ON FUZZY HYPERK-SUBALGEBRAS OF HYPERK-ALGEBRAS

Young Bae Jun

Received November 19, 1999

ABSTRACT. In this paper, we introduce the concept of fuzzy hyperK-subalgebras and investigate some related properties. We state a characterization for a fuzzy hyperK-subalgebra in terms of it's level hyperK-subalgebras. We also consider the notion of hypernormal fuzzy hyperK-subalgebras and study some related results.

1. Introduction

The hyper algebraic structure theory was introduced in 1934 [15] by F. Marty at the 8th congress of Scandinavian Mathematiciens. Since then many researchers have worked on this area. Recently Y. B. Jun et al. [14] applied the hyperstructures to BCK-algebras and introduced the concept of a hyperBCK-algebra which is a generalization of a BCK-algebra. R. A. Borzoei et al. [1] defined the notion of a hyperK-algebra. For background and notations we refer to R. A. Borzoei et al. [1]. In this paper, we introduce the concept of fuzzy hyperK-subalgebras and investigate some related properties. We state a characterization for a fuzzy hyperK-subalgebra in term of it's level hyperK-subalgebras. We also consider the notion of hypernormal fuzzy hyperK-subalgebra and study some related results.

2. Preliminaries

In [1], the present author together with Professors R. A. Borzoei, A. Hasankhani and M. M. Zahedi established the notion of hyper I/hyper K-algebras as follows:

By a hyperI-algebra we mean a non-empty set \mathcal{H} endowed with a hyperoperation "o" and a constant 0 satisfying the following axioms:

- (HI1) $(x \circ z) \circ (y \circ z) < x \circ y$,
- (HI2) $(x \circ y) \circ z = (x \circ z) \circ y$,
- (HI3) x < x,
- (HI4) x < y and y < x imply x = y,

for all $x, y, z \in \mathcal{H}$, where x < y is defined by $0 \in x \circ y$ and for every $A, B \subseteq \mathcal{H}$, A < B is defined by $\exists a \in A$ and $\exists b \in B$ such that a < b. If a hyper *I*-algebra $(\mathcal{H}, \circ, 0)$ satisfies

(HI5)
$$0 < x$$
 for all $x \in \mathcal{H}$,

then $(\mathcal{H}, \circ, 0)$ is called a *hyperK-algebra*. Let $(\mathcal{H}, \circ, 0)$ be a hyper*K*-algebra and let *S* be a subset of \mathcal{H} containing 0. If *S* is a hyper*K*-algebra with respect to the hyperoperation " \circ " on \mathcal{H} , we say that *S* is a *hyperK-subalgebra* of \mathcal{H} .

Let $(\mathcal{H}, \circ, 0)$ be a hyper K-algebra. Then for all $x, y, z \in \mathcal{H}$ and for all non-empty subsetes A and B of \mathcal{H} the following hold (see [1, Proposition 3.6]):

(i) $x \circ y < x$,

 $^{1991\} Mathematics\ Subject\ Classification.\ 06F35,\ 03G25,\ 20N20.$

 $Key\ words\ and\ phrases.$ (Fuzzy) hyper K -subalgebra, level hyper K -subalgebra, weak homo-morphism, hypernormal fuzzy hyper K -subalgebra.

This paper is dedicated to the memory of Prof. Dr. Mehmet Sapanci

- (ii) $A \circ B < A$,
- (iii) $A \circ A < A$,
- (iv) $0 \in x \circ (x \circ 0)$,
- (v) $x < x \circ 0$,
- (vi) $A < A \circ 0$,
- (vii) $A < A \circ B$ if $0 \in B$.

We now review some fuzzy logic concepts. A fuzzy set in a set X is a function $\mu: X \to [0,1]$. For a fuzzy set μ in X and $\alpha \in [0,1]$ define $U(\mu;\alpha)$ to be the set $U(\mu;\alpha) := \{x \in X \mid \mu(x) \geq \alpha\}$, which is called a *level set* of μ .

3. Fuzzy hyperK-subalgebras

In what follows, \mathcal{H} denotes a hyper K-algebra unless otherwise specified.

