ON n-FOLD FUZZY BCC-IDEALS

Young Bae Jun

Received November 6, 1999

This paper is dedicated to the memory of Prof. Dr. Mehmet Sapanci

Abstract. Fuzzifications of the notion of n-fold BCC-ideals are considered.

1. Introduction

In 1966, Y. Imai and K. Iséki [6] defined a class of algebras of type (2,0) called BCK-algebras which generalizes on one hand the notion of algebra of sets with the set subtraction as the only fundamental non-nullary operation, on the other hand the notion of implication algebra [7]. The class of all BCK-algebras is a quasivariety. K. Iséki posed an interesting problem (solved by A. Wroński [10]) whether the class of BCK-algebras is a variety. In connection with this problem, Y. Komori [9] introduced a notion of BCC-algebras, and W. A. Dudek [1, 2] redefined the notion of BCC-algebras by using a dual form of the ordinary definition in the sense of Y. Komori. In [4], W. A. Dudek and X. H. Zhang introduced a notion of BCC-ideals in BCC-algebras, and W. A. Dudek and Y. B. Jun [3] established the fuzzification of BCC-ideals in BCC-algebras. Y. B. Jun and W. A. Dudek [8] introduced n-fold BCC-ideals, and investigated some related results. This work is concerned with the fuzzification of the notion of n-fold BCC-ideals. We investigate some related properties, and give a relation between an n-fold fuzzy BCC-ideal and a fuzzy BCK-ideal. We consider the characterization of an n-fold fuzzy BCC-ideal.

2. Preliminaries

By a BCK-algebra we mean an algebra (G, *, 0) of type (2,0) satisfying the following conditions:

```
(I) ((x*y)*(x*z))*(z*y) = 0,
```

- (II) (x * (x * y)) * y = 0,
- (III) x * x = 0,
- (IV) 0 * x = 0,
- (V) x * y = 0 and y * x = 0 imply x = y,

for all $x, y, z \in G$. We can define a partial ordering " \leq " on G by $x \leq y$ if and only if x * y = 0.

In any BCK-algebra G, the following hold:

- (P1) x * 0 = x,
- (P2) $x * y \leq x$,
- (P3) (x*y)*z = (x*z)*y,
- (P4) $(x*z)*(y*z) \le x*y$,
- (P5) $x \le y$ implies $x * z \le y * z$ and $z * y \le z * x$.

¹⁹⁹¹ Mathematics Subject Classification. 06F35, 03G25, 94D05.

Key words and phrases. (n-fold) fuzzy BCC-ideal, (fuzzy) BCC-ideal, (fuzzy) BCK-ideal.

The author is a member of Science Education Research Institute, Gyeongsang National University

62 Y. B. JUN

Definition 2.1. A non-empty set G with a constant 0 and a binary operation * is called a BCC-algebra if for all $x, y, z \in G$ the following conditions hold:

- (VI) ((x*y)*(z*y))*(x*z) = 0,
- (III) x * x = 0,
- (IV) 0 * x = 0,
- (P1) x * 0 = x,
- (V) x * y = 0 and y * x = 0 imply x = y.

Any BCK-algebra is a BCC-algebra, but there are BCC-algebras which are not BCK-algebras. Note that a BCC-algebra is a BCK-algebra if and only if it satisfies:

(P3)
$$(x * y) * z = (x * z) * y$$
.

On any BCC-algebra (similarly as in the case of BCK-algebras) one can define the natural ordering "\leq" by putting

(1) $x \le y \iff x * y = 0$.

It is not difficult to verify that this order is partial and 0 is its smallest element. Moreover, in any BCC-algebra G, the following are true:

- (2) $(x*y)*(z*y) \le x*z$,
- (P5) $x \le y$ implies $x * z \le y * z$ and $z * y \le z * x$.

A non-empty subset S of a BCC/BCK-algebra G is called a subalgebra of G if $x * y \in S$ for all $x, y \in S$. A non-empty subset A of a BCK-algebra G is called an *ideal* if

- (I1) $0 \in A$,
- (I2) $y \in A$ and $x * y \in A$ imply $x \in A$.

