ALPHA-COMPACTNESS WITH RESPECT TO AN IDEAL

ENNIS ROSAS AND JORGE VIELMA

Received May 2, 1998

ABSTRACT. We introduce the concept of ideal α -compact spaces and show properties related to this topic. Also we generalize the concepts given in [3] and [4].

Definition 1. [3]. Given a set X, a collection I of subsets of X is called an ideal on X if it satisfies the following conditions:

- (1) If $J \in I$ and $J_1 \subset J$, then $J_1 \in I$.
- (2) If $J_1 \in I$ and $J_2 \in I$, then $J_1 \cup J_2 \in I$.

If $X \notin I$, then I is said to be a proper ideal.

Definition 2. [2]. Let (X, Γ) be a topological space, B be a subset of X and α be an operator from Γ to P(X), $\alpha : \Gamma \longrightarrow P(X)$. We say that α is an operator on Γ if

 $U \subset \alpha(U)$ for every $U \in \Gamma$.

We say that the operator α on Γ is stable with respect to B if α induce an operator $\alpha_B : \Gamma/B \longrightarrow P(B)$ such that $\alpha/B(U \cap B) = \alpha(U) \cap B$ for every $U \in \Gamma$ where Γ_B is the relative topology on B.

We will denote by (X,Γ,I,α) a nonempty set X, a topology Γ on X, an operator α, α : $\Gamma \longrightarrow P(X)$ and an ideal I on X, and cl(U) is the closure of U.

Definition 3. A subset A of a space (X,Γ,I,α) is said to be I- α -compact, if for every open cover $\{U_i, i \in \Lambda\}$ of A, there exists a finite subset $\{i_1, \ldots, i_n\}$ of Λ such that $X \setminus U_{i=1}^n \alpha(U_{i_i}) \in I.$

Definition 4. (X, Γ, I, α) is said to be $I \cdot \alpha$ - compact if X is $I \cdot \alpha$ -compact as a subset.

Remark 1. If $I = \{\phi\}$, then *I*- α -compact is equivalent to α -compact in the usual sense given in [1]. If $I = \{\phi\}$ and α is the identity operator, then *I*- α -compact is equivalent to compact in the usual sense . Finally if *I* is an ideal and α is the identity operator, then *I*- α -compact is equivalent to *I*-compact in the sense given in [3].

In this case the definition of I- α -compact generalizes the definition of I-compact, α compact and compact.

Theorem 1. Let (X,Γ,I,α) be I- α - compact. If J is an ideal on X with $I \subset J$, then (X,Γ,J,α) is J- α -compact.

Proof. Let $\{U_i\}_{i \in \Lambda}$ be an open cover of X. Since (X, Γ, I, α) is *I*- α -compact, there exist a finite subset $\{i_1, \ldots, i_n\}$ of Λ , such that $X \setminus U_{j=1}^n \alpha(U_{i_j}) \in I$. By hypothesis $I \subset J$, therefore $X \setminus U_{j=1}^n \alpha(U_{i_j}) \in J$. In this case (X, Γ, J, α) is *J*- α -compact.

¹⁹⁹¹ Mathematics Subject Classification. Primary 54D 35, 54D 30, 54D 45.

Theorem 2. Let I_F denote the ideal of finite subsets of X, then (X,Γ) is α -compact if and only if (X,Γ,I_F,α) is I_F - α -compact.

Proof. Let $\{U_i : i \in \Lambda\}$ be an open cover of X, since X is α -compact, there exists a finite collection $\{i_1, \ldots, i_n\}$ of Λ such that $X \setminus U_{j=1}^n \alpha(U_{i_j}) = \phi$, but $\phi \in I_F$, therefore (X, Γ, I_F, α) is I_F - α -compact.

Now let $\{U_i, i \in \Lambda\}$ be an open cover of X, since (X, Γ, I_F, α) is I_F - α -compact there exists a finite collection $\{i_i, \ldots, i_n\}$ of Λ such that $X \setminus U_{j=1}^n \alpha(U_{i_j}) \in I_F$. Take $B = X \setminus U_{j=1}^n \alpha(U_{i_j})$, then B is a finite set, we can choose $B = \{x_l, l = 1 \ldots k\}$. Now for each $x_l \in B$, let U_l a neighborhood of x_l , in consequence $X = U_{j=1}^n \alpha(U_{i_j}) \cup U_{l=1}^k \alpha(U_l)$ and obtain that X is α -compact.

Definition 5. Let (X,Γ) be a topological space and α be an operator associated to Γ . We say that X is α -lindeloff if for every open cover $\{U_i/i \in \Lambda\}$ of X there exists a countable subset $\{i_1, \ldots, ...\}$ of Λ , such that $X \subset U_{i=1}^{\infty} \alpha(U_{i_i})$.

Remark 2. For any operator α , every lindeloff space is an α -lindeloff space.

Theorem 3. Let I_c denote the ideal of countable subsets of X. If (X, Γ, I_c, α) is I_c - α -compact, then (X, Γ) is α -Lindeloff.