Definition 3.1. A fuzzy set μ in \mathcal{H} is said to be a *fuzzy hyperK-subalgebra* of \mathcal{H} if it satisfies the inequality:

$$\inf_{z \in x \circ y} \mu(z) \ge \min\{\mu(x), \mu(y)\},\$$

for all $x, y \in \mathcal{H}$.

Proposition 3.2. Let μ be a fuzzy hyperK-subalgebra of \mathcal{H} . Then $\mu(0) \geq \mu(x)$ for all $x \in \mathcal{H}$.

Proof. Using (HI3), we see that $0 \in x \circ x$ for all $x \in \mathcal{H}$. Hence

$$\mu(0) \ge \inf_{z \in x \circ x} \mu(z) \ge \min\{\mu(x), \mu(x)\} = \mu(x)$$

for all $x \in \mathcal{H}$. \square

Example 3.3. (i) Let $\mathcal{H} = \{0, a, b\}$ in which the hyperoperation "o" is given by the following table:

Then \mathcal{H} is a hyper K-algebra (see [1, Example 3.3(4)]). Define a fuzzy set $\mu: \mathcal{H} \to [0,1]$ by $\mu(0) = \mu(a) = \alpha_1 > \alpha_2 = \mu(b)$. Then μ is a fuzzy hyper K-subalgebra of \mathcal{H} . A fuzzy set $\nu: \mathcal{H} \to [0,1]$ defined by $\nu(0) = 0.7$, $\nu(a) = 0.5$ and $\nu(b) = 0.2$ is also a fuzzy hyper K-subalgebra of \mathcal{H} .

(ii) Consider a hyper K-algebra $\mathcal{H} = \{0, x, y\}$ with Cayley table as follows:

Using [1, Theorem 3.9], we see that $\mathcal{H} \times \mathcal{H}$ is a hyperK-algebra. Define a fuzzy set μ in $\mathcal{H} \times \mathcal{H}$ by

$$\mu(a,b) := \left\{ \begin{array}{ll} \alpha_1 & \text{ if } b = 0, \\ \alpha_2 & \text{ otherwise,} \end{array} \right.$$

where $\alpha_1 > \alpha_2$ in [0, 1]. It is routine to check that μ is a fuzzy hyper K-subalgebra of $\mathcal{H} \times \mathcal{H}$.

Lemma 3.4 ([1, Theorem 4.12]). Let S be a non-empty subset of \mathcal{H} . Then S is a hyperK-subalgebra of \mathcal{H} if and only if $x \circ y \subseteq S$ for all $x, y \in S$.

Theorem 3.5. Let μ be a fuzzy set in \mathcal{H} . Then μ is a fuzzy hyperK-subalgebra of \mathcal{H} if and only if for every $\alpha \in [0,1]$ the non-empty level set $U(\mu;\alpha)$ of μ is a hyperK-subalgebra of \mathcal{H} .

We then call $U(\mu; \alpha)$ a level hyperK-subalgebra of μ .

Proof. Suppose that μ is a fuzzy hyperK-subalgebra of \mathcal{H} and let $x, y \in U(\mu; \alpha)$ for $\alpha \in [0, 1]$. Let $z \in x \circ y$. Then

$$\mu(z) \geq \inf_{w \in x \circ y} \mu(w) \geq \min\{\mu(x), \mu(y)\} \geq \alpha,$$

and so $z \in U(\mu; \alpha)$. This shows that $x \circ y \subseteq U(\mu; \alpha)$. It follows from Lemma 3.4 that $U(\mu; \alpha)$ is a hyper K-subalgebra of \mathcal{H} . Conversely let $U(\mu; \alpha) (\neq \emptyset)$ be a hyper K-subalgebra of \mathcal{H} for every $\alpha \in [0, 1]$. For any $x, y \in \mathcal{H}$, let $\beta = \min\{\mu(x), \mu(y)\}$. Then $x, y \in U(\mu; \beta)$ and hence $x \circ y \subseteq U(\mu; \beta)$. It follows that $\mu(z) \geq \beta$ for all $z \in x \circ y$ so that