In the sequel this ideal will be called a BCK-ideal and will be considered also in BCC-algebras. A non-empty subset A of a BCC-algebra G is called a BCC-ideal if

- (I1) $0 \in A$,
- (I3) $y \in A$ and $(x * y) * z \in A$ imply $x * z \in A$.

Proposition 2.2 ([4, Lemma 2.4]). In a BCC-algebra, any BCK-ideal is a subalgebra.

We now review some fuzzy logic concepts. A fuzzy set in a set G is a function $\mu: G \to [0,1]$. For a fuzzy set μ in G and $\alpha \in [0,1]$ define $U(\mu;t)$ to be the set $U(\mu;\alpha) := \{x \in G \mid \mu(x) \geq \alpha\}$, which is called a *level set* of μ .

A fuzzy set μ in a BCC/BCK-algebra G is called a fuzzy subalgebra of G if $\mu(x*y) \ge \min\{\mu(x), \mu(y)\}$ for all $x, y \in G$. A fuzzy set μ in a BCK-algebra G is called a fuzzy BCK-ideal of G if

- (FI1) $\mu(0) \ge \mu(x)$,
- (FK1) $\mu(x) \ge \min\{\mu(x * y), \mu(y)\},\$

for all $x, y \in G$. A fuzzy set μ in a BCC-algebra G is called a fuzzy BCC-ideal of G if

- (FI1) $\mu(0) \ge \mu(x)$,
- (FC1) $\mu(x*z) \ge \min\{\mu((x*y)*z), \mu(y)\},\$

for all $x, y, z \in G$.

3. n-fold fuzzy BCC-ideals

For any elements x and y of a BCC-algebra, $x * y^n$ denotes

$$(\cdots((x*y)*y)*\cdots)*y$$

in which y occurs n times.

Definition 3.1 ([8, Definition 3.1]). A non-empty subset A of a BCC-algebra G is called an n-fold BCC-ideal of G if

- (I1) $0 \in A$,
- (I4) for every $x, y, z \in G$ there exists a natural number n such that $x * z^n \in A$ whenever $(x * y) * z^n \in A$ and $y \in A$.

For a BCC-algebra G, obviously $\{0\}$ and G itself are n-fold BCC-ideals of G for every positive integer n.

Example 3.2 ([8, Example 3.2]). (i) Let $G = \{0, 1, 2, 3, 4, 5\}$ be a BCC-algebra (which is not a BCK-algebra) with the following Cayley table:

*	0	1	2	3	4	5
0	0	0	0	0	0	0
1	1	0	0	0	0	1
2	2	2	0	0	1	1
3	3	2	1	0	1	1
4	4	4	4	4	0	1
5	5	5	5	5	5	0

It is routine to check that $A = \{0, 1, 2, 3, 4\}$ is an n-fold BCC-ideal of G for every positive integer n.

(ii) Consider a proper BCC-algebra $G = \{0, 1, 2, 3, 4\}$ with the Cayley table as follows:

*	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	0
2	2	2	0	0	0
3	3		1	0	0
4	4	3	4	3	0

It is easy to check that $A = \{0, 1, 2, 3\}$ is an n-fold BCC-ideal of G for every positive integer n.

We now consider the fuzzification of n-fold BCC-ideals.

Definition 3.3. A fuzzy set μ in a BCC-algebra G is called an n-fold fuzzy BCC-ideal of G if

- (FI1) $\mu(0) \ge \mu(x)$ for all $x \in G$,
- (FC2) for every $x, y, z \in G$ there exists a positive integer n such that

$$\mu(x * z^n) \ge \min{\{\mu((x * y) * z^n), \mu(y)\}}.$$

The 1-fold fuzzy BCC-ideal is precisely a fuzzy BCC-ideal.