Proof. Let $\{U_i : i \in \Lambda\}$ be an open cover of X since (X, Γ, I_c, α) is I_c - α -compact, then there exists a finite subcolletion $\{i_1, \ldots, i_n\}$ of Λ , such that $X \setminus U_{j=1}^n \alpha(U_{i_j}) \in I_c$. Let $B = X \setminus U_{j=1}^n \alpha(U_{i_j})$.Since B is countable, choose $B = \{X_l : l = 1 \ldots k\}$ and $U_l^{x_l}$ a neighborhood of x_l . Then $X \subset U_{j=1}^n \alpha(U_{i_j}) \cup (U_{l=1}^\infty U_l^{x_l}) \subset U_{j=1}^n \alpha(U_{i_j}) \cup (U_{l=1}^\infty U_l^{x_l})$ In consequence X is α -lindeloff.

For an α -lindeloff space which is not I_c - α -compact, simply consider the real space with the usual topology and define $\alpha : \Gamma \longrightarrow P(X)$ as follows: for each basic element $(a, b), \alpha$ $((a,b)) = (a \cdot \epsilon, b + \epsilon)$ where ϵ is an irrational number less than 1, and extend the definition to open sets.

Definition 6. Let (X, Γ) be a topology space an α be an operator associated to Γ . We say that X is α -QHC if every open cover $\{U_i : i \in \Lambda\}$ of the space contains a finite subcollection $\{U_1, \ldots, U_n\}$ such that $X \subset \bigcup_{i=1}^n cl(\alpha(U_i))$.

Remark 3. If α is the identity operation, the definition of α -QHC is equivalent to QHC given in [3].

Definition 7. An α - T_2 space which is α -QHC is said to be α -H-closed.

Theorem 4. Let (X,Γ,I,α) be a space if (X,Γ,I,α) is *I*- α -compact and $\Gamma \cap I = \phi$, then (X,Γ) is α -QHC.

Proof. Let $\{U_i : i \in \Lambda\}$ be an open cover of X, since (X, Γ, I, α) is I- α -compact, there exists a finite subcollection $\{i_1, \ldots, i_n\}$ of Λ such that $X \setminus U_{j=1}^n \alpha(U_{i_j}) \in I$. Since $\alpha(U_{i_j}) \subset cl(\alpha(U_{i_j}))$. We obtain that $X \setminus cl(\alpha(U_{i_j})) \subset X \setminus \alpha(U_{i_j}) \in I$. But $X \setminus U_{j=1}^n cl(\alpha(U_{i_j})) \subseteq X \setminus U_{j=1}^n cl(\alpha(U_{i_j}))$. Therefore $X \setminus U_{j=1}^n cl(\alpha(U_{i_j})) \in I$. By hypothesis $\Gamma \cap I = \phi$ therefore $X \setminus U_{j=1}^n cl(\alpha(U_{i_j})) = \phi$ so $X \subset U_{j=1}^n cl(\alpha(U_{i_j}))$ and therefore (X, Γ) is α -QHC.

Definition 8. [5]. Let (X,Γ) and (Y,Ψ) be two topological spaces and α, β be operators on Γ and Ψ respectively. We say that a function $f: (X,\Gamma) \longrightarrow (Y,\Psi)$ is (α,β) -continuous if for each point $x \in X$ and every Ψ -open neighborhood V of f(x), there exist a Γ -open neighborhood U of x such that $f(\alpha(U)) \subset \beta(V)$.

Let $f : X \longrightarrow Y$ be a function with I an ideal on X. Then $f(I) = \{f(J) : J \in I\}$ is an ideal on Y.

Using this fact, we have the following theorem.

50

Theorem 5. Let $f:(X,\Gamma,I,\alpha) \longrightarrow (Y,\Psi,f(I),\beta)$ be a (α,β) -continuous surjection function. If (X,Γ,I,α) is I- α -compact, then $(Y,\Psi,f(I),\beta)$ is f(I)- β -compact.

Proof. Let $\{V_i : i \in \Lambda\}$ be an open cover of Y. For each $x \in X$, there exists $i \in \Lambda$ such that $f(x) \in V_i$. By (α, β) -continuity, there exists an open set U_{x_i} such that $f(\alpha(U_{x_i})) \subset \beta(V_i)$. So $\{U_{x_i} : x \in X\}$ is an open cover of X. Since (X, Γ, I, α) is *I*- α -compact, there exist a finite subcollection $\{i_1, \ldots, i_n\}$ of Λ such that $X \setminus U_{j=1}^n \alpha(U_{x_{i_j}}) \in I$. Relabel $U_{x_{i_j}}$ to be U_{i_j} .

