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CERTAIN REDUCED FREE PRODUCTS
WITH AMALGAMATION OF (C*-ALGEBRAS

TAKASHI SAKAMOTO

Received August 26, 1999; revised September 27, 1999

ABSTRACT. It is proved that some of the reduced free products of matrix algebras with amal-
gamation over finite dimensional commutative C*-algebras can be identified, up to stable
isomorphism, with the reduced free product C*-algebras obtained from M, , C'(T) and Oy.

§1. PRELIMINARIES

We shall examine some examples in the reduced free product of two matrix algebras with
amalgamation over a finite dimensional commutative C*-algebra. The notion of reduced
free product with amalgamation of C*-algebras was introduced by D.Voiculescu ([14]). Let
(A)ier be unital C*-algebras and let B be a unital C*-algebra with unital embedding
t; + B — A; for each ¢ € I. In addition, for each ¢ € I, let F; : A; — B be a projection of
norm one which satisfies the condition that x € A, is equal to 0 whenever E;(y*z*zy) = 0 for
all y € A;. In this setting, the reduced free product of (A4;, E;);c; with amalgamation over
B is the unique unital C*-algebra A with unital embeddings ; : A; — A and a projection
of norm one E : A — B satisfying the following property:

(1) &(ei(d)) = (¢(b)) for all b € B and i, j € I, (So B can be naturally identified with
a C*-subalgebra of A.)
(il) Eoi; = E; for each i € I,
(iii) (Aj)ieris free in (A, E), that is, the set
{ei, (@) 1i (xn) |21 Eker By i Z i1 (1 <1 <n—1),n e N}
is contained in ker E,
(iv) A= C'X(U,jejlf,j(AA,j)),
(v) = € Ais equal to 0 whenever E(y*z*zy) = 0 for all y € A.
We shall denote the reduced free product with amalgamation by

(A, E) = z;(Ai, Ez)

and FE is called the free product projection of norm one. In particular, for a family {(A4;, ¢;) |

i € I} of a unital C*-algebra A4; with a state ¢; whose GNS-representation is faithful, the

C*-algebra (A, p) = %(A4;, ;) is called the reduced free product of (A4;,¢i)ics, and ¢ is
EA

called the free producf state.

In this article, we study some examples of reduced free product C*-algebras with amal-
gamation defined as follows:
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Definition 1.1. Let p,¢1, ..., ¢m,7, 1, ..., $m € N, and put go = 0, so = 0. Let {e;; }1<i j<p
{fijhi<ij<q+tqm> 19ij}1<ij<r and {hij}i<i j<s;+.+s, be systems of matrix units for
the matrix algebras My, My, +...4q,, , M, and My .45 , respectively.

We shall define the reduced free product C*-algebra with amalgamation

(AIP X 4’7\/[(11_‘_.“_;_(]771, E] ) qun (A[, X A/[gl_i_.“_Fsm . Eg)

as follows:

(1) the unital embedding
1 Cc" — [\/[p X AJQI‘F'“#’Qm

is given by

m Go+-+q

(D) 2/\1 ® Z frr),

k=qo+-+qi—1+1

and iy : C™ — M, @ My, 1...4s,, is defined analogously to ¢; by replacing p, g. with
r, S, respectively.
(ii) the projection of norm one

Ey: M,© Myt 1y, —C"

is given by

qo+-+q:
§ /\ZJkZPZJ X f/cl § § Aiikk)lrila
i,k ! i=1 k=qo+ +q—1+1

and Ey : M, @ Mg, 4.5, — C™ is defined analogously to E; by replacing p, ¢.
with r, s, respectively.

Hereafter, the notation

(J\Jp X A/[f]l‘l"“"”(ImVEl) * (/7\[ X J[sl+ +s, E))

m

means the reduced free product C*-algebra with amalgamation defined as in Definition 1.1.

In §2, it is proved that, under the settings that
() g=1,s1=--=s,=1
or
(2) p=r=1(so M, =M, =2C), m=2.q =s; =1 and g2 = s2,
the C*-algebra (A, E) = (M, Mg, +...4q,, El) # (Mr©Ms, 4...4s,,, E2) is stably isomorphic
to the reduced free product C'*-algebra obtamed from well-known C*-algebras such as M,,,

C(T), and the Cuntz algebra, O,.

In §3, we shall show that, for given n € N, two C*-algebras A, A» which satisfy 4; 2 A,
and A} ® M, 2 Ay ® M, appear in the C*-algebra (4, F) = (M, ® A[nH,El) * (M, Ey).