Example 3.4. Let $G = \{0, 1, 2, 3, 4\}$ be a proper BCC-algebra in Example 3.2(ii). Define a fuzzy set μ in G by $\mu(4) = 0.3$ and $\mu(x) = 0.8$ for all $x \neq 4$. Then μ is an n-fold fuzzy BCC-ideal of G

Lemma 3.5 ([3]). In a BCC-algebra, every fuzzy BCK-ideal is a fuzzy subalgebra.

64 Y. B. JUN

Theorem 3.6. In a BCC-algebra, every n-fold fuzzy BCC-ideal is a fuzzy BCK-ideal.

Proof. Let μ be an n-fold fuzzy BCC-ideal of a BCC-algebra G. Taking z = 0 in (FC2) and using (P1), we get

$$\mu(x) = \mu(x * 0^n) \ge \min\{\mu((x * y) * 0^n), \mu(y)\} = \min\{\mu(x * y), \mu(y)\}$$

for all $x, y \in G$. Hence μ is a fuzzy BCK-ideal of G

Corollary 3.7. In a BCC-algebra, every n-fold fuzzy BCC-ideal is a fuzzy subalgebra.

The following example shows that the converse of Corollary 3.7 may not be true.

Example 3.8. Let $G = \{0, 1, 2, 3, 4\}$ be a proper BCC-algebra in Example 3.2(ii) and let μ be a fuzzy set in G given by

$$\mu(x) := \begin{cases} \alpha_1 & \text{if } x \in \{0, 2, 3\}, \\ \alpha_2 & \text{otherwise,} \end{cases}$$

where $\alpha_1 > \alpha_2$ in [0, 1]. It is not difficult to see that μ is a fuzzy subalgebra of G. But μ is not an n-fold fuzzy BCC-ideal of G for every positive integer n because

$$\mu(4*0^n) = \mu(4) = \alpha_2 < \alpha_1 = \min\{\mu((4*3)*0^n), \mu(3)\}.$$

Theorem 3.9. In a BCK-algebra, the notion of n-fold fuzzy BCC-ideals and fuzzy BCK-ideals coincide.

Proof. Since a BCK-algebra is a BCC-algebra, every n-fold fuzzy BCC-ideal is a fuzzy BCK-ideal (see [Theorem 3.6]). Let μ be a fuzzy BCK-ideal of a BCK-algebra G and let $x,y,z\in G$. Then

$$\mu(x * z^n) \ge \min\{\mu((x * z^n) * y), \mu(y)\}$$
 [by (FK1)]
= \(\mu\in\{\mu((x * y) * z^n), \mu(y)\}\). [by (P3)]

Hence μ is an *n*-fold fuzzy BCC-ideal of G. \square

Proposition 3.10. Let A be a non-empty subset of a BCC-algebra G, n a positive integer and μ a fuzzy set in G defined by

$$\mu(x) := \begin{cases} \alpha_1 & \text{if } x \in A, \\ \alpha_2 & \text{otherwise,} \end{cases}$$

where $\alpha_1 > \alpha_2$ in [0,1]. Then μ is an n-fold fuzzy BCC-ideal of G if and only if A is an n-fold BCC-ideal of G. Moreover, $G_{\mu} = A$, where $G_{\mu} := \{x \in G \mid \mu(x) = \mu(0)\}$.

Proof. Assume that μ is an n-fold fuzzy BCC-ideal of G. Since $\mu(0) \geq \mu(x)$ for all $x \in G$, we have $\mu(0) = \alpha_1$ and so $0 \in A$. Let $x, y, z \in G$ be such that $(x * y) * z^n \in A$ and $y \in A$. Using (FC2), we know that

$$\mu(x * z^n) \ge \min\{\mu((x * y) * z^n), \mu(y)\} = \alpha_1$$

and thus $\mu(x*z^n) = \alpha_1$. Hence $x*z^n \in A$, and A is an n-fold BCC-ideal of G. Conversely suppose that A is an n-fold BCC-ideal of G. Since $0 \in A$, it follows that $\mu(0) = \alpha_1 \ge \mu(x)$ for all $x \in G$. Let $x, y, z \in G$. If $y \notin A$ or $x*z^n \in A$, then clearly