 $\begin{array}{l} Y \setminus U_{j=1}^n \beta(V_{i_j}) \subset Y \setminus U_{j=1}^n f(\alpha(U_{i_j})) = f(X) \setminus U_{j=1}^n f(\alpha(U_{i_j})) \subseteq f(X \setminus U_{j=1}^n \alpha(U_{i_j})) \in f(I). \\ \text{Since } f(I) \text{ is an ideal on } Y, Y \setminus U_{j=1}^n \beta(V_{i_j}) \in f(I). \text{ Thus, } (Y, \Psi, f(I), \beta) \text{ is } f(I) \text{-}\beta\text{-compact.} \end{array}$

Corollary 1. Let $f : (X, \Gamma, I, \alpha) \longrightarrow (Y, \Psi, f(I))$ be a (α, id) -continuous surjection. If (X, Γ, I, α) is *I*- α -compact. Then $(Y, \Psi, f(I))$ is f(I)-compact.

Now considering I an ideal on X and $A \subset X$, we denote the restriction of I to A by $I/_A = \{J \cap A : J \in I\}$ it is easily seen that $I/_A$ is an ideal and in fact $I/_A = I \cap I(\{A\})$, where $I(\{A\})$ is the ideal generated by A.

Theorem 6. Let (X,Γ,I,α) be a space and $A \subset X$ with α be stable on A. Then A is I- α -compact if and only if $(A,\Gamma/_A,I/_A,\alpha/_A)$ is $I/_A \cdot \alpha/_A$ -compact.

Proof. Let $\{U_i \cap A : i \in \Lambda\}$ be a $\Gamma/_A$ -open cover of A, where $U_i \in \Gamma$. Then $\{U_i : i \in \Lambda\}$ is a Γ -open cover of A. By hypothesis A is I- α -compact, then there exists a finite subcollection $\{i_1, \ldots, i_n\}$ of Λ , such that $A \setminus U_{j=1}^n \alpha(U_{i_j}) \in I$. Now $A \cap (A \setminus U_{j=1}^n \alpha(U_{i_j})) \in I$ / $_A$. Using the fact that α is stable on A, we obtain that $A \setminus U_{j=1}^n (\alpha_A(A \cap U_{i_j})) = A \setminus U_{j=1}^n (A \cap \alpha(U_{i_j})) = A \cap (A \setminus U_{j=1}^n \alpha(U_{i_j})) \in I/_A$. In consequence $(A, \Gamma/_A, I/_A, \alpha/_A)$ is $I/_A \cdot \alpha/_A$ -compact.

Now suppose that $\{U_i : i \in \Lambda\}$ is Γ -open cover of A, then $\{U_i \cap A : i \in \Lambda\}$ is $\Gamma/_A$ open cover of A. By hypothesis $(A, \Gamma/_A, I/_A, \alpha/_A)$ is $I/_A \cdot \alpha/_A$ -compact, therefore there exists a finite subcollection i_1, \ldots, i_n of Λ such that $A \setminus U_{j=1}^n(\alpha_A(A \cap U_{i_j})) \in I/_A \subset I$. But $A \setminus U_{j=1}^n(\alpha(U_{i_j})) \subset A \setminus U_{j=1}^n(\alpha(U_{i_j}) \cap A) \in I$. therefore (A, Γ, I, α) is I- α -compact.

Corollary 2. [2] . Let (X, Γ) be a topological space and $K \subset X$. Let α be an operator associated with Γ and stable with respect to K. Then K is α -compact if and only if K is $\alpha/_K$ -compact.

Proof. Let $I = \{\phi\}$.

Theorem 7. Let $f:(X,\Gamma,I,\alpha) \to (Y, \Psi, f(I),\beta)$ be (α, β) continuous map, A be a subset of X such that α is stable on A and β is stable on f(A), If A is I- α -compact, then f(A) is f(I)- β -compact.

Proof. The proof follows from theorem 6, theorem 3 and using the fact that $f(I/_A) \subset f(I)/_{f(A)}$.

Acknowledgement. We are very gratefull to Dr. Robert Clay for his valuable suggestions that improved the paper.

REFERENCES

[1] Kasahara, S., Operation-Compact spaces, Math Japonica, 24(1979), 97-105.

[2] Rosas E & Vielma J., Operator-Compact and Operator-Connected Spaces. Scientiae Mathematicae, Vol 1-No 2(1998) 203-208.

[3] Hamlett T. R. & Jankovic D., Compactness with Respect to an Ideal, Bolletino U.M.I.(7) 4-B (1990) 849-861.

[4] Newcomb R. L., Topologies which are Compact Modulo an Ideal, Ph.D. Dissertation, Univ. of Cal. at Santa Barbara, 1967.

[5] Ogata, H., Operation on Topological Spaces and Associated Topology, Math Japonica 36 $\rm N^01$ (1991) 175-181.

UNIVERSIDAD DE LOS ANDES, DEPARTAMENTO DE MATEMÁTICA, FACULTAD DE CIENCIAS, MÉRIDA-VENEZUELA. E-MAIL: VIELMA@CIENS.ULA.VE

UNIVERSIDAD DE ORIENTE, DEPARTAMENTO DE MATEMÁTICAS, CUMANÁ, VENEZUELA. E-MAIL:EROSAS@CUMANA.SUCRE.UDO.EDU.VE