Moreover, it is proved that the C*-algebras we exhibit here have the addltlonal property
that they are infinite and non-nuclear.

We use the following notations in the rest of sections.
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Notation 1.2. Let A be a C*-algebra and let X7, ..., X, be subsets of A. We shall denote
the set {wy---ws | vy € Xy, li #la # - #ls, s € N} by W(Xq, ..., X)),

§2. OBSERVATION OF THE C*-ALGEBRAS DEFINED AS IN DEFINITION 1.1

2.1 Statement of main result.

First, we shall describe a basic property of reduced free product C*-algebras with amal-
gamation, which will be used in this section.
Lemma 2.1.1. Let (4,F) = E(Alq E;) be the reduced free product with amalgamation of

C*-algehras. Suppose that F; is faithful on A; for each v« € I, and suppose that B has a
faithful state ¢. Then the free product projection of norm one FE is faithful on A.

Proof. This lemma is essentially proved in [6]. We can verify the desired faithfulness simi-
larly to [6], replacing states in [6] with projection of norm one here. O

Our main results are the followings.

Proposition 2.1.2. For the C*-algebra

(44, E) = (A[p X J\/Iql+,u+qm s El) (rzkn (A[, (4] 17\/131+»»<+5,”7E2)7
suppose that
p=Ls =--=s,=1

Then, for suitable states ¢ on Oy, (2 <1 <m), we have

1 1 , ,
A ((My, STr) 8 (M 2T7) 5 (O p2) -5 (O 9m)) © Mo,

*
C
where O means C(T).

In particular, A is non-nuclear when m > 3.

Proposition 2.1.3. Let (4, E) = (M4, E1) % (Mi4n, Es). Then

s

1
A© M, 2 (M, ~Tr) % (C(T), 7)) © Miya,
n (5

where 7 is a tracial state on C'(T) given by

-1 L.
7(f) :/0 f(e*™Ndt  for f € C(T).

In particular, if n > 3, we have that A is simple, non-nuclear.

2.2 Proof of Proposition 2.1.2.

Let (A E) = (My© My scvq,,. E1) 1

that is, g1 = 1,81 = -+ = s = L Put {esjhi<ij<p, {fiihi<ij<otta. {9ih<ij<r and
{hij}i<ij<si+.-+s,, besystems of matrix units for the matrix algebras My, Mg, +...4q,., M,
and M, 4...45,,, respectively.

(M. & Mg, 4..45,,,E2) be as in Proposition 2.1.2,
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Lemma 2.2.1. In the C*-algebra A, we have the following identification:

(2.2.1) @ fi1 =1® hyy,
G+t g
1@ Z fij=10hg0 (1<1I<m—1).
=g +-+qa+l

Proof. These relations arise from the unital embeddings C" — M,Q My, +...4q, and C" —
M, @ Ms, +..+5,, which we start with. O

Proof of Proposition 2.1.2. We remark that
(2.2.2) (1@ hy1 )AL @ hy) © M, = A.
In fact, the map
D:(1@hi)A1 @ hi) @ My 3 ((xi)1<i j<m) — Z (1@ hip )z (1@ hj) e A
1<i,j<m

is a *-isomorphism.
Now we shall examine the C*-algebra (1@ hy1)A(1® hyy). Consider the C*-subalgebras

Ay, 45, By, ..., By, of A and a state ¢ of (1 © h11)A(1® hy1) @ M, defined as follows:
A =C{e;0fm |2<5<p}), A=C{gp;oh |2<)<r}),
=C"({Sik |1<k<qq1}) (1<I<m-1)

and @=voFE,
)

where S; = (1@ h1,41)(1® fla+tq)+k,1) and ¢ : C™ 3 A, =N eC
From Lemma 2.2.1, it follows that

(223) 441,‘42,B1,...,Bm71 C (1 [o9] 1111)44(1@‘ hll)
and
(2.2.4) A =M, A= M, B =20, (1<1<m-1).

In the case that ¢;+1 > 2, we can show, by a straightforward computation using Lemma
2 .1, that the generators of By satisfy the relation Sl 51 =1® hyy and Zﬁ” * Sk S, B =
hu Therefore By =2 O, ,. Similarly, in the case that ¢y, = 1, it is easy to see that
thc one generator S; 1 is a unitary with ¢ (Slnl) =0foralneZ\ {0} So B; = C(T).
In addition, by Lemma 2.2 1, it 1mm9dla’reh follows that

(225) (1 /1]7]1)4(1 171]):C*(A1 UAAQUB] U"'UB,,,_]).