$$\mu(x * z^n) \ge \min\{\mu((x * y) * z^n), \mu(y)\}.$$

Assume that $y \in A$ and $x * z^n \notin A$. Then by (I4), we have $(x * y) * z^n \notin A$. Therefore

$$\mu(x * z^n) = \alpha_2 = \min\{\mu((x * y) * z^n), \mu(y)\}.$$

Finally we have that $G_{\mu} = \{x \in G \mid \mu(x) = \mu(0)\} = \{x \in G \mid \mu(x) = \alpha_1\} = A$. This completes the proof. \square

Theorem 3.11. Let μ be a fuzzy set in a BCC-algebra G and let n be a positive integer. Then μ is an n-fold fuzzy BCC-ideal of G if and only if the non-empty level set $U(\mu;\alpha)$ of μ is an n-fold BCC-ideal of G.

We then call $U(\mu; \alpha)$ the level n-fold BCC-ideal of μ .

Proof. Suppose that μ is an n-fold fuzzy BCC-ideal of G and $U(\mu;\alpha) \neq \emptyset$ for any $\alpha \in [0,1]$. Then there exists $x \in U(\mu; \alpha)$ and so $\mu(x) \ge \alpha$. It follows from (FI1) that $\mu(0) \ge \mu(x) \ge \alpha$ so that $0 \in U(\mu; \alpha)$. Let $x, y, z \in G$ be such that $(x * y) * z^n \in U(\mu; \alpha)$ and $y \in U(\mu; \alpha)$. Then by (FC2), we have

$$\mu(x*z^n) \ge \min\{\mu((x*y)*z^n), \mu(y)\} \ge \min\{\alpha, \alpha\} = \alpha,$$

and thus $x * z^n \in U(\mu; \alpha)$. Hence $U(\mu; \alpha)$ is an n-fold BCC-ideal of G. Conversely assume that $U(\mu;\alpha) \neq \emptyset$ is an n-fold BCC-ideal of G for every $\alpha \in [0,1]$. For any $x \in G$, let $\mu(x) = \alpha$. Then $x \in U(\mu; \alpha)$. Since $0 \in U(\mu; \alpha)$, it follows that $\mu(0) > \alpha = \mu(x)$ so that $\mu(0) \geq \mu(x)$ for all $x \in G$. Now we only need to show that μ satisfies (FC2). If not, then there exist $a, b, c \in G$ such that

$$\mu(a*c^n) < \min\{\mu((a*b)*c^n), \mu(b)\}.$$

Taking $\alpha_0 = \frac{1}{2}(\mu(a*c^n) + \min\{\mu((a*b)*c^n), \mu(b)\})$, then we have

$$\mu(a*c^n) < \alpha_0 < \min\{\mu((a*b)*c^n), \mu(b)\}.$$

Hence $(a*b)*c^n \in U(\mu;\alpha_0)$ and $b \in U(\mu;\alpha_0)$, but $a*c^n \notin U(\mu;\alpha_0)$, which means that $U(\mu;\alpha_0)$ is not an n-fold BCC-ideal of G. This is a contradiction. Therefore μ is an n-fold fuzzy BCC-ideal of G

Lemma 3.12. Let μ be an n-fold fuzzy BCC-ideal of a BCC-algebra G and let $\alpha_1, \alpha_2 \in [0,1]$ with $\alpha_1 > \alpha_2$. Then

- (i) $U(\mu; \alpha_1) \subseteq U(\mu; \alpha_2)$,
- (ii) whenever $\alpha_1, \alpha_2 \in \text{Im}(\mu)$, then $U(\mu; \alpha_1) \neq U(\mu; \alpha_2)$,
- (iii) $U(\mu;\alpha_1) = U(\mu;\alpha_2)$ if and only if there does not exist $x \in G$ such that $\alpha_1 \leq \mu(x) < 0$ α_2 .

