CERTAIN REDUCED FREE PRODUCTS WITH AMALGAMATION OF C^{*}-ALGEBRAS

Takashi Sakamoto
Received August 26, 1999; revised September 27, 1999

Abstract

It is proved that some of the reduced free products of matrix algebras with amalgamation over finite dimensional commutative C^{*}-algebras can be identified, up to stable isomorphism, with the reduced free product C^{*}-algebras obtained from $M_{n}, C(\mathbb{T})$ and \mathcal{O}_{k}.

§1. Preliminaries

We shall examine some examples in the reduced free product of two matrix algebras with amalgamation over a finite dimensional commutative C^{*}-algebra. The notion of reduced free product with amalgamation of C^{*}-algebras was introduced by D.Voiculescu ([14]). Let $\left(A_{i}\right)_{i \in I}$ be unital C^{*}-algebras and let B be a unital C^{*}-algebra with unital embedding $\iota_{i}: B \hookrightarrow A_{i}$ for each $i \in I$. In addition, for each $i \in I$, let $E_{i}: A_{i} \rightarrow B$ be a projection of norm one which satisfies the condition that $x \in A_{i}$ is equal to 0 whenever $E_{i}\left(y^{*} x^{*} x y\right)=0$ for all $y \in A_{i}$. In this setting, the reduced free product of $\left(A_{i}, E_{i}\right)_{i \in I}$ with amalgamation over B is the unique unital C^{*}-algebra A with unital embeddings $\tilde{\iota_{i}}: A_{i} \hookrightarrow A$ and a projection of norm one $E: A \rightarrow B$ satisfying the following property:
(i) $\tilde{\iota}_{i}\left(\iota_{i}(b)\right)=\tilde{\iota_{j}}\left(\iota_{j}(b)\right)$ for all $b \in B$ and $i, j \in I$, (So B can be naturally identified with a C^{*}-subalgebra of A.)
(ii) $E \circ \tilde{\iota_{i}}=E_{i}$ for each $i \in I$,
(iii) $\left(A_{i}\right)_{i \in I}$ is free in (A, E), that is, the set

$$
\left\{\iota_{\tilde{i_{1}}}\left(x_{1}\right) \cdots{\tilde{i_{n}}}\left(x_{n}\right) \mid x_{l} \in \operatorname{ker} E_{i_{l}}, i_{l} \neq i_{l+1}(1 \leq l \leq n-1), n \in \mathbb{N}\right\}
$$

is contained in $\operatorname{ker} E$,
(iv) $A=C^{*}\left(\cup_{i \in I^{2}} \tilde{\iota}_{i}\left(A_{i}\right)\right)$,
(v) $x \in A$ is equal to 0 whenever $E\left(y^{*} x^{*} x y\right)=0$ for all $y \in A$.

We shall denote the reduced free product with amalgamation by

$$
(A, E)=\underset{B}{*}\left(A_{i}, E_{i}\right)
$$

and E is called the free product projection of norm one. In particular, for a family $\left\{\left(A_{i}, \varphi_{i}\right) \mid\right.$ $i \in I\}$ of a unital C^{*}-algebra A_{i} with a state φ_{i} whose GNS-representation is faithful, the C^{*}-algebra $(A, \varphi)=\underset{\mathbb{C}}{*}\left(A_{i}, \varphi_{i}\right)$ is called the reduced free product of $\left(A_{i}, \varphi_{i}\right)_{i \in I}$, and φ is called the free product state.

In this article, we study some examples of reduced free product C^{*}-algebras with amalgamation defined as follows:

[^0]Definition 1.1. Let $p, q_{1}, \ldots, q_{m}, r, s_{1}, \ldots, s_{m} \in \mathbb{N}$, and put $q_{0}=0, s_{0}=0$. Let $\left\{e_{i j}\right\}_{1 \leq i, j \leq p}$, $\left\{f_{i j}\right\}_{1 \leq i, j \leq q_{1}+\cdots+q_{m}},\left\{g_{i j}\right\}_{1 \leq i, j \leq r}$ and $\left\{h_{i j}\right\}_{1 \leq i, j \leq s_{1}+\cdots+s_{m}}$ be systems of matrix units for the matrix algebras $M_{p}, M_{q_{1}+\cdots+q_{m}}, M_{r}$ and $M_{s_{1}+\cdots+s_{m}}$, respectively.

We shall define the reduced free product C^{*}-algebra with amalgamation

$$
\left(M_{p} \otimes M_{q_{1}+\cdots+q_{m}}, E_{1}\right) \underset{\mathbb{C}^{m}}{*}\left(M_{r} \otimes M_{s_{1}+\cdots+s_{m}}, E_{2}\right)
$$

as follows:
(i) the unital embedding

$$
i_{1}: \mathbb{C}^{m} \hookrightarrow M_{p} \otimes M_{q_{1}+\cdots+q_{m}}
$$

is given by

$$
i_{1}\left(\left(\lambda_{l}\right)_{l=1}^{m}\right)=\sum_{l=1}^{m} \lambda_{l}\left(1 \otimes \sum_{k=q_{0}+\cdots+q_{l-1}+1}^{q_{0}+\cdots+q_{l}} f_{k k}\right)
$$

and $i_{2}: \mathbb{C}^{m} \hookrightarrow M_{r} \otimes M_{s_{1}+\cdots+s_{m}}$ is defined analogously to i_{1} by replacing p, q_{*} with r, s_{*}, respectively.
(ii) the projection of norm one

$$
E_{1}: M_{p} \otimes M_{q_{1}+\cdots+q_{m}} \rightarrow \mathbb{C}^{m}
$$

is given by

$$
E_{1}\left(\sum_{i, j, k, l} \lambda_{i j k l} e_{i j} \otimes f_{k l}\right)=\left(\frac{1}{p q_{l}} \sum_{i=1}^{p} \sum_{k=q_{0}+\cdots+q_{l-1}+1}^{q_{0}+\cdots+q_{l}} \lambda_{i i k k}\right)_{l=1}^{m},
$$

and $E_{2}: M_{r} \otimes M_{s_{1}+\cdots+s_{m}} \rightarrow \mathbb{C}^{m}$ is defined analogously to E_{1} by replacing p, q_{*} with r, s_{*}, respectively.

Hereafter, the notation

$$
\left(M_{p} \otimes M_{q_{1}+\cdots+q_{m}}, E_{1}\right) \underset{\mathbb{C}^{m}}{*}\left(M_{r} \otimes M_{s_{1}+\cdots+s_{m}}, E_{2}\right)
$$

means the reduced free product C^{*}-algebra with amalgamation defined as in Definition 1.1.