Furthermore, by Lemma 2.1.1, the state ¢ is faithful on (1 ® hy1)A(1 @ hqq). Trivially, the
faithfulness of o implies the follovwmd (2.2.6).

If # € (1@ h11)A(1 ® hqy) satisfies o(y* 2 2y) = 0

2.2.6
( ) forall y € (1@ hyy)A(1@ hyy), then z = 0.
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We shall verify the freeness of {4y, Ay, By, ..., Byy—1 } In (1&h11)A(1@h11), ). Consider
the following subsets of (1® hy1)A(1® hy1):

Wa, = {(eij — #1) @ fu | 1<4,j<p}

Oii ..
Wy, = {(.C],‘j - —Jl) @ hi1 | 1<4,7< 71}7
r
VVBZ — (1 ® hfll {1( hy 41 1® /l[+1 1} Y[)(]_t 1111
where

N qQutt g
> v Ol
Y,: ]_Q)‘ (fl]— J E flc/c) q1+“.+ql+ql+1}2
qi+1 k=q+-+q+1 \ (LD}

Then we have that
Ay Nkero CspanWy,, Ay Nkeryp C spanWy,,
B;Nker p C the norm closure of (spanWg,) (1 <1< m—1).
Therefore, to verify the desired freeness, it suffices to show that
W(Wa, ,Wa,,Wg,,...Wg,_ ) CW(ker Eq,ker Ey)(C ker E C ker ).

We define X1, X2, Va,,Va,, Vg, ({=1,... ,m —1) as follows:

1—6'——1 1<, 5<p)orl
Xi=1<z®y Yoop ( ) ,

1 ® y c Um 1Yl

gL—gzj——l (1<i,j<r)orl

y=nhij (1<i,5<m, i#j)orh

w ends with (e;; — il) D fr1
p

5ii
we WX, Xo) | " ends with (gij — ,—"Jl) @ hi 7

(1<i,j<r, 1<k<m)
w ends with 1 ® hyyq 7 or }

Va, =

2

Vi, = qw e W(X;1,X>)

1O foteqrrn (1<K < qig)

Vi, = we W(X), X,) ,
(1SI.]§]), 1§k‘§q1+"'+(bn)

By simple inspections, we can show that
(2.2.7) Wa, CVa, ,Wa, CVa,, Wg, CVg (1<I<m—1)
and

(228) /SI”VT C Vi y if S ;é T (S T) S {‘41,A2,B1,...,Bm,1}2.
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It is clear that (2.2.7) and (2.2.8) imply

(2.2.9) W(Wa, Wa,, W, Wi ) C W(X1, Xa).

On the other hand, from the definitions of X; and X5, we get the inclusion

(2.2.10) W(X1,X2) C W(ker Ey, ker E3){C ker £ C ker ).

Then, by (2.2.9) and (2.2.10), we can conclude that

(2.2.11) {A1,A2,By,.... Bjp_1 } is free in ((1 @ hyy ) A(1 @ hyy), 9).
As a consequence of (2.2.3), (2.2.5), (2.2.6) and (2.2.11), we get

(2:212) (L2hi)AQADh0), ) = (A pla)) ¥ (A2 elan) 5 (Bro gl ) - 4 (Bin1. ¢lp,, - )-

Then, combining (2.2.2), (2.2.4) and (2.2.12), we can get the desired *-isomorphism.

Now we shall show that A is non-nuclear when m > 3. We only treat the case that
q2 > 2,q3 > 2. The proof for the other cases are almost similar. Note that there is a
projection of norm one from A onto ((Og,,v2) * (O, v3)) @ M,,. In addition, using the

C

*_isomorphism

, L 1 ~ 1,
(Oqsﬂ 993) = (002 Y A/[GWLPQ & —TT) (Oqs © A/[fls? Y3 _Tr)‘/

7) (D¢
(C {m“)é q2 ?; q3

we can naturally construct a projection of norm one from the C*-algebra (O, . 992)’4:((’)(13 ,3)

onto (M,,, q%Tr) * (M, q%Tr). Then, since (M,,, iTT) % (Mg, q—lsTr) is non-nuclear (see

C C

[4],[5]), it follows that A is non-nuclear. O

Remark 2.2.2. In [9], K. Dykema proved that every reduced free product of exact C*-
algebras with amalgamation is exact. Therefore, the C*-algebra A in Proposition 2.1.2 is
exact.

