which is given by table six is BCK-algebra. If the operation table of \(X \) is different from table six, then by Lemma 4.4, there are two elements \(a_k, a_i \in S_t(X) \setminus D(X) \) such that \(a_n * a_k = a_i \) and \(a_n * a_k = a_k \). Assume \(a_k = a_{n-2} \) and \(a_i = a_{n-1} \). We get \(a_n * a_i = a_n, \) \(p = i + 1, \ldots, n - 3 \) by Lemma 4.4. Hence by table one the operation table must be as follows

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>(a_1)</th>
<th>(a_2)</th>
<th>\ldots</th>
<th>(a_i)</th>
<th>(a_{i+1})</th>
<th>\ldots</th>
<th>(a_{n-3})</th>
<th>(a_{n-2})</th>
<th>(a_{n-1})</th>
<th>(a_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
<td>0</td>
<td>\ldots</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(a_1)</td>
<td>(a_1)</td>
<td>0</td>
<td>(a_1)</td>
<td>\ldots</td>
<td>(a_1)</td>
<td>(a_1)</td>
<td>\ldots</td>
<td>(a_1)</td>
<td>(a_1)</td>
<td>(a_1)</td>
<td>(a_1)</td>
</tr>
<tr>
<td>(a_2)</td>
<td>(a_2)</td>
<td>(a_2)</td>
<td>0</td>
<td>\ldots</td>
<td>(a_2)</td>
<td>(a_2)</td>
<td>\ldots</td>
<td>(a_2)</td>
<td>(a_2)</td>
<td>(a_2)</td>
<td>(a_2)</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\ldots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\ldots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>(a_i)</td>
<td>(a_i)</td>
<td>(a_i)</td>
<td>(a_i)</td>
<td>\ldots</td>
<td>(a_i)</td>
<td>(a_i)</td>
<td>\ldots</td>
<td>(a_i)</td>
<td>(a_i)</td>
<td>(a_i)</td>
<td>(a_i)</td>
</tr>
<tr>
<td>(a_{i+1})</td>
<td>(a_{i+1})</td>
<td>(a_{i+1})</td>
<td>(a_{i+1})</td>
<td>\ldots</td>
<td>(a_{i+1})</td>
<td>(a_{i+1})</td>
<td>\ldots</td>
<td>(a_{i+1})</td>
<td>(a_{i+1})</td>
<td>(a_{i+1})</td>
<td>(a_{i+1})</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\ldots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\ldots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>(a_{n-3})</td>
<td>(a_{n-3})</td>
<td>(a_{n-3})</td>
<td>(a_{n-3})</td>
<td>\ldots</td>
<td>(a_{n-3})</td>
<td>(a_{n-3})</td>
<td>\ldots</td>
<td>(a_{n-3})</td>
<td>(a_{n-3})</td>
<td>(a_{n-3})</td>
<td>(a_{n-3})</td>
</tr>
<tr>
<td>(a_{n-2})</td>
<td>(a_{n-2})</td>
<td>(a_{n-2})</td>
<td>(a_{n-2})</td>
<td>\ldots</td>
<td>(a_{n-2})</td>
<td>(a_{n-2})</td>
<td>\ldots</td>
<td>(a_{n-2})</td>
<td>(a_{n-2})</td>
<td>(a_{n-2})</td>
<td>(a_{n-2})</td>
</tr>
<tr>
<td>(a_{n-1})</td>
<td>(a_{n-1})</td>
<td>(a_{n-1})</td>
<td>(a_{n-1})</td>
<td>\ldots</td>
<td>(a_{n-1})</td>
<td>(a_{n-1})</td>
<td>\ldots</td>
<td>(a_{n-1})</td>
<td>(a_{n-1})</td>
<td>(a_{n-1})</td>
<td>(a_{n-1})</td>
</tr>
<tr>
<td>(a_n)</td>
<td>(a_n)</td>
<td>(a_n)</td>
<td>(a_n)</td>
<td>\ldots</td>
<td>(a_n)</td>
<td>(a_n)</td>
<td>\ldots</td>
<td>(a_n)</td>
<td>(a_n)</td>
<td>(a_n)</td>
<td>(a_n)</td>
</tr>
</tbody>
</table>