In $\S 2$, it is proved that, under the settings that
(1) $q_{1}=1, s_{1}=\cdots=s_{m}=1$
or
(2) $p=r=1$ (so $\left.M_{p} \cong M_{r} \cong \mathbb{C}\right), m=2, q_{1}=s_{1}=1$ and $q_{2}=s_{2}$,
the C^{*}-algebra $(A, E)=\left(M_{p} \otimes M_{q_{1}+\cdots+q_{m}}, E_{1}\right) \stackrel{\mathbb{C}_{m}^{m}}{*}\left(M_{r} \otimes M_{s_{1}+\cdots+s_{m}}, E_{2}\right)$ is stably isomorphic to the reduced free product C^{*}-algebra obtained from well-known C^{*}-algebras such as M_{n}, $C(\mathbb{T})$, and the Cuntz algebra, \mathcal{O}_{k}.

In $\S 3$, we shall show that, for given $n \in \mathbb{N}$, two C^{*}-algebras A_{1}, A_{2} which satisfy $A_{1} \neq A_{2}$ and $A_{1} \otimes M_{n} \cong A_{2} \otimes M_{n}$ appear in the C^{*}-algebra $(A, E)=\left(M_{n} \otimes M_{n+1}, E_{1}\right) *\left(M_{2}, E_{2}\right)$. Moreover, it is proved that the C^{*}-algebras we exhibit here have the additional property that they are infinite and non-nuclear.

We use the following notations in the rest of sections.

Notation 1.2. Let A be a C^{*}-algebra and let X_{1}, \ldots, X_{n} be subsets of A. We shall denote the set $\left\{x_{1} \cdots x_{s} \mid x_{i} \in X_{l_{i}}, l_{1} \neq l_{2} \neq \cdots \neq l_{s}, s \in \mathbb{N}\right\}$ by $W\left(X_{1}, \ldots, X_{n}\right)$.

§2. Observation of the C^{*}-algebras defined as in Definition 1.1

2.1 Statement of main result.

First, we shall describe a basic property of reduced free product C^{*}-algebras with amalgamation, which will be used in this section.

Lemma 2.1.1. Let $(A, E)=\underset{B}{*}\left(A_{i}, E_{i}\right)$ be the reduced free product with amalgamation of C^{*}-algebras. Suppose that E_{i} is faithful on A_{i} for each $i \in I$, and suppose that B has a faithful state φ. Then the free product projection of norm one E is faithful on A.

Proof. This lemma is essentially proved in [6]. We can verify the desired faithfulness similarly to [6], replacing states in [6] with projection of norm one here.

Our main results are the followings.

Proposition 2.1.2. For the C^{*}-algebra

$$
(A, E)=\left(M_{p} \otimes M_{q_{1}+\cdots+q_{m}}, E_{1}\right) \underset{\mathbb{C}^{m}}{*}\left(M_{r} \otimes M_{s_{1}+\cdots+s_{m}}, E_{2}\right)
$$

suppose that

$$
q_{1}=1, s_{1}=\cdots=s_{m}=1
$$

Then, for suitable states φ_{l} on $\mathcal{O}_{q_{l}}(2 \leq l \leq m)$, we have

$$
A \cong\left(\left(M_{p}, \frac{1}{p} T r\right) *\left(M_{r}, \frac{1}{r} \operatorname{Tr}\right) *\left(\mathcal{O}_{q_{2}}, \varphi_{2}\right) \underset{\mathbb{C}}{*} \cdots \stackrel{*}{\mathbb{C}}\left(\mathcal{O}_{q_{m}}, \varphi_{m}\right)\right) \otimes M_{m},
$$

where \mathcal{O}_{1} means $C(\mathbb{T})$.
In particular, A is non-nuclear when $m \geq 3$.

Proposition 2.1.3. Let $(A, E)=\left(M_{1+n}, E_{1}\right) \underset{\mathbb{C}^{2}}{*}\left(M_{1+n}, E_{2}\right)$. Then

$$
A \otimes M_{n} \cong\left(\left(M_{n}, \frac{1}{n} T r\right) *(C(\mathbb{C}), \tau)\right) \otimes M_{1+n}
$$

where τ is a tracial state on $C(\mathbb{T})$ given by

$$
\tau(f)=\int_{0}^{1} f\left(e^{2 \pi i t}\right) d t \quad \text { for } f \in C(\mathbb{T})
$$

In particular, if $n \geq 3$, we have that A is simple, non-nuclear.

2.2 Proof of Proposition 2.1.2.

Let $(A, E)=\left(M_{p} \otimes M_{q_{1}+\cdots+q_{m}}, E_{1}\right) \underset{\mathbb{C}^{m_{m}}}{*}\left(M_{r} \otimes M_{s_{1}+\cdots+s_{m}}, E_{2}\right)$ be as in Proposition 2.1.2, that is, $q_{1}=1, s_{1}=\cdots=s_{m}=1$. Put $\left\{e_{i j}\right\}_{1 \leq i, j \leq p},\left\{f_{i j}\right\}_{1 \leq i, j \leq q_{1}+\cdots+q_{m}},\left\{g_{i j}\right\}_{1 \leq i, j \leq r}$ and $\left\{h_{i j}\right\}_{1 \leq i, j \leq s_{1}+\cdots+s_{m}}$ be systems of matrix units for the matrix algebras $M_{p}, M_{q_{1}+\cdots+q_{m}}, M_{r}$ and $M_{s_{1}+\cdots+s_{m}}$, respectively.

Lemma 2.2.1. In the C^{*}-algebra A, we have the following identification:

$$
\begin{align*}
& 1 \otimes f_{11}=1 \otimes h_{11}, \tag{2.2.1}\\
& 1 \otimes \sum_{j=q_{1}+\cdots+q_{l}+1}^{q_{1}+\cdots+q_{l+1}} f_{j j}=1 \otimes h_{l+1, l+1} \quad(1 \leq l \leq m-1) .
\end{align*}
$$

Proof. These relations arise from the unital embeddings $\mathbb{C}^{m} \hookrightarrow M_{p} \otimes M_{q_{1}+\cdots+q_{m}}$ and $\mathbb{C}^{m} \hookrightarrow$ $M_{r} \otimes M_{s_{1}+\cdots+s_{m}}$ which we start with.