2.3 Proof of Proposition 2.1.3.

Let (4, F) = (.MH,“EI)S; (Mi4n. Ey) be as in Proposition 2.1.3, and put {e;; }1<; j<i4n.
{fij}lgi,j§1+n be systems of matrix units of M;4,, M\4,, respectively.

Lemma 2.3.1. The C*-algebra A has the relation

(2.3.1) en = fi,
€2+ -+ eitnitn = fo 4+ + fidni4n-

Proof. Therelation (2.3.1) arises from the embeddings i; : C?* - My ,andiy : C? < M,
which we start with. O

Proof of Proposition 2.1.8. We remark that
(er1derr) @ Mit,, = A and

( ) (er1Aery) @ My, = (ean+ -+ + €14n,14n)A(e22 + -+ + €14 14n)-
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We shall examine the C*-algebra (egy + - -+ €145.14n ) A(€22+ - -+ + €141 145 ). Consider
the C*-subalgebras A, A, of A and a state ¢ on (ezo+- - +€14pn 14n)A(€20+ -+ €14n14n)
defined as follows:

14+n
A =C"({eg [3<j<1+n}), A= C*(Z ei1f1i)
1=2
and
¢=vYoE,
where ¢ : C? 3 (A, A2) = A2 € C.
From Lemma 2.3.1, it follows that
(2.3.3) A1, Ay Clean 4+ e1in14n)Alers + -+ C14n14n)
and
(234) 441 = J\/In, 442 = C(T)

By a straightforward computation using Lemma 2.3.1, we can show that the one generator
u= ,122" ei1f1i 1s a unitary with ¢(«™) = 0 for all n € Z\ {0}. Therefore, A, = C(T).
In addition, by Lemma 2.3.1, it immediately follows that

(2.3.5) (€22 + -+ €14 14n)A(€2+ -+ €14 14n) = C7(A1 U Ay).
Furthermore, by Lemma 2.1.1, the state ¢ is faithful on the C'"-algebra

(2o + -+ ergnitn)Alezs + -+ €14n14n)-
Trivially, the faithfulness of ¢ implies the following (2.3.6).

536 If 2 € (e 4 -+ e14n14n)A(e22 + -+ + €14n,14n) satisfies p(y 2 ry) =0
(230) for all y € (€22 + -+ +€1pnitn)Aleaz + -+ + €14n14n), thenw=0.

Now we shall verify the freeness of {41, 42} in ((e22 + -+ + €14n14n)A(€22 + - +
C14n,14n), ). Consider the following subsets of (€29 ++ - +e14n14n)A(e224+ - +€14n,14n)-

Wa, ={eij — Eleij) | 2<i,j <1+n},
14+n

Wa, = {(Z enfii)™ | meZ\{0}}.

i=2

Then we have that
ArNkerp CspanWy, (1=1,2).

Therefore, to verify the desired freeness, it suffices to show that

W(Wa,,Wa,) C spanW (ker E, ker E5)(C ker E C ker ).
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Let W, r, Wy, We and W; be as follows:

14+n
Wer =4 enfi)™ |meNyU{enfi; |2<i,j<1+n, i#j},
=2
14+n
Wye={_ faer)™ | m e NFU{fier; [ 2<i,j <14, i #j},
=2
Wy =A{fij = E(fij) | 2<4,5 <1+n}
We ={eij — Eleij) | 2<4,j <1+n}

We define V' a set of all elements z; --- 2,,, wherem € N, z; €¢ W, ; UW; UW . UW, (1 <
7 < m) which satisfies the following condition (*):

(*) for2<j<m-—1and (s,t) = (e, f) or (f,e),

v; €W, if and only if ;1 € Wy and 2,4, € W, and

rjeWsifandonly if x; 1 € W,; UW; and x4, € W; s UW,.

Moreover, define Vy4,, V4, by

v . w ends with e;; — E(e;;) (2<4,j<14n)or

4, =qweV . C ;

= “ fier; (2<4,j <14n, i #j) /
14+n

w ends with (Z ep1fie)™ (m e Z\ {0}) or

Vi, = wevVv k=2 o
fij = E(fij) 2<i,j <1+n)or

By simple inspections, we can show that

(2.3.7) Wy, CVa, Wy, CVa,
and
(2.3.8) VsWp CVp, it S£T, (5,T) € {A1,Ag}2.