Table seven

But the algebra defined by table seven is not a BCK-algebra, for, we have

\[
((a_{n-3} * a_{n-1}) * (a_{n-3} * a_n)) * (a_n * a_{n-1}) = (a_{n-3} * 0) * a_{n-2} = a_{n-3} \neq 0,
\]

namely, the BCK-algebra axiom (1) does not hold. Hence, there exists and only one BCK-algebra \(X \) with \(|D(X)| = i + 1 < n - 2\) in Case 3 by table six. Since the order of \(D(X) \)
can take 1, 2, \cdots, n - 3, the proof is completed by combinig Case 1, Case 2, Case 3, and the operation tables are given by table two — table six.

$$
\begin{array}{cccccccccc}
* & 0 & a_1 & a_2 & \cdots & a_i & a_{i+1} & \cdots & a_{n-3} & a_{n-2} & a_{n-1} & a_n \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
a_1 & a_1 & 0 & a_1 & \cdots & a_1 & a_1 & \cdots & a_1 & a_1 & a_1 & a_1 \\
a_2 & a_2 & a_2 & 0 & \cdots & a_2 & a_2 & \cdots & a_2 & a_2 & a_2 & a_2 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
a_i & a_i & a_i & a_i & \cdots & 0 & a_i & \cdots & a_i & a_i & a_i & a_i \\
a_{i+1} & a_{i+1} & a_{i+1} & a_{i+1} & \cdots & a_{i+1} & 0 & \cdots & a_{i+1} & a_{i+1} & a_{i+1} & a_{i+1} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
a_{n-3} & a_{n-3} & a_{n-3} & a_{n-3} & \cdots & a_{n-3} & a_{n-3} & \cdots & 0 & a_{n-3} & a_{n-3} & a_{n-3} \\
a_{n-2} & a_{n-2} & a_{n-2} & a_{n-2} & \cdots & a_{n-2} & a_{n-2} & \cdots & a_{n-2} & 0 & a_{n-2} & a_{n-2} \\
a_{n-1} & a_{n-1} & a_{n-1} & a_{n-1} & \cdots & a_{n-1} & a_{n-1} & \cdots & a_{n-1} & a_{n-1} & 0 & 0 \\
a_n & a_n & a_n & a_n & \cdots & a_n & a_n & \cdots & a_n & a_n & a_n & a_n \\
\end{array}
$$

(table one)

$$
\begin{array}{cccccccccc}
* & 0 & a_1 & a_2 & \cdots & a_i & a_{i+1} & \cdots & a_{n-3} & a_{n-2} & a_{n-1} & a_n \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
a_1 & a_1 & 0 & a_1 & \cdots & a_1 & a_1 & \cdots & a_1 & a_1 & a_1 & a_1 \\
a_2 & a_2 & a_2 & 0 & \cdots & a_2 & a_2 & \cdots & a_2 & a_2 & a_2 & a_2 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
a_i & a_i & a_i & a_i & \cdots & 0 & a_i & \cdots & a_i & a_i & a_i & a_i \\
a_{i+1} & a_{i+1} & a_{i+1} & a_{i+1} & \cdots & a_{i+1} & 0 & \cdots & a_{i+1} & a_{i+1} & a_{i+1} & a_{i+1} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
a_{n-3} & a_{n-3} & a_{n-3} & a_{n-3} & \cdots & a_{n-3} & a_{n-3} & \cdots & 0 & a_{n-3} & a_{n-3} & a_{n-3} \\
a_{n-2} & a_{n-2} & a_{n-2} & a_{n-2} & \cdots & a_{n-2} & a_{n-2} & \cdots & a_{n-2} & 0 & a_{n-2} & a_{n-2} \\
a_{n-1} & a_{n-1} & a_{n-1} & a_{n-1} & \cdots & a_{n-1} & a_{n-1} & \cdots & a_{n-1} & a_{n-1} & 0 & 0 \\
a_n & a_n & a_n & a_n & \cdots & a_n & a_n & \cdots & a_n & a_n & a_n & a_n \\
\end{array}
$$