$$\inf_{z \in x \circ y} \mu(z) \ge \beta = \min\{\mu(x), \mu(y)\}.$$

This shows that μ is a fuzzy hyper K-subalgebra of \mathcal{H} . \square

Theorem 3.6. Let S be a non-empty subset of \mathcal{H} and let μ_S be a fuzzy set in \mathcal{H} defined by

$$\mu_S(x) := \begin{cases} \alpha_1 & \text{if } x \in S, \\ \alpha_2 & \text{otherwise,} \end{cases}$$

for all $x \in \mathcal{H}$ and $\alpha_1 > \alpha_2$ in [0,1]. Then

- (i) μ_S is a fuzzy hyperK-subalgebra of \mathcal{H} if and only if S is a hyperK-subalgebra of \mathcal{H} .
- (ii) $\mathcal{H}_{\mu_S} := \{ x \in \mathcal{H} \mid \mu_S(x) = \mu_S(0) \} = S.$

Proof. Assume that μ_S is a fuzzy hyper K-subalgebra of \mathcal{H} and let $x, y \in S$. Then $\mu_S(x) = \alpha_1 = \mu_S(y)$. For any $z \in x \circ y$, we have

$$\mu_S(z) \ge \inf_{w \in x \circ y} \mu_S(w) \ge \min\{\mu_S(x), \mu_S(y)\} = \alpha_1$$

and so $\mu_S(z) = \alpha_1$. Hence $z \in S$, which shows that $x \circ y \subseteq S$. Therefore S is a hyperK-subalgebra of \mathcal{H} by Lemma 3.4. Conversely suppose that S is a hyperK-subalgebra of \mathcal{H} and let $x, y \in \mathcal{H}$. If $x \notin S$ or $y \notin S$, then clearly

$$\inf_{w \in x \circ y} \mu_S(w) \ge \alpha_2 = \min\{\mu_S(x), \mu_S(y)\}.$$

Assume that $x \in S$ and $y \in S$. Then $x \circ y \subseteq S$, and thus

$$\inf_{z \in x \circ y} \mu_S(z) = \alpha_1 = \min\{\mu_S(x), \mu_S(y)\}.$$

Consequently μ_S is a fuzzy hyper K-subalgebra of \mathcal{H} .

(ii) We have that

$$\mathcal{H}_{\mu_S} = \{ x \in \mathcal{H} \mid \mu_S(x) = \mu_S(0) \} = \{ x \in \mathcal{H} \mid \mu_S(x) = \alpha_1 \} = S.$$

This completes the proof. \Box

Corollary 3.7. Any hyperK-subalgebra of \mathcal{H} can be realized as a level hyperK-subalgebra of some fuzzy hyperK-subalgebra of \mathcal{H} .

Proposition 3.8. Let μ be a fuzzy hyperK-subalgebra of \mathcal{H} and let $\alpha_1, \alpha_2 \in [0, 1]$ with $\alpha_1 > \alpha_2$. Then two level hyperK-subalgebras $U(\mu; \alpha_1)$ and $U(\mu; \alpha_2)$ of μ are equal if and only if there does not exists $x \in \mathcal{H}$ such that $\alpha_1 \leq \mu(x) < \alpha_2$.

Proof. Straightforward. \square

Corollary 3.9. Let \mathcal{H} be a finite hyperK-algebra and let μ be a fuzzy hyperK-subalgebra of \mathcal{H} . Then the level hyperK-subalgebras of μ form a chain, i.e.,

$$U(\mu; \alpha_0) \subseteq U(\mu; \alpha_1) \subseteq \cdots \subseteq U(\mu; \alpha_m) = \mathcal{H}$$

where $\alpha_0 > \alpha_1 > \cdots > \alpha_m$ in [0,1].

Corollary 3.10. Let μ be a fuzzy hyperK-subalgebra of \mathcal{H} with

$$Im(\mu) = \{\alpha_1, \alpha_2, \cdots, \alpha_m\}.$$

Then

- (i) the family of hyperK-subalgebras $U(\mu; \alpha_i)$, $1 \leq i \leq m$, constitutes all the level hyperK-subalgebras of μ .
 - (ii) for any $\alpha_i, \alpha_j \in \text{Im}(\mu), U(\mu; \alpha_i) = U(\mu; \alpha_j)$ implies $\alpha_i = \alpha_j$.