Proof of Proposition 2.1.2. We remark that

$$
\begin{equation*}
\left(1 \otimes h_{11}\right) A\left(1 \otimes h_{11}\right) \otimes M_{m} \cong A \tag{2.2.2}
\end{equation*}
$$

In fact, the map

$$
\Phi:\left(1 \otimes h_{11}\right) A\left(1 \otimes h_{11}\right) \otimes M_{m} \ni\left(\left(x_{i j}\right)_{1 \leq i, j \leq m}\right) \mapsto \sum_{1 \leq i, j \leq m}\left(1 \otimes h_{i 1}\right) x_{i j}\left(1 \otimes h_{1 j}\right) \in A
$$

is a ${ }^{*}$-isomorphism.
Now we shall examine the C^{*}-algebra $\left(1 \otimes h_{11}\right) A\left(1 \otimes h_{11}\right)$. Consider the C^{*}-subalgebras $A_{1}, A_{2}, B_{1}, \ldots, B_{m-1}$ of A and a state φ of $\left(1 \otimes h_{11}\right) A\left(1 \otimes h_{11}\right) \otimes M_{m}$ defined as follows:

$$
\begin{gathered}
A_{1}=C^{*}\left(\left\{e_{1 j} \otimes f_{11} \mid 2 \leq j \leq p\right\}\right), \quad A_{2}=C^{*}\left(\left\{g_{1 j} \otimes h_{11} \mid 2 \leq j \leq r\right\}\right) \\
B_{l}=C^{*}\left(\left\{S_{l, k} \mid 1 \leq k \leq q_{l+1}\right\}\right) \quad(1 \leq l \leq m-1) \\
\text { and } \quad \varphi=\psi \circ E
\end{gathered}
$$

where $S_{l, k}=\left(1 \otimes h_{1, l+1}\right)\left(1 \otimes f_{\left(q_{1}+\cdots+q_{l}\right)+k, 1}\right)$ and $\psi: \mathbb{C}^{m} \ni\left(\lambda_{l}\right)_{l=1}^{m} \mapsto \lambda_{1} \in \mathbb{C}$.
From Lemma 2.2.1, it follows that

$$
\begin{equation*}
A_{1}, A_{2}, B_{1}, \ldots, B_{m-1} \subset\left(1 \otimes h_{11}\right) A\left(1 \otimes h_{11}\right) \tag{2.2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{1} \cong M_{p}, A_{2} \cong M_{r}, B_{l} \cong \mathcal{O}_{q_{l+1}}(1 \leq l \leq m-1) \tag{2.2.4}
\end{equation*}
$$

In the case that $q_{l+1} \geq 2$, we can show, by a straightforward computation using Lemma 2.2.1, that the generators of B_{l} satisfy the relation $S_{l, k}^{*} S_{l, k}=1 \otimes h_{11}$ and $\sum_{k=1}^{q_{l+1}} S_{l, k} S_{l, k}^{*}=$ $1 \otimes h_{11}$. Therefore $B_{l} \cong \mathcal{O}_{q_{l+1}}$. Similarly, in the case that $q_{l+1}=1$, it is easy to see that the one generator $S_{l, 1}$ is a unitary with $\varphi\left(S_{l, 1}^{n}\right)=0$ for all $n \in \mathbb{Z} \backslash\{0\}$. So $B_{l} \cong C(\mathbb{T})$.

In addition, by Lemma 2.2.1, it immediately follows that

$$
\begin{equation*}
\left(1 \otimes h_{11}\right) A\left(1 \otimes h_{11}\right)=C^{*}\left(A_{1} \cup A_{2} \cup B_{1} \cup \cdots \cup B_{m-1}\right) . \tag{2.2.5}
\end{equation*}
$$

Furthermore, by Lemma 2.1.1, the state φ is faithful on $\left(1 \otimes h_{11}\right) A\left(1 \otimes h_{11}\right)$. Trivially, the faithfulness of φ implies the following (2.2.6).

$$
\begin{align*}
& \text { If } x \in\left(1 \otimes h_{11}\right) A\left(1 \otimes h_{11}\right) \text { satisfies } \varphi\left(y^{*} x^{*} x y\right)=0 \\
& \text { for all } y \in\left(1 \otimes h_{11}\right) A\left(1 \otimes h_{11}\right) \text {, then } x=0 \text {. } \tag{2.2.6}
\end{align*}
$$

We shall verify the freeness of $\left\{A_{1}, A_{2}, B_{1}, \ldots, B_{m-1}\right\}$ in $\left(\left(1 \otimes h_{11}\right) A\left(1 \otimes h_{11}\right), \varphi\right)$. Consider the following subsets of $\left(1 \otimes h_{11}\right) A\left(1 \otimes h_{11}\right)$:

$$
\begin{aligned}
& W_{A_{1}}=\left\{\left.\left(e_{i j}-\frac{\delta_{i j}}{p} 1\right) \otimes f_{11} \right\rvert\, 1 \leq i, j \leq p\right\}, \\
& W_{A_{2}}=\left\{\left.\left(g_{i j}-\frac{\delta_{i j}}{r} 1\right) \otimes h_{11} \right\rvert\, 1 \leq i, j \leq r\right\}, \\
& W_{B_{l}}=\left(1 \otimes h_{11}\right) W\left(\left\{1 \otimes h_{1, l+1}, 1 \otimes h_{l+1,1}\right\}, Y_{l}\right)\left(1 \otimes h_{11}\right),
\end{aligned}
$$

where

Then we have that

$$
A_{1} \cap \operatorname{ker} \varphi \subset \operatorname{span} W_{A_{1}}, \quad A_{2} \cap \operatorname{ker} \varphi \subset \operatorname{span} W_{A_{2}}
$$

$$
B_{l} \cap \operatorname{ker} \varphi \subset \text { the norm closure of }\left(\operatorname{span} W_{B_{l}}\right) \quad(1 \leq l \leq m-1)
$$

Therefore, to verify the desired freeness, it suffices to show that

$$
W\left(W_{A_{1}}, W_{A_{2}}, W_{B_{1}}, \ldots, W_{B_{m-1}}\right) \subset W\left(\operatorname{ker} E_{1}, \operatorname{ker} E_{2}\right)(\subset \operatorname{ker} E \subset \operatorname{ker} \varphi)
$$

We define $X_{1}, X_{2}, V_{A_{1}}, V_{A_{2}}, V_{B_{l}}(l=1, \ldots, m-1)$ as follows:

$$
\begin{aligned}
& X_{1}=\left\{\begin{array}{l|l}
x \otimes y & \begin{array}{l}
x=e_{i j}-\frac{\delta_{i j}}{p} 1(1 \leq i, j \leq p) \text { or } 1 \\
1 \otimes y \in \cup_{i=1}^{m-1} Y_{l}
\end{array}
\end{array}\right\}, \\
& X_{2}=\left\{\begin{array}{l|l}
x \otimes y & \begin{array}{l}
x=g_{i j}-\frac{\delta_{i j}}{r} 1(1 \leq i, j \leq r) \text { or } 1 \\
y=h_{i j}(1 \leq i, j \leq m, i \neq j) \text { or } h_{11}
\end{array}
\end{array}\right\}, \\
& V_{A_{1}}=\left\{\begin{array}{l|l}
w \in W\left(X_{1}, X_{2}\right) & \begin{array}{l}
w \text { ends with }\left(e_{i j}-\frac{\delta_{i j}}{p} 1\right) \otimes f_{k 1} \\
\left(1 \leq i, j \leq p, 1 \leq k \leq q_{1}+\cdots+q_{m}\right)
\end{array}
\end{array}\right\}, \\
& V_{A_{2}}=\left\{\begin{array}{l|l}
w \in W\left(X_{1}, X_{2}\right) & \begin{array}{l}
w \text { ends with }\left(g_{i j}-\frac{\delta_{i j}}{r} 1\right) \otimes h_{k 1} \\
(1 \leq i, j \leq r, 1 \leq k \leq m)
\end{array}
\end{array}\right\}, \\
& V_{B_{l}}=\left\{\begin{array}{l|l}
w \in W\left(X_{1}, X_{2}\right) & \begin{array}{l}
w \text { ends with } 1 \otimes h_{l+1,1} \text { or } \\
1 \otimes f_{q_{1}+\cdots q_{l}+k, 1}\left(1 \leq k \leq q_{l+1}\right)
\end{array}
\end{array}\right\} .
\end{aligned}
$$