(table two)

$$
\begin{array}{cccccccccc}
* & 0 & a_1 & a_2 & \cdots & a_i & a_{i+1} & \cdots & a_{n-3} & a_{n-2} & a_{n-1} & a_n \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\
a_1 & a_1 & 0 & a_1 & \cdots & a_1 & a_1 & \cdots & a_1 & a_1 & a_1 & a_1 \\
a_2 & a_2 & a_2 & 0 & \cdots & a_2 & a_2 & \cdots & a_2 & a_2 & a_2 & a_2 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
a_i & a_i & a_i & a_i & \cdots & 0 & a_i & \cdots & a_i & a_i & a_i & a_i \\
a_{i+1} & a_{i+1} & a_{i+1} & a_{i+1} & \cdots & a_{i+1} & 0 & \cdots & a_{i+1} & a_{i+1} & a_{i+1} & a_{i+1} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\
a_{n-3} & a_{n-3} & a_{n-3} & a_{n-3} & \cdots & a_{n-3} & a_{n-3} & \cdots & 0 & a_{n-3} & a_{n-3} & a_{n-3} \\
a_{n-2} & a_{n-2} & a_{n-2} & a_{n-2} & \cdots & a_{n-2} & a_{n-2} & \cdots & a_{n-2} & 0 & a_{n-2} & a_{n-2} \\
a_{n-1} & a_{n-1} & a_{n-1} & a_{n-1} & \cdots & a_{n-1} & a_{n-1} & \cdots & a_{n-1} & a_{n-1} & 0 & 0 \\
a_n & a_n & a_n & a_n & \cdots & a_n & a_n & \cdots & a_n & a_n & a_n & a_n \\
\end{array}
$$