Theorem 3.11. If μ is a fuzzy hyperK-subalgebra of \mathcal{H} , then

$$\mu(x) := \sup \{ \alpha \in [0,1] \mid x \in U(\mu;\alpha) \} \text{ for all } x \in \mathcal{H}.$$

Proof. Let $\beta = \sup\{\alpha \in [0,1] \mid x \in U(\mu;\alpha)\}$ and consider an arbitrary positive number ε . Then there exists $\alpha \in [0,1]$ such that $x \in U(\mu;\alpha)$ and $\beta - \varepsilon < \alpha$. It follows that $\mu(x) \geq \alpha > \beta - \varepsilon$ so that $\mu(x) \geq \beta$ since ε is arbitrary. Now let $\mu(x) = \gamma$. Then $x \in U(\mu;\gamma)$ and so $\gamma \in \{\alpha \in [0,1] \mid x \in U(\mu;\alpha)\}$. Hence

$$\mu(x) = \gamma \le \sup\{\alpha \in [0,1] \mid x \in U(\mu;\alpha)\} = \beta$$

and therefore $\mu(x) = \beta$, as desired. \square

Finally we state the converse of Theorem 3.11.

Theorem 3.12. Let Λ be a non-empty subset of [0,1] and let $\{S_{\alpha} \mid \alpha \in \Lambda\}$ be a collection of hyperK-subalgebras of \mathcal{H} such that $\mathcal{H} = \bigcup_{\alpha \in \Lambda} S_{\alpha}$ and for all $\alpha, \beta \in \Lambda$, $\beta > \alpha$ if and only if $S_{\beta} \subset S_{\alpha}$. Define a fuzzy set μ in \mathcal{H} by

$$\mu(x) = \sup \{ \alpha \in \Lambda \mid x \in S_{\alpha} \} \text{ for all } x \in \mathcal{H}.$$

Then μ is a fuzzy hyperK-subalgebra of \mathcal{H} .

Proof. Using Proposition 3.5, it is sufficient to show that the non-empty level set $U(\mu; \delta)$ of μ is a hyper K-subalgebra of \mathcal{H} for every $\delta \in [0, 1]$. We should consider two cases as follows:

(1)
$$\delta = \sup\{\alpha \in \Lambda \mid \alpha < \delta\}$$
 and (2) $\delta \neq \sup\{\alpha \in \Lambda \mid \alpha < \delta\}$.

For the case (1), we have

$$x \in U(\mu; \delta) \Leftrightarrow x \in S_{\alpha} \text{ for all } \alpha < \delta \Leftrightarrow x \in \bigcap_{\alpha < \delta} S_{\alpha},$$

whence $U(\mu; \delta) = \bigcap_{\alpha < \delta} S_{\alpha}$ which is a hyper K-subalgebra of \mathcal{H} . Case (2) implies that there exists $\varepsilon > 0$ such that $(\delta - \varepsilon, \delta) \cap \Lambda = \emptyset$. If $x \in \bigcup_{\alpha \ge \delta} S_{\alpha}$, then $x \in S_{\alpha}$ for some $\alpha \ge \delta$. It follows that $\mu(x) \ge \alpha \ge \delta$ so that $x \in U(\mu; \delta)$. This proves that $\bigcup_{\alpha \ge \delta} S_{\alpha} \subset U(\mu; \delta)$. Assume that $x \notin \bigcup_{\alpha \ge \delta} S_{\alpha}$. Then $x \notin S_{\alpha}$ for all $\alpha \ge \delta$, which implies that $x \notin S_{\alpha}$ for all $\alpha > \delta - \varepsilon$, i.e., if $x \in S_{\alpha}$ then $\alpha \le \delta - \varepsilon$. Thus $\mu(x) \le \delta - \varepsilon < \delta$ and so $x \notin U(\mu; \delta)$. Therefore $U(\mu; \alpha) \subset \bigcup_{\alpha \ge \delta} S_{\alpha}$ and consequently $U(\mu; \alpha) = \bigcup_{\alpha \ge \delta} S_{\alpha}$ which is a hyper K-subalgebra of \mathcal{H} , ending the proof. \square