By simple inspections, we can show that

$$
\begin{equation*}
W_{A_{1}} \subset V_{A_{1}}, W_{A_{2}} \subset V_{A_{2}}, W_{B_{l}} \subset V_{B_{1}}(1 \leq l \leq m-1) \tag{2.2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{S} W_{T} \subset V_{T}, \text { if } S \neq T,(S, T) \in\left\{A_{1}, A_{2}, B_{1}, \ldots, B_{m-1}\right\}^{2} \tag{2.2.8}
\end{equation*}
$$

It is clear that (2.2.7) and (2.2.8) imply

$$
\begin{equation*}
W\left(W_{A_{1}}, W_{A_{2}}, W_{B_{1}}, \ldots, W_{B_{m-1}}\right) \subset W\left(X_{1}, X_{2}\right) \tag{2.2.9}
\end{equation*}
$$

On the other hand, from the definitions of X_{1} and X_{2}, we get the inclusion

$$
\begin{equation*}
W\left(X_{1}, X_{2}\right) \subset W\left(\operatorname{ker} E_{1}, \operatorname{ker} E_{2}\right)(\subset \operatorname{ker} E \subset \operatorname{ker} \varphi) \tag{2.2.10}
\end{equation*}
$$

Then, by (2.2.9) and (2.2.10), we can conclude that

$$
\begin{equation*}
\left\{A_{1}, A_{2}, B_{1}, \ldots, B_{m-1}\right\} \text { is free in }\left(\left(1 \otimes h_{11}\right) A\left(1 \otimes h_{11}\right), \varphi\right) \tag{2.2.11}
\end{equation*}
$$

As a consequence of $(2.2 .3),(2.2 .5),(2.2 .6)$ and (2.2.11), we get

$$
\begin{equation*}
\left(\left(1 \otimes h_{11}\right) A\left(1 \otimes h_{11}\right), \varphi\right) \cong\left(A_{1},\left.\varphi\right|_{A_{1}}\right) *\left(A_{2},\left.\varphi\right|_{A_{2}}\right) *\left(B_{\mathbb{C}},\left.\varphi\right|_{B_{1}}\right) * \cdots{\underset{\mathbb{C}}{ }}^{\mathbb{C}}\left(B_{m-1},\left.\varphi\right|_{B_{m-1}}\right) . \tag{2.2.12}
\end{equation*}
$$

Then, combining (2.2.2), (2.2.4) and (2.2.12), we can get the desired ${ }^{*}$-isomorphism.
Now we shall show that A is non-nuclear when $m \geq 3$. We only treat the case that $q_{2} \geq 2, q_{3} \geq 2$. The proof for the other cases are almost similar. Note that there is a projection of norm one from A onto $\left(\left(\mathcal{O}_{q_{2}}, \varphi_{2}\right) *\left(\mathcal{O}_{q_{3}}, \varphi_{3}\right)\right) \otimes M_{m}$. In addition, using the ${ }^{*}$-isomorphism

$$
\left(\mathcal{O}_{q_{2}}, \varphi_{2}\right) \stackrel{\mathbb{C}}{*}\left(\mathcal{O}_{q_{3}}, \varphi_{3}\right) \cong\left(\mathcal{O}_{q_{2}} \otimes M_{q_{2}}, \varphi_{2} \otimes \frac{1}{q_{2}} T r\right) *\left(\mathcal{O}_{q_{3}} \otimes M_{q_{3}}, \varphi_{3} \otimes \frac{1}{q_{3}} T r\right),
$$

we can naturally construct a projection of norm one from the C^{*}-algebra $\left(\mathcal{O}_{q_{2}}, \varphi_{2}\right) *\left(\mathcal{O}_{q_{3}}, \varphi_{3}\right)$ onto $\left(M_{q_{2}}, \frac{1}{q_{2}} \operatorname{Tr}\right) \underset{\mathbb{C}}{*}\left(M_{q_{3}}, \frac{1}{q_{3}} \operatorname{Tr}\right)$. Then, since $\left(M_{q_{2}}, \frac{1}{q_{2}} \operatorname{Tr}\right) \underset{\mathbb{C}}{*}\left(M_{q_{3}}, \frac{1}{q_{3}} \operatorname{Tr}\right)$ is non-nuclear (see [4],[5]), it follows that A is non-nuclear.

Remark 2.2.2. In [9], K. Dykema proved that every reduced free product of exact C^{*} algebras with amalgamation is exact. Therefore, the C^{*}-algebra A in Proposition 2.1.2 is exact.

2.3 Proof of Proposition 2.1.3.

Let $(A, E)=\left(M_{1+n}, E_{1}\right) *\left(M_{1+n}, E_{2}\right)$ be as in Proposition 2.1.3, and put $\left\{e_{i j}\right\}_{1 \leq i, j \leq 1+n}$, $\left\{f_{i j}\right\}_{1 \leq i, j \leq 1+n}$ be systems of matrix units of M_{1+n}, M_{1+n}, respectively.

Lemma 2.3.1. The C^{*}-algebra A has the relation

$$
\begin{align*}
e_{11} & =f_{11} \tag{2.3.1}\\
e_{22}+\cdots+e_{1+n, 1+n} & =f_{22}+\cdots+f_{1+n, 1+n}
\end{align*}
$$

Proof. The relation (2.3.1) arises from the embeddings $i_{1}: \mathbb{C}^{2} \hookrightarrow M_{1+n}$ and $i_{2}: \mathbb{C}^{2} \hookrightarrow M_{1+n}$ which we start with.