Proof. Straightforward. \square

Theorem 3.13. Let μ be an n-fold fuzzy BCC-ideal of a BCC-algebra G with $\text{Im}(\mu) =$ $\{\alpha_i \mid i \in \Lambda\}$ and $\Omega = \{U(\mu; \alpha_i) \mid i \in \Lambda\}$ where Λ is an arbitrary index set. Then

- (i) there exists a unique $i_0 \in \Lambda$ such that $\alpha_{i_0} \geq \alpha_i$ for all $i \in \Lambda$,
- (ii) $G_{\mu} = \bigcap_{i \in \Lambda} U(\mu; \alpha_i) = U(\mu; \alpha_{i_0}),$ (iii) $G = \bigcup_{i \in \Lambda} U(\mu; \alpha_i),$
- (iv) the members of Ω form a chain,
- (v) Ω contains all level n-fold BCC-ideals of μ if and only if μ attains its infimum on all n-fold BCC-ideals of G.

Proof. (i) Since $\mu(0) \in \text{Im}(\mu)$, there exists a unique $i_0 \in \Lambda$ such that $\mu(0) = \alpha_{i_0}$. Hence by (FI1), we get $\mu(x) \leq \mu(0) = \alpha_{i_0}$ for all $x \in G$, and so $\alpha_{i_0} \geq \alpha_i$ for all $i \in \Lambda$.

(ii) We have that

$$U(\mu; \alpha_{i_0}) = \{ x \in G \mid \mu(x) \ge \alpha_{i_0} \}$$

= \{ x \in G \cong \mu(x) = \alpha_{i_0} \}
= \{ x \in G \cong \mu(x) = \mu(0) \}
= G_\mu.

66 Y. B. JUN

Note that $U(\mu; \alpha_{i_0}) \subseteq U(\mu; \alpha_i)$ for all $i \in \Lambda$, so that $U(\mu; \alpha_{i_0}) \subseteq \bigcap_{i \in \Lambda} U(\mu; \alpha_i)$. Since $i_0 \in \Lambda$, it follows that

$$G_{\mu} = U(\mu; \alpha_{i_0}) = \bigcap_{i \in \Lambda} U(\mu; \alpha_i).$$

- (iii) For any $x \in G$ we have $\mu(x) \in \operatorname{Im}(\mu)$ and so there exists $i(x) \in \Lambda$ such that $\mu(x) = \alpha_{i(x)}$. This implies $x \in U(\mu; \alpha_{i(x)}) \subseteq \bigcup_{i \in \Lambda} U(\mu; \alpha_i)$. Hence $G = \bigcup_{i \in \Lambda} U(\mu; \alpha_i)$.
 - (iv) Straightforward.
- (v) Suppose that Ω contains all level n-fold BCC-ideals of μ . Let A be an n-fold BCC-ideal of G. If μ is constant on A, then we are done. Assume that μ is not constant on A. For the case A=G, let $\beta:=\inf\{\alpha_i\mid i\in\Lambda\}$. Then $\beta\leq\alpha_i$ for all $i\in\Lambda$, and so $U(\mu;\alpha_i)\subseteq U(\mu;\beta)$ for all $i\in\Lambda$. Note that $G=U(\mu;0)\in\Omega$ so that there exists $j\in\Lambda$ such that $\alpha_j\in\operatorname{Im}(\mu)$ and $U(\mu;\alpha_j)=G$. Thus $G=U(\mu;\alpha_j)\subseteq U(\mu;\beta)$ and so $U(\mu;\beta)=U(\mu;\alpha_j)=G$ because every level n-fold BCC-ideal of μ is an n-fold BCC-ideal of μ . Now we prove μ 0 so that μ 1 then there exists μ 2 to μ 3, which is impossible. Hence μ 4 is an μ 5 consider the restriction μ 6 of μ 7 to μ 7. By Proposition 3.10, μ 7 is an μ 8 so μ 9. Noticing that μ 9 to μ 9 to μ 9 for some μ 9 and μ 9 and μ 9 to μ 9. Noticing that μ 9 contains all level μ 9 fold BCC-ideals of μ 9, then there exists μ 9 such that μ 9 contains all level μ 9, which implies that μ 9 inf{ μ 9 inf{ μ 9 inf{ μ 9 inf{ μ 9. Noticing that μ 9 contains all level μ 9, which implies that μ 9 inf{ μ 9 inf{ μ 9 inf{ μ 9. In the exists μ 9 inf{ μ 9. Which implies that μ 9 inf{ μ 9 inf{ μ 9 inf{ μ 9 inf{ μ 9. Which implies that μ 9 inf{ μ 9 inf{ μ 9 inf{ μ 9 inf{ μ 9. Which implies that μ 9 inf{ μ 9 inf