Definition 3.13. Let \mathcal{H}_1 and \mathcal{H}_2 be hyper K-algebras. A mapping $f: \mathcal{H}_1 \to \mathcal{H}_2$ is called a weak homomorphism if

- (i) f(0) = 0,
- (ii) $f(x \circ y) \subseteq f(x) \circ f(y)$ for all $x, y \in \mathcal{H}_1$.

Theorem 3.14. Let $f: \mathcal{H}_1 \to \mathcal{H}_2$ be a weak homomorphism of hyperK-algebras. Then

- (i) If x < y in \mathcal{H}_1 , then f(x) < f(y) in \mathcal{H}_2 .
- (ii) If μ is a fuzzy hyperK-subalgebra of \mathcal{H}_2 , then μ_f is a fuzzy hyperK-subalgebra of \mathcal{H}_1 where μ_f is defined by $\mu_f(x) = \mu(f(x))$ for all $x \in \mathcal{H}_1$.

Proof. (i) If x < y in \mathcal{H}_1 , then $0 \in x \circ y$ and so $0 = f(0) \in f(x \circ y) \subseteq f(x) \circ f(y)$. Therefore f(x) < f(y).

(ii) For any $x, y \in \mathcal{H}_1$, we have

$$\inf_{z \in x \circ y} \mu_f(z) = \inf_{z \in x \circ y} \mu(f(z))$$

$$\geq \inf_{f(z) \in f(x \circ y)} \mu(f(z))$$

$$\geq \inf_{f(z) \in f(x) \circ f(y)} \mu(f(z))$$

$$\geq \min\{\mu(f(x)), \mu(f(y))\}$$

$$= \min\{\mu_f(x), \mu_f(y)\},$$

which shows that μ_f is a fuzzy hyper K-subalgebra of \mathcal{H}_1 . \square

We construct a new fuzzy hyper K-subalgebra from old. Let $t \geq 0$ be a real number. If $\alpha \in [0,1]$, α^t shall mean the positive root in case t < 1. We define $\mu^t : \mathcal{H} \to [0,1]$ by $\mu^t(x) = (\mu(x))^t$ for all $x \in \mathcal{H}$.

Theorem 3.15. If μ is a fuzzy hyperK-subalgebra of \mathcal{H} , then so is μ^t and $\mathcal{H}_{\mu^t} = \mathcal{H}_{\mu}$ for all $t \geq 0$.

Proof. For any $x, y \in \mathcal{H}$ and $t \geq 0$, we have

$$\inf_{z \in x \circ y} \mu^{t}(z) = \inf_{z \in x \circ y} (\mu(z))^{t}
= (\inf_{z \in x \circ y} \mu(z))^{t}
\ge (\min\{\mu(x), \mu(y)\})^{t}
= \min\{(\mu(x))^{t}, (\mu(y))^{t}\}
= \min\{\mu^{t}(x), \mu^{t}(y)\}.$$

Hence μ^t is a fuzzy hyper K-subalgebra of \mathcal{H} . Now we get

$$\mathcal{H}_{\mu^t} = \{ x \in \mathcal{H} \mid \mu^t(x) = \mu^t(0) \}$$

$$= \{ x \in \mathcal{H} \mid (\mu(x))^t = (\mu(0))^t \}$$

$$= \{ x \in \mathcal{H} \mid \mu(x) = \mu(0) \}$$

$$= \mathcal{H}_{\mu}.$$

This completes the proof. \Box

Definition 3.16. A fuzzy hyper K-subalgebra μ of \mathcal{H} is said to be hypernormal if there exists $x \in \mathcal{H}$ such that $\mu(x) = 1$.

Example 3.17. By taking $\alpha_1 = 1$, the fuzzy hyper K-subalgebra μ mentioned in Example 3.3(i) is hypernormal.