Proof of Proposition 2.1.3. We remark that

$$
\begin{align*}
& \left(e_{11} A e_{11}\right) \otimes M_{1+n} \cong A \text { and } \\
& \left(e_{11} A e_{11}\right) \otimes M_{n} \cong\left(e_{22}+\cdots+e_{1+n, 1+n}\right) A\left(e_{22}+\cdots+e_{1+n, 1+n}\right) \tag{2.3.2}
\end{align*}
$$

We shall examine the C^{*}-algebra $\left(e_{22}+\cdots+e_{1+n, 1+n}\right) A\left(e_{22}+\cdots+e_{1+n, 1+n}\right)$. Consider the C^{*}-subalgebras A_{1}, A_{2} of A and a state φ on $\left(e_{22}+\cdots+e_{1+n, 1+n}\right) A\left(e_{22}+\cdots+e_{1+n, 1+n}\right)$ defined as follows:

$$
A_{1}=C^{*}\left(\left\{e_{2 j} \mid 3 \leq j \leq 1+n\right\}\right), \quad A_{2}=C^{*}\left(\sum_{i=2}^{1+n} e_{i 1} f_{1 i}\right)
$$

and

$$
\varphi=\psi \circ E
$$

where $\psi: \mathbb{C}^{2} \ni\left(\lambda_{1}, \lambda_{2}\right) \mapsto \lambda_{2} \in \mathbb{C}$.
From Lemma 2.3.1, it follows that

$$
\begin{equation*}
A_{1}, A_{2} \subset\left(e_{22}+\cdots+e_{1+n, 1+n}\right) A\left(e_{22}+\cdots+e_{1+n, 1+n}\right) \tag{2.3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{1} \cong M_{n}, \quad A_{2} \cong C(\mathbb{T}) \tag{2.3.4}
\end{equation*}
$$

By a straightforward computation using Lemma 2.3.1, we can show that the one generator $u=\sum_{i=2}^{1+n} e_{i 1} f_{1 i}$ is a unitary with $\varphi\left(u^{n}\right)=0$ for all $n \in \mathbb{Z} \backslash\{0\}$. Therefore, $A_{2} \cong C(\mathbb{T})$.

In addition, by Lemma 2.3.1, it immediately follows that

$$
\begin{equation*}
\left(e_{22}+\cdots+e_{1+n, 1+n}\right) A\left(e_{22}+\cdots+e_{1+n, 1+n}\right)=C^{*}\left(A_{1} \cup A_{2}\right) \tag{2.3.5}
\end{equation*}
$$

Furthermore, by Lemma 2.1.1, the state φ is faithful on the C^{*}-algebra

$$
\left(e_{22}+\cdots+e_{1+n, 1+n}\right) A\left(e_{22}+\cdots+e_{1+n, 1+n}\right)
$$

Trivially, the faithfulness of φ implies the following (2.3.6).

$$
\begin{align*}
& \text { If } x \in\left(e_{22}+\cdots+e_{1+n, 1+n}\right) A\left(e_{22}+\cdots+e_{1+n, 1+n}\right) \text { satisfies } \varphi\left(y^{*} x^{*} x y\right)=0 \\
& \text { for all } y \in\left(e_{22}+\cdots+e_{1+n, 1+n}\right) A\left(e_{22}+\cdots+e_{1+n, 1+n}\right) \text {, then } x=0 \text {. } \tag{2.3.6}
\end{align*}
$$

Now we shall verify the freeness of $\left\{A_{1}, A_{2}\right\}$ in $\left(\left(e_{22}+\cdots+e_{1+n, 1+n}\right) A\left(e_{22}+\cdots+\right.\right.$ $\left.\left.e_{1+n, 1+n}\right), \varphi\right)$. Consider the following subsets of $\left(e_{22}+\cdots+e_{1+n, 1+n}\right) A\left(e_{22}+\cdots+e_{1+n, 1+n}\right)$.

$$
\begin{aligned}
& W_{A_{1}}=\left\{e_{i j}-E\left(e_{i j}\right) \mid 2 \leq i, j \leq 1+n\right\}, \\
& W_{A_{2}}=\left\{\left(\sum_{i=2}^{1+n} e_{i 1} f_{1 i}\right)^{m} \mid m \in \mathbb{Z} \backslash\{0\}\right\}
\end{aligned}
$$

Then we have that

$$
A_{l} \cap \operatorname{ker} \varphi \subset \operatorname{span} W_{A_{l}} \quad(l=1,2)
$$

Therefore, to verify the desired freeness, it suffices to show that

$$
W\left(W_{A_{1}}, W_{A_{2}}\right) \subset \operatorname{span} W\left(\operatorname{ker} E_{1}, \operatorname{ker} E_{2}\right)(\subset \operatorname{ker} E \subset \operatorname{ker} \varphi)
$$

Let $W_{e, f}, W_{f, e}, W_{e}$ and W_{f} be as follows:

$$
\begin{aligned}
W_{e, f} & =\left\{\left(\sum_{i=2}^{1+n} e_{i 1} f_{1 i}\right)^{m} \mid m \in \mathbb{N}\right\} \cup\left\{e_{i 1} f_{1 j} \mid 2 \leq i, j \leq 1+n, i \neq j\right\}, \\
W_{f, e} & =\left\{\left(\sum_{i=2}^{1+n} f_{i 1} e_{1 i}\right)^{m} \mid m \in \mathbb{N}\right\} \cup\left\{f_{i 1} e_{1 j} \mid 2 \leq i, j \leq 1+n, i \neq j\right\}, \\
W_{f} & =\left\{f_{i j}-E\left(f_{i j}\right) \mid 2 \leq i, j \leq 1+n\right\}, \\
W_{e} & =\left\{e_{i j}-E\left(e_{i j}\right) \mid 2 \leq i, j \leq 1+n\right\} .
\end{aligned}
$$

We define V a set of all elements $x_{1} \cdots x_{m}$, where $m \in \mathbb{N}, x_{j} \in W_{e, f} \cup W_{f, e} \cup W_{e} \cup W_{f}(1 \leq$ $j \leq m$) which satisfies the following condition (*):
$\left(^{*}\right)$ for $2 \leq j \leq m-1$ and $(s, t)=(e, f)$ or (f, e),

$$
x_{j} \in W_{s, t} \text { if and only if } x_{j-1} \in W_{s} \text { and } x_{j+1} \in W_{t} \text {, and }
$$

$$
x_{j} \in W_{s} \text { if and only if } x_{j-1} \in W_{s, t} \cup W_{t} \text { and } x_{j+1} \in W_{t, s} \cup W_{t} .
$$

Moreover, define $V_{A_{1}}, V_{A_{2}}$ by

$$
\begin{aligned}
& V_{A_{1}}=\left\{\begin{array}{l|l}
w \in V & \begin{array}{l}
w \text { ends with } e_{i j}-E\left(e_{i j}\right)(2 \leq i, j \leq 1+n) \text { or } \\
f_{i 1} e_{1 j}(2 \leq i, j \leq 1+n, i \neq j)
\end{array}
\end{array}\right\}, \\
& V_{A_{2}}=\left\{\begin{array}{ll}
w \in V & \begin{array}{l}
w \text { ends with }\left(\sum_{k=2}^{1+n} e_{k 1} f_{1 k}\right)^{m}(m \in \mathbb{Z} \backslash\{0\}) \text { or } \\
f_{i j}-E\left(f_{i j}\right)(2 \leq i, j \leq 1+n) \text { or } \\
e_{i 1} f_{1 j}(2 \leq i, j \leq 1+n, i \neq j)
\end{array}
\end{array}\right\} .
\end{aligned}
$$