Conversely assume that μ attains its infimum on all n-fold BCC-ideals of G. Let $U(\mu; \alpha)$ be a level n-fold BCC-ideal of μ . If $\alpha = \alpha_i$ for some $i \in \Lambda$, then clearly $U(\mu; \alpha) \in \Omega$. Suppose that $\alpha \neq \alpha_i$ for all $i \in \Lambda$. Then there does not exist $x \in G$ such that $\mu(x) = \alpha$. Let $A = \{x \in G \mid \mu(x) > \alpha\}$. Obviously $0 \in A$. Let $x, y, z \in G$ be such that $(x * y) * z^n \in A$ and $y \in A$. Then $\mu((x * y) * z^n) > \alpha$ and $\mu(y) > \alpha$. It follows from (FC2) that

$$\mu(x * z^n) \ge \min\{\mu((x * y) * z^n), \mu(y)\} > \alpha$$

so that $x*z^n \in A$. Hence A is an n-fold BCC-ideal of G. By hypothesis, there exists $y \in A$ such that $\mu(y) = \inf\{\mu(x) \mid x \in A\}$. Now $\mu(y) \in \operatorname{Im}(\mu)$ implies $\mu(y) = \alpha_j$ for some $j \in \Lambda$. Thus we get $\inf\{\mu(x) \mid x \in A\} = \alpha_j > \alpha$. Note that there does not exist $z \in G$ such that $\alpha \leq \mu(z) < \alpha_j$, so from Lemma 3.12(iii) that $U(\mu; \alpha) = U(\mu; \alpha_j) \in \Omega$. This completes the proof. \square

References

- [1] W. A. Dudek, *The number of subalgebras of finite BCC-algebras*, Bull. Inst. Math. Academia Sinica **20** (1992), 129-136.
- [2] W. A. Dudek, On proper BCC-algebras, Bull. Inst. Math. Academia Sinica 20 (1992), 137-150.
- [3] W. A. Dudek and Y. B. Jun, Fuzzy BCC-ideals in BCC-algebras, Mathematica Montisnigri (to appear).
- [4] W. A. Dudek and X. H. Zhang, On ideals and congruences in BCC-algebras, Czech. Math. J. 48(123) (1998), 21-29.
- [5] W. A. Dudek and X. H. Zhang, On atoms in BCC-algebras, Discussiones Mathematicae (Algebra and Stochastic Methods) 15 (1995), 81-85.
- [6] Y. Imai and K. Iséki, On axiom system of propositional calculi XIV, Proc. Japan Academy 42 (1966), 19-22.
- [7] K. Iséki and S. Tanaka, An introduction to the theory of BCK-algebras, Math. Japon. 23 (1978), 1-26.
- [8] Y. B. Jun and W. A. Dudek, n-fold BCC-ideals of BCC-algebras, Scientiae Mathematicae (submitted).
- [9] Y. Komori, The class of BCC-algebras is not a variety, Math. Japon. 29 (1984), 391-394.
- [10] A. Wroński, BCK-algebras do not form a variety, Math. Japon. 28 (1983), 211-213.

Department of Mathematics Education Gyeongsang National University Chinju 660-701, Korea e-mail: ybjun@nongae.gsnu.ac.kr