Using Proposition 3.2, we see that if a fuzzy hyper K-subalgebra μ of \mathcal{H} is hypernormal, then $\mu(0) = 1$; hence μ is a hypernormal fuzzy hyper K-subalgebra of \mathcal{H} if and only if $\mu(0) = 1$.

By using Theorem 3.6, we have the following.

Proposition 3.18. Let S be a hyperK-subalgebra of \mathcal{H} and let μ_S be a fuzzy set in \mathcal{H} defined by

$$\mu_S(x) := \begin{cases} 1 & \text{if } x \in S, \\ 0 & \text{otherwise,} \end{cases}$$

for all $x \in \mathcal{H}$. Then μ_S is a hypernormal fuzzy hyperK-subalgebra of \mathcal{H} and $\mathcal{H}_{\mu_S} = S$.

Theorem 3.19. Let μ be a fuzzy hyperK-subalgebra of \mathcal{H} and $\theta:[0,\mu(0)] \to [0,1]$ be an increasing function. Let μ_{θ} be a fuzzy set in \mathcal{H} defined by $\mu_{\theta}(x) = \theta(\mu(x))$ for all $x \in \mathcal{H}$. Then

- (i) μ_{θ} is a fuzzy hyperK-subalgebra of \mathcal{H} .
- (ii) If $\theta(\mu(0)) = 1$, then μ_{θ} is hypernormal.
- (iii) If $\theta(\alpha) \geq \alpha$ for all $\alpha \in [0, \mu(0)]$ then $\mu(x) \leq \mu_{\theta}(x)$ for all $x \in \mathcal{H}$.

Proof. (i) Let $x, y \in \mathcal{H}$. Then

$$\inf_{z \in x \circ y} \mu_{\theta}(z) = \inf_{z \in x \circ y} \theta(\mu(z))$$

$$= \theta(\inf_{z \in x \circ y} \mu(z))$$

$$\geq \theta(\min\{\mu(x), \mu(y)\})$$

$$= \min\{\theta(\mu(x)), \theta(\mu(y))\}$$

$$= \min\{\mu_{\theta}(x), \mu_{\theta}(y)\}.$$

Hence μ_{θ} is a fuzzy hyper K-subalgebra of \mathcal{H} .

- (ii) Straightforward.
- (iii) Assume that $\theta(\alpha) \geq \alpha$ for all $\alpha \in [0, \mu(0)]$. Since $\mu(0) \geq \mu(x)$ for all $x \in \mathcal{H}$, we get $\mu_{\theta}(x) = \theta(\mu(x)) \geq \mu(x)$ for all $x \in \mathcal{H}$. \square

Theorem 3.20. Let μ be a fuzzy hyperK-subalgebra of \mathcal{H} and let μ^+ be a fuzzy set in \mathcal{H} defined by $\mu^+(x) = \mu(x) + 1 - \mu(0)$ for all $x \in \mathcal{H}$. Then μ^+ is a hypernormal fuzzy hyperK-subalgebra of \mathcal{H} containing μ , i.e., $\mu^+(x) \geq \mu(x)$ for all $x \in \mathcal{H}$.

Proof. For any $x, y \in \mathcal{H}$, we obtain

$$\inf_{z \in x \circ y} \mu^{+}(z) = \inf_{z \in x \circ y} (\mu(z) + 1 - \mu(0))$$

$$= 1 - \mu(0) + \inf_{z \in x \circ y} \mu(z)$$

$$\geq 1 - \mu(0) + \min\{\mu(x), \mu(y)\}$$

$$= \min\{\mu(x) + 1 - \mu(0), \mu(y) + 1 - \mu(0)\}$$

$$= \min\{\mu^{+}(x), \mu^{+}(y)\}.$$

Therefore μ^+ is a hypernormal fuzzy hyper K-subalgebra of \mathcal{H} , and clearly $\mu^+(x) \geq \mu(x)$. This completes the proof. \square

Theorem 3.21. Let μ be a fuzzy hyperK-subalgebra of \mathcal{H} and let $\widehat{\mu}$ be a fuzzy set in \mathcal{H} defined by $\widehat{\mu}(x) = \frac{1}{\mu(0)}\mu(x)$ for all $x \in \mathcal{H}$. Then $\widehat{\mu}$ is a hypernormal fuzzy hyperK-subalgebra of \mathcal{H} containing μ .