By simple inspections, we can show that

$$
\begin{equation*}
W_{A_{1}} \subset V_{A_{1}}, W_{A_{2}} \subset V_{A_{2}} \tag{2.3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{S} W_{T} \subset V_{T}, \text { if } S \neq T,(S, T) \in\left\{A_{1}, A_{2}\right\}^{2} . \tag{2.3.8}
\end{equation*}
$$

It is clear that (2.3.7) and (2.3.8) imply

$$
\begin{equation*}
W\left(W_{A_{1}}, W_{A_{2}}\right) \subset V . \tag{2.3.9}
\end{equation*}
$$

On the other hand, from the definition of V, we get the inclusion

$$
\begin{equation*}
V \subset \operatorname{span} W\left(\operatorname{ker} E_{1}, \operatorname{ker} E_{2}\right)(\subset \operatorname{ker} E \subset \operatorname{ker} \varphi) . \tag{2.3.10}
\end{equation*}
$$

Then, by (2.3.9) and (2.3.10), we can conclude that

$$
\begin{equation*}
\left\{A_{1}, A_{2}\right\} \text { is free in }\left(\left(e_{22}+\cdots+e_{1+n, 1+n}\right) A\left(e_{22}+\cdots+e_{1+n, 1+n}\right), \varphi\right) \text {. } \tag{2.3.11}
\end{equation*}
$$

As a consequence of (2.3.3), (2.3.5), (2.3.6) and (2.3.11), we get

$$
\begin{equation*}
\left(\left(e_{22}+\cdots+e_{1+n, 1+n}\right) A\left(e_{22}+\cdots+e_{1+n, 1+n}\right), \varphi\right) \cong\left(A_{1},\left.\varphi\right|_{A_{1}}\right) \stackrel{(}{\mathbb{C}}\left(A_{2},\left.\varphi\right|_{A_{2}}\right) . \tag{2.3.12}
\end{equation*}
$$

Then, combining (2.3.2), (2.3.4) and (2.3.12) we can easily get the desired ${ }^{*}$-isomorphism.
Since the C^{*}-algebra $\left(M_{n}, \frac{1}{n} \operatorname{Tr}\right) \stackrel{\mathbb{C}}{*}(C(\mathbb{T}), \tau)$ is non-nuclear (see [4],[5]), it is trivial that A is non-nuclear.

Now we shall investigate the simplicity of A. By [2, Proposition 3.1], the C^{*}-algebra $\left(M_{n}, \frac{1}{n} T r\right) *(C(\mathbb{T}), \tau)$ is simple. Therefore, it immediately follows that A is simple.

Remark 2.3.2. As stated in Remark 2.2.2, it is known that the C^{*}-algebra A in Proposition 2.1.3 is exact.

Remark 2.3.3. In [13], K. McClanahan gives a sufficient condition for simplicity of reduced free product C^{*}-algebras with amalgamation. But the C^{*}-algebra A in Proposition 2.1.3 does not satisfy McClanahan's condition. Therefore, we cannot determine whether A is simple or not from his condition.

§3. Related topics

Let $n \in \mathbb{N}$. Here we shall give a pair of C^{*}-algebras A, B such that $A \not \approx B$ and $A \otimes M_{n} \cong$ $B \otimes M_{n}$.

Proposition 3.1. Let $(A, E)=\left(M_{n} \otimes M_{n+1}, E_{1}\right) \underset{\mathbb{C}^{2}}{*}\left(M_{2}, E_{2}\right)$ be as in Definition 1.1, and let $\left\{e_{i j}\right\}_{1 \leq i, j \leq n},\left\{f_{i j}\right\}_{1 \leq i, j \leq n}$ and $\left\{g_{i j}\right\}_{1 \leq i, j \leq 2}$ be systems of matrix units of M_{n}, M_{n+1} and M_{2}, respectively. Then, for C^{*}-algebras $A_{1}=\left(e_{11} \otimes f_{11}\right) A\left(e_{11} \otimes f_{11}\right), A_{2}=A_{1} \otimes M_{n}$, we have $A_{1} \not \not A_{2}$ and $A_{1} \otimes M_{n} \cong A_{2} \otimes M_{n}$.

In the proof of Proposition 3.1, the following lemma, proved by E. Germain, is used.

Lemma 3.2 ([10], [11]). Given unital C^{*}-algebras A_{1} and A_{2} with states φ_{1} and, respectively, φ_{2}, whose GNS-representations are faithful, let $(A, \varphi)=\left(A_{1}, \varphi_{1}\right) *\left(A_{2}, \varphi_{2}\right)$ be the corresponding reduced free product. Suppose that A_{1} and A_{2} are nuclear. Then there is an exact sequence of K-groups,

where $i_{k}: \mathbb{C} \rightarrow A_{k}$ is the unital ${ }^{*}$-homomorphism and where $j_{k}: A_{k} \rightarrow A$ is the unital embedding arising from the construction of the reduced free product (A, φ).

Proof of Proposition 3.1. First, we shall show that $A_{1} \otimes M_{n} \cong A_{2} \otimes M_{n}$. Note that there is a relation in A given by

$$
1 \otimes f_{11}=g_{11} \text { and } 1 \otimes\left(f_{22}+\cdots+f_{n+1, n+1}\right)=g_{22}
$$

Since the map

$$
A_{1} \otimes M_{n} \ni\left(x_{i j}\right)_{1 \leq i, j \leq n} \mapsto \sum_{1 \leq i, j \leq n}\left(e_{i 1} \otimes f_{11}\right) x_{i j}\left(e_{1 j} \otimes f_{11}\right) \in\left(1 \otimes f_{11}\right) A\left(1 \otimes f_{11}\right)
$$

is a ${ }^{*}$-isomorphism, we get $A_{1} \otimes M_{n} \cong g_{11} A g_{11}$. Similarly, we can construct a ${ }^{*}$-isomorphism between $A_{2} \otimes M_{n}$ and $g_{11} A g_{11}$ by

$$
\begin{aligned}
A_{2} \otimes M_{n} & \cong A_{1} \otimes M_{n} \otimes M_{n} \cong\left(1 \otimes f_{11}\right) A\left(1 \otimes f_{11}\right) \otimes M_{n} \\
& \cong\left(1 \otimes\left(f_{22}+\cdots+f_{n+1, n+1}\right)\right) A\left(1 \otimes\left(f_{22}+\cdots+f_{n+1, n+1}\right)\right) \\
& \cong g_{22} A g_{22} \cong g_{11} A g_{11} .
\end{aligned}
$$