(table three)
\begin{table}[h]
\centering
\begin{tabular}{|c|c c c ... c c c |}
\hline
* & 0 & a_1 & a_2 & ... & a_i & a_{i+1} & ... & a_{n-3} & a_{n-2} & a_{n-1} & a_n \\
\hline
0 & 0 & 0 & 0 & ... & 0 & 0 & ... & 0 & 0 & 0 & 0 \\
\hline
a_1 & 0 & a_1 & 0 & ... & a_1 & a_1 & ... & a_1 & a_1 & a_1 & a_1 \\
\hline
a_2 & 0 & a_2 & a_2 & 0 & ... & a_2 & a_2 & ... & a_2 & a_2 & a_2 \\
\hline
\vdots & . & . & . & ... & . & . & ... & . & . & . & . \\
\hline
a_i & a_i & a_i & a_i & ... & a_i & a_i & ... & a_i & a_i & a_i & a_i \\
\hline
a_{i+1} & a_{i+1} & a_{i+1} & a_{i+1} & ... & a_{i+1} & a_{i+1} & ... & a_{i+1} & a_{i+1} & a_{i+1} & a_{i+1} \\
\hline
\vdots & . & . & . & ... & . & . & ... & . & . & . & . \\
\hline
a_{n-3} & a_{n-3} & a_{n-3} & a_{n-3} & ... & a_{n-3} & a_{n-3} & ... & 0 & a_{n-3} & a_{n-3} & a_{n-3} \\
\hline
a_{n-2} & a_{n-2} & a_{n-2} & a_{n-2} & ... & a_{n-2} & a_{n-2} & ... & a_{n-2} & a_{n-2} & a_{n-2} & a_{n-2} \\
\hline
a_{n-1} & a_{n-1} & a_{n-1} & a_{n-1} & ... & a_{n-1} & a_{n-1} & ... & a_{n-1} & a_{n-1} & a_{n-1} & a_{n-1} \\
\hline
a_n & a_n & a_n & a_n & ... & a_n & a_n & ... & a_n & a_n & a_n & a_n \\
\hline
\end{tabular}
\caption{Table Four}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{|c|c c c ... c c c |}
\hline
* & 0 & a_1 & a_2 & ... & a_i & a_{i+1} & ... & a_{n-3} & a_{n-2} & a_{n-1} & a_n \\
\hline
0 & 0 & 0 & 0 & ... & 0 & 0 & ... & 0 & 0 & 0 & 0 \\
\hline
a_1 & 0 & a_1 & 0 & ... & a_1 & a_1 & ... & a_1 & a_1 & a_1 & a_1 \\
\hline
a_2 & 0 & a_2 & a_2 & 0 & ... & a_2 & a_2 & ... & a_2 & a_2 & a_2 \\
\hline
\vdots & . & . & . & ... & . & . & ... & . & . & . & . \\
\hline
a_i & a_i & a_i & a_i & ... & a_i & a_i & ... & a_i & a_i & a_i & a_i \\
\hline
a_{i+1} & a_{i+1} & a_{i+1} & a_{i+1} & ... & a_{i+1} & a_{i+1} & ... & a_{i+1} & a_{i+1} & a_{i+1} & a_{i+1} \\
\hline
\vdots & . & . & . & ... & . & . & ... & . & . & . & . \\
\hline
a_{n-3} & a_{n-3} & a_{n-3} & a_{n-3} & ... & a_{n-3} & a_{n-3} & ... & 0 & a_{n-3} & a_{n-3} & a_{n-3} \\
\hline
a_{n-2} & a_{n-2} & a_{n-2} & a_{n-2} & ... & a_{n-2} & a_{n-2} & ... & a_{n-2} & a_{n-2} & a_{n-2} & a_{n-2} \\
\hline
a_{n-1} & a_{n-1} & a_{n-1} & a_{n-1} & ... & a_{n-1} & a_{n-1} & ... & a_{n-1} & a_{n-1} & a_{n-1} & a_{n-1} \\
\hline
a_n & a_n & a_n & a_n & ... & a_n & a_n & ... & a_n & a_n & a_n & a_n \\
\hline
\end{tabular}
\caption{Table Five}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{|c|c c c ... c c c |}
\hline
* & 0 & a_1 & a_2 & ... & a_i & a_{i+1} & ... & a_{n-3} & a_{n-2} & a_{n-1} & a_n \\
\hline
0 & 0 & 0 & 0 & ... & 0 & 0 & ... & 0 & 0 & 0 & 0 \\
\hline
a_1 & 0 & a_1 & 0 & ... & a_1 & a_1 & ... & a_1 & a_1 & a_1 & a_1 \\
\hline
a_2 & 0 & a_2 & a_2 & 0 & ... & a_2 & a_2 & ... & a_2 & a_2 & a_2 \\
\hline
\vdots & . & . & . & ... & . & . & ... & . & . & . & . \\
\hline
a_i & a_i & a_i & a_i & ... & a_i & a_i & ... & a_i & a_i & a_i & a_i \\
\hline
a_{i+1} & a_{i+1} & a_{i+1} & a_{i+1} & ... & a_{i+1} & a_{i+1} & ... & a_{i+1} & a_{i+1} & a_{i+1} & a_{i+1} \\
\hline
\vdots & . & . & . & ... & . & . & ... & . & . & . & . \\
\hline
a_{n-3} & a_{n-3} & a_{n-3} & a_{n-3} & ... & a_{n-3} & a_{n-3} & ... & 0 & a_{n-3} & a_{n-3} & a_{n-3} \\
\hline
a_{n-2} & a_{n-2} & a_{n-2} & a_{n-2} & ... & a_{n-2} & a_{n-2} & ... & a_{n-2} & a_{n-2} & a_{n-2} & a_{n-2} \\
\hline
a_{n-1} & a_{n-1} & a_{n-1} & a_{n-1} & ... & a_{n-1} & a_{n-1} & ... & a_{n-1} & a_{n-1} & a_{n-1} & a_{n-1} \\
\hline
a_n & a_n & a_n & a_n & ... & a_n & a_n & ... & a_n & a_n & a_n & a_n \\
\hline
\end{tabular}
\caption{Table Six}
\end{table}
REFERENCES

Department of Mathematics
Langfang Teacher’s College
Langfang 065000, Hebei, P.R.China