Proof. Let $x, y \in \mathcal{H}$. Then

$$\inf_{z \in x \circ y} \widehat{\mu}(z) = \inf_{z \in x \circ y} \frac{1}{\mu(0)} \mu(z)$$

$$= \frac{1}{\mu(0)} \inf_{z \in x \circ y} \mu(z)$$

$$\geq \frac{1}{\mu(0)} \min\{\mu(x), \mu(y)\}$$

$$= \min\{\frac{1}{\mu(0)} \mu(x), \frac{1}{\mu(0)} \mu(y)\}$$

$$= \min\{\widehat{\mu}(x), \widehat{\mu}(y)\},$$

and $\widehat{\mu}(x) = \frac{1}{\mu(0)}\mu(x) \geq \mu(x)$ for all $x \in \mathcal{H}$, ending the proof. \square

Corollary 3.22. If μ is a fuzzy hyperK-subalgebra of \mathcal{H} satisfying $\widehat{\mu}(x) = 0$ for some $x \in \mathcal{H}$, then $\mu(x) = 0$ also.

Theorem 3.23. A fuzzy hyperK-subalgebra of \mathcal{H} is hypernormal if and only if $\widehat{\mu} = \mu$.

Proof. Assume that μ is a hypernormal fuzzy hyper K-subalgebra of \mathcal{H} and let $x \in \mathcal{H}$. Then $\widehat{\mu}(x) = \frac{1}{\mu(0)}\mu(x) = \mu(x)$, and hence $\widehat{\mu} = \mu$. \square

Theorem 3.24. If μ is a fuzzy hyperK-subalgebra of \mathcal{H} , then $\widehat{\widehat{\mu}} = \widehat{\mu}$.

Proof. Note that $\widehat{\mu}(0) = \frac{1}{\mu(0)}\mu(0) = 1$. Thus for any $x \in \mathcal{H}$ we have $\widehat{\widehat{\mu}}(x) = \frac{1}{\widehat{\mu}(0)}\widehat{\mu}(x) = \widehat{\mu}(x)$, ending the proof. \square

Corollary 3.25. If μ is a hypernormal fuzzy hyperK-subalgebra of \mathcal{H} , then $\widehat{\widehat{\mu}} = \mu$.

Theorem 3.26. Let μ be a fuzzy hyperK-subalgebra of \mathcal{H} . If there is a fuzzy hyperK-subalgebra ν of \mathcal{H} satisfying $\widehat{\nu} \subseteq \mu$, then μ is hypernormal.

Proof. Suppose there exists a fuzzy hyperK-subalgebra ν of \mathcal{H} such that $\widehat{\nu} \subseteq \mu$. Then $1 = \widehat{\nu}(0) \leq \mu(0)$, whence $\mu(0) = 1$. The proof is complete. \square

Theorem 3.27. Let μ be a non-constant hypernormal fuzzy hyperK-subalgebra of \mathcal{H} , which is maximal in the poset of hypernormal fuzzy hyperK-subalgebras under set inclusion. Then μ takes only the values 0 and 1.

Proof. Note that $\mu(0) = 1$. Let $x \in \mathcal{H}$ be such that $\mu(x) \neq 1$. It is enough to show that $\mu(x) = 0$. Assume that there exists $w \in \mathcal{H}$ such that $0 < \mu(w) < 1$. Define a fuzzy set $\nu : \mathcal{H} \to [0,1]$ by $\nu(x) = \frac{1}{2}(\mu(x) + \mu(w))$ for all $x \in \mathcal{H}$. Then clearly ν is well-defined, and we have that for all $x, y \in \mathcal{H}$

$$\begin{split} \inf_{z \in x \circ y} \nu(z) &= \inf_{z \in x \circ y} \frac{1}{2} (\mu(z) + \mu(w)) \\ &= \frac{1}{2} (\inf_{z \in x \circ y} \mu(z) + \mu(w)) \\ &\geq \frac{1}{2} (\min\{\mu(x), \mu(y)\} + \mu(w)) \\ &= \min\{\frac{1}{2} (\mu(x) + \mu(w)), \frac{1}{2} (\mu(y) + \mu(w))\} \\ &= \min\{\nu(x), \nu(y)\}. \end{split}$$