Therefore, $A_{1} \otimes M_{n} \cong A_{2} \otimes M_{n}$.
Next, we prove that $A_{1} \not \neq A_{2}$ by investigating $K_{0}\left(A_{1}\right)$ and $K_{0}\left(A_{2}\right)$. Define $\iota_{1}: A_{1} \rightarrow$ $A_{2}=A_{1} \otimes M_{n}$ and $\iota_{2}: A_{2} \rightarrow\left(1 \otimes f_{11}\right) A\left(1 \otimes f_{11}\right)$ by

$$
\begin{gathered}
\iota_{1}(x)=\operatorname{diag}(x, 0, \ldots, 0) \quad \text { for } x \in A_{1} \\
\iota_{2}\left(\left(x_{i j}\right)_{1 \leq i, j \leq n}\right)=\sum_{1 \leq i, j \leq n}\left(e_{i 1} \otimes f_{11}\right) x_{i j}\left(e_{1 j} \otimes f_{11}\right)
\end{gathered}
$$

for $\left(x_{i j}\right)_{1 \leq i, j \leq n} \in A_{2}$, and $\iota_{3}:\left(1 \otimes f_{11}\right) A\left(1 \otimes f_{11}\right) \rightarrow\left(M_{n}, \tau_{n}\right) *\left(\mathcal{O}_{n}, \varphi\right)$ be the ${ }^{*}$-isomorphism constructed in Proposition 2.1.2.

Then it is clear that

$$
\begin{equation*}
\left[\iota_{3} \circ \iota_{2} \circ \iota_{1}\right]\left(1_{A_{1}}\right)=j_{1}(\operatorname{diag}(1,0, \ldots, 0)) \text { and }\left[\iota_{3} \circ \iota_{2}\right]\left(1_{A_{2}}\right)=j_{1}(\operatorname{diag}(1, \ldots, 1)) \tag{3.1}
\end{equation*}
$$

where $j_{1}: M_{n} \hookrightarrow\left(M_{n}, \tau_{n}\right) * \underset{\mathbb{C}}{*}\left(\mathcal{O}_{n}, \varphi\right)$ be the unital embedding arising from the construction of the reduced free product.

According to Lemma 3.2, we can get the following exact sequence of K-groups

$$
\begin{equation*}
K_{0}(\mathbb{C}) \xrightarrow{\left(K_{0}\left(i_{1}\right),-K_{0}\left(i_{2}\right)\right)} K_{0}\left(M_{n}\right) \oplus K_{0}\left(\mathcal{O}_{n}\right) \xrightarrow{K_{0}\left(j_{1}\right)+K_{0}\left(j_{2}\right)} K_{0}(B) \longrightarrow 0 \tag{3.2}
\end{equation*}
$$

where $B=\left(M_{n}, \tau_{n}\right) *\left(\mathcal{O}_{n}, \varphi\right)$.
Through the group isomorphisms $K_{0}\left(M_{n}\right) \cong \mathbb{Z}([1] \mapsto n), K_{0}\left(\mathcal{O}_{n}\right) \cong \mathbb{Z} /(n-1) \mathbb{Z}$ ([1] \mapsto [1]) and $K_{0}\left(\iota_{3} \circ \iota_{2}\right): K_{0}\left(A_{2}\right) \cong K_{0}(B)$, we can obtain the following exact sequence from (3.2).

$$
\begin{equation*}
\mathbb{Z} \longrightarrow \mathbb{Z} \oplus \mathbb{Z} /(n-1) \mathbb{Z} \longrightarrow K_{0}\left(A_{2}\right) \longrightarrow 0 \tag{3.3}
\end{equation*}
$$

So, from (3.1) and (3.3), it follows that

$$
\begin{equation*}
\exists \varphi_{2}: K_{0}\left(A_{2}\right) \cong \mathbb{Z} /\left(n^{2}-n\right) \mathbb{Z} \text { such that } \varphi_{2}([1])=[n] \tag{3.4}
\end{equation*}
$$

On the other hand, using the group isomorphism $K_{0}\left(\iota_{1}\right) K_{0}\left(A_{1}\right) \cong K_{0}\left(A_{2}\right)$ with (3.1) and (3.4), we have

$$
\begin{equation*}
\exists \varphi_{1}: K_{0}\left(A_{1}\right) \cong \mathbb{Z} /\left(n^{2}-n\right) \mathbb{Z} \text { such that } \varphi_{1}([1])=[1] \tag{3.5}
\end{equation*}
$$

Then, by (3.4) and (3.5), we can conclude $A_{1} \not \approx A_{2}$.
Remark 3.3. The C^{*}-algebras A_{1}, A_{2} in Proposition 3.1 are non-nuclear, (See Proposition 2.1.2.) and their K_{0}-group is $\mathbb{Z} /\left(n^{2}-n\right) \mathbb{Z}$, their K_{1}-group is trivial. We remark that there is a pair of nuclear C^{*}-algebras B_{1}, B_{2} such that $B_{1} \neq B_{2}, B_{1} \otimes M_{n} \cong B_{2} \otimes M_{n}$ and their K_{0}-group, K_{1}-group are the same as those of A_{1}, respectively. In fact, if we put $B_{1}=\mathcal{O}_{n^{2}-n+1}, B_{2}=\mathcal{O}_{n^{2}-n+1} \otimes M_{n}$, then B_{1}, B_{2} have all the desired properties. (See [12].)

Proposition 3.4. Let $(A, E)=\left(M_{q_{1}+q_{2}}, E_{1}\right) \underset{\mathbb{C}^{2}}{*}\left(M_{2}, E_{2}\right)$ be as in Definition 1.1. Put $\left\{e_{i j}\right\}_{1 \leq i, j \leq q_{1}+q_{2}},\left\{f_{i j}\right\}_{1 \leq i, j \leq 2}$ be systems of matrix units in $M_{q_{1}+q_{2}}, M_{2}$, respectively. If $q_{1}<q_{2}$, then the C^{*}-algebra $e_{11} A e_{11}$ is infinite.

In particular, the C^{*}-algebras A_{1}, A_{2} which appear in Proposition 3.1 are infinite.

To prove Proposition 3.4, we need some lemmas.

Lemma 3.5 ([1]). Let A be a C^{*}-algebra and let p, q be projections with $\|p-p q p\|<1$. Then p is equivalent to a subprojection q^{\prime} of q, which is given by

$$
q^{\prime}=q\left(p+\sum_{n=1}^{\infty}(p-p q p)^{n}\right) q
$$

Lemma 3.6 ([1]). Suppose A is a simple, unital C^{*}-algebra containing nontrivial projections p and q. If A is generated by p, q and some other positive elements each of which is orthogonal to either p or q, then $\|q(1-p) q-q\|<1$.