Hence ν is a fuzzy hyperK-subalgebra of \mathcal{H} . By Theorem 3.20, ν^+ is a hypernormal fuzzy hyperK-subalgebra of \mathcal{H} where ν^+ is defined by $\nu^+(x) = \nu(x) + 1 - \nu(0)$ for all $x \in \mathcal{H}$. Note that

$$\nu^{+}(w) = \nu(w) + 1 - \nu(0)$$

$$= \frac{1}{2}(\mu(w) + \mu(w)) + 1 - \frac{1}{2}(\mu(0) + \mu(w))$$

$$= \frac{1}{2}(\mu(w) + 1) > \mu(w)$$

and $\nu^+(w) < 1 = \nu^+(0)$. It follows that ν^+ is non-constant and μ is not maximal. This is a contradiction, ending the proof. \square

References

- [1] R. A. Borzoei, A. Hasankhani, M. M. Zahedi and Y. B. Jun, *On hyperK-algebras*, Math. Japon. (to appear).
- [2] P. Corsini, Prolegomena of hypergroup theory, Aviani Editore, 1993.
- [3] K. Iséki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japon. 21 (1976), 351-366.
- [4] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23(1) (1978), 1-26.
- Y. B. Jun, Characterization of fuzzy ideals by their level ideals in BCK/BCI-algebras, Math. Japon. 38(1) (1993), 67-71.
- [6] Y. B. Jun, A note on fuzzy ideals in BCK-algebras, Math. Japon. 42(2) (1995), 333-335.
- [7] Y. B. Jun and E. H. Roh, Fuzzy commutative ideals, Fuzzy Sets and Systems 64 (1994), 401-405.
- [8] Y. B. Jun and X. L. Xin, Involutory and invertible fuzzy BCK-algebras, Fuzzy Sets and Systems (to appear).
- [9] Y. B. Jun and X. L. Xin, Fuzzy prime ideals and invertible fuzzy ideals in BCK-algebras, Fuzzy Sets and Systems (to appear).
- [10] Y. B. Jun and X. L. Xin, Scalar elements and hyperatoms of hyperBCK-algebras, Scientiae Mathematicae 2(3) (1999), 303-309.
- [11] Y. B. Jun and X. L. Xin, Positive implicative hyperBCK-algebras, Czech. Math. J. (submitted).
- [12] Y. B. Jun and X. L. Xin, On fuzzy hyperBCK-ideals of hyperBCK-algebras, Fuzzy Sets and Systems (submitted).

- [13] Y. B. Jun, X. L. Xin, E. H. Roh and M. M. Zahedi, Strong hyperBCK-ideals of hyperBCK-algebras, Math. Japon. (to appear).
- [14] Y. B. Jun, M. M. Zahedi, X. L. Xin and R. A. Borzoei, *On hyperBCK-algebras*, Italian J. Pure and Appl. Math. (to appear).
- [15] F. Marty, Sur une generalization de la notion de groupe, 8th Congress Math. Scandinaves, Stockholm (1934), 45-49.
- [16] J. Meng and Y. B. Jun, BCK-algebras, Kyungmoonsa, Seoul, Korea, 1994.
- [17] J. Meng, Y. B. Jun and H. S. Kim, Fuzzy implicative ideals of BCK-algebras, Fuzzy Stes and Systems 89 (1997), 243-248.
- $[18]\,$ M. M. Zahedi and A. Hasankhani, F-polygroups (I), J. Fuzzy Math. 3 (1996), 533-548.

Department of Mathematics Education, Gyeongsang National University, Chinju 660-701, Korea,

E-mail: ybjun@nongae.gsnu.ac.kr