Lemma 3.7 ([8]). Consider the reduced free product

$$
(A, \varphi)=\left(\mathbb{C}^{n}, \tau_{\alpha_{1}, \ldots, \alpha_{n}}\right) *\left(\mathbb{C}^{m}, \tau_{\beta_{1}, \ldots, \beta_{n}}\right),
$$

where $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n}>0, \sum_{i=1}^{n} \alpha_{i}=\sum_{i=1}^{m} \beta_{i}=1$, and $\tau_{\alpha_{1}, \ldots, \alpha_{n}}$ and $\tau_{\beta_{1}, \ldots, \beta_{n}}$ are defined by

$$
\begin{aligned}
\tau_{\alpha_{1}, \ldots, \alpha_{n}}\left(\left(\lambda_{i}\right)_{i=1}^{n}\right) & =\sum_{i=1}^{n} \alpha_{i} \lambda_{i}, \\
\tau_{\beta_{1}, \ldots, \beta_{n}}\left(\left(\lambda_{i}\right)_{i=1}^{n}\right) & =\sum_{i=1}^{n} \beta_{i} \lambda_{i} .
\end{aligned}
$$

If $\alpha_{i}+\beta_{j}<1$ for all $(i, j) \in\{1, \ldots, n\} \times\{1, \ldots, m\}$, then A is simple.

Proof of Proposition 3.4. We shall verify the infiniteness of $e_{11} A e_{11}$ by constructing a proper subprojection of e_{11} which is equivalent to e_{11}. Consider the C^{*}-subalgebra B of A which is generated by mutually orthogonal projections $f_{21} e_{11} f_{12}, f_{21}\left(e_{22}+\cdots+\right.$ $\left.e_{q_{1} q_{1}}\right) f_{12}, e_{q_{1}+1, q_{1}+1}, \ldots, e_{q_{1}+q_{2}, q_{1}+q_{2}}$. Moreover, define a state φ on B by $\varphi=\psi \circ E$, where $\psi: \mathbb{C}^{2} \ni\left(\lambda_{1}, \lambda_{2}\right) \mapsto \lambda_{2} \in \mathbb{C}$. We remark that, by Lemma 2.1.1, we have that φ is faithful on B.

It is easy to show that

$$
\begin{align*}
& (B, \varphi) \tag{3.6}\\
\cong & \left(C^{*}\left(f_{21} e_{11} f_{12}, f_{21}\left(\sum_{j=2}^{q_{1}} e_{j j}\right) f_{12}\right), \varphi\right) *\left(C^{*}\left(e_{q_{1}+1, q_{1}+1}, \ldots, e_{q_{1}+q_{2}, q_{1}+q_{2}}\right), \varphi\right) \\
\cong & \left(\mathbb{C}^{2}, \tau_{\frac{1}{q_{1}}, 1-\frac{1}{q_{1}}}\right) *\left(\mathbb{C}^{q_{2}}, \tau_{\frac{1}{q_{2}}, \ldots, \frac{1}{q_{2}}}\right) .
\end{align*}
$$

Furthermore, by Lemma 3.7, the right side hand of (3.6) is a simple C^{*}-algebra. Therefore, B is simple.

Then applying Lemma 3.6 on B, we get the estimation

$$
\left\|e_{q_{1}+1, q_{1}+1} \cdot f_{21} e_{11} f_{12} \cdot e_{q_{1}+1, q_{1}+1}\right\|<1
$$

Therefore, using Lemma 3.5, we can construct a subprojection q of $f_{21} e_{11} f_{12}$ which is equivalent to $e_{q_{1}+1, q_{1}+1}$.

Moreover, the projection q is not equal to e_{11}. In fact, since

$$
\varphi(q)=\varphi\left(e_{q_{1}+1, q_{1}+1}\right)=\frac{1}{q_{2}} \text { and } \varphi\left(f_{21} e_{11} f_{12}\right)=\frac{1}{q_{1}}
$$

we have $q \neq e_{11}$ from the assumption $q_{1} \neq q_{2}$.
Finally, define $p=e_{11} f_{12} q f_{21} e_{11}$. From the above arguments about the projection q, we can easily show that p is a proper subprojection of e_{11} which is equivalent to e_{11}. Therefore, $e_{11} A e_{11}$ is infinite.

Acknowledgement

I would like to express my deep gratitude to M. Nagisa for his help with this paper.

References

[1] J. Anderson, B. Blackadar and U. Haagerup, Minimal projection in the reduced group C^{*}-algebra of $\mathbb{Z}_{n} * \mathbb{Z}_{m}$, J. Operator Theory 26 (1991), 3-23.
[2] D. Avitzour, Free products of C^{*}-algebras, Trans. Amer. Math. Soc. 271 (1982), 423-435.
[3] B. Blackadar, K-Theory for operator algebras, Mathematical Sciences Research Institute Publication Series, Springer-Verlag, New York-Heidelberg-Berlin-Tokyo, 5 (1986).
[4] K. J. Dykema, Free products of hyperfinite von Neumann algebras and free dimension, Duke Math. J. 69 (1993), 97-119.
[5] K. J. Dykema, Interpolated free group factors, Pacific J. Math. 163 (1994), 123-135.
[6] K. J. Dykema, Faithfulness of free product states, J. Funct. Anal. 154 (1998), 323-329.
[7] K. J. Dykema, Purely infinite, simple C^{*}-algebras arising from free product constructions, II, Preprint.
[8] K. J. Dykema, Simplicity and the stable rank of some free product C*-algebras, Preprint.
[9] K. J. Dykema, Exactness of reduced amalgamated free product C ${ }^{*}$-algebras, Preprint.
[10] E. Germain, KK-theory of reduced free product C^{*}-algebras, Duke Math. J. 82 (1996), 707-723.
[11] E. Germain, KK-theory of the full free product of unital C C^{*}-algebras, J. reine. angew. Math. 485 (1997), 1-10.
[12] E. Kirchberg, The classification of purely infinite C^{*}-algebras using Kasparov's theory, Preprint.
[13] K. McClanahan, Simplicity of reduced amalgamated free products of C^{*}-algebras, Can. J. Math. 46 (1994), 793-807.
[14] D. Voiculescu, Symmetries of some reduced free product C^{*}-algebras, in Operator algebras and their connections with topology and ergodic theory, Springer Lecture notes in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1132 (1985), 556-588.

MITO KIRYOU HIGH SCHOOL, SENBA-CHO 2369-3, MITO 310-0851, JAPAN
E-mail: fwns9170@mb.infoweb.ne.jp

[^0]: Key words and phrases. reduced free product with amalgamation of C^{*}-algebras.
 1991 Mathematics Subject Classification. Primary 46L05. .