It is clear that (2.3.7) and (2.3.8) imply

(2.3.9) W(Wa, ,Wa,)CV.

On the other hand, from the definition of V', we get the inclusion

(2.3.10) V C spanW (ker By, ker E» )(C ker E C ker ¢).

Then, by (2.3.9) and (2.3.10), we can conclude that

(2.3.11) {A1,As} is free in ((ean + - -+ 4 e14n14n)A(C22 + - + C14n14n): ).
As a consequence of (2.3.3), (2.3.5), (2.3.6) and (2.3.11), we get

(2312) ((6’22 + -+ €1+n,1+n)44(622 +--+ 61+n,1+n)* “P) = (Al: 99|A1) Tk (*42: 99|A2 )
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Then, combining (2.3.2), (2.3.4) and (2.3.12) we can easily get the desired *-isomorphism.
Since the C*-algebra (M, Tr) X (C(T), 7) is non-nuclear (see [4],[5]), it is trivial that
A is non-nuclear.
Now we shall investigate the simplicity of A. By [2, Proposition 3.1], the C'*-algebra

(M, %Tr) x (C(T),7) is simple. Therefore, it immediately follows that A is simple. O

Remark 2.3.2. As stated in Remark 2.2.2, it is known that the C'*-algebra A in Proposition
2.1.3 is exact.

Remark 2.3.3. In [13], K. McClanahan gives a sufficient condition for simplicity of reduced
free product C*-algebras with amalgamation. But the C*-algebra A in Proposition 2.1.3
does not satisfy McClanahan’s condition. Therefore, we cannot determine whether A is
simple or not from his condition.

§3. RELATED TOPICS

Let n € N. Here we shall give a pair of C*-algebras A, B such that A 2 B and A®@ M,, =
B ® M,.

Proposition 3.1. Let (A, E) = (M, @ My4+1,E) X (Mo, Ey) be as in Definition 1.1, and

let {eij}i<ij<n, {fijh<ij<n and {gij}1<i j<2 be systems of matrix units of M,,, M,y and
My, respectively. Then, for C*-algebras A; = (e11 ® f11)A(e11 © f11), 42 = A1 @ M, we
have Ay 2 Ay and Ay @ M,, & Ay @ M,,.

In the proof of Proposition 3.1, the following lemma, proved by E. Germain, is used.

Lemma 3.2 ([10], [11]). Given unital C*-algebras A; and A, with states @1 and, respec-

tively, o, whose GNS-representations are faithful, let (A, ¢) = (A1, 1) * (Az,¢2) be the

corresponding reduced free product. Suppose that A; and A, are nuclear. Then there is
an exact sequence of K-groups,

i (Ko(i1),—Ko(i2)) B Ko(j1)+Ko(j2) .
= I\(](C) _—> I((](/‘l]) P [\'()(/‘12) _— IX(](AA)

| |

Ky (j1)+ K1 (j2) (K (i1),— K (i2))

Iiyl(A) — I(l(Al) D I(l(AQ) — IXyl((C) = 0,

where iy, : C — Ay, is the unital *~homomorphism and where ji : Ay — A is the unital
embedding arising from the construction of the reduced free product (A, ¢).

Proof of Proposition 3.1. First, we shall show that 4 ® M,, = A, ® M,,. Note that there
is a relation in A given by

1@ fii=gnand 1@ (for + - + fag1,n41) = go2.

Since the map

Ay @ My 3 (2ij)i<ij<n Z (es1 @ fi)wij(er; © f11) € (1@ f11)A(1 @ fi1)
1<ij<n



46 TAKASHI SAKAMOTO
is a *-isomorphism, we get A1 @ M,, = g1 Agq1. Similarly, we can construct a *-isomorphism
between A, @ M, and g1 4911 by

Ay oM, =2 A oM, oM, 2 (1o f11)A(l1® fi11)® M,

21 (fao+-+ forins1)AL @ (foo + - + frtint1))
g22Ag22 = g11Ag11.

Therefore, A1 @ M,, = Ay, @ M,,.
Next, we prove that 4} ¥ A, by investigating Ko(A4;) and Ko(Az). Define ¢; : A —
Ay =A@ M, and 1» : Ay - (1® f11)A(1® fi1) by

11 () = diag(z,0,...,0) for z € Ay,

v2((rij)i<ij<n) = Z (ei1 @ fin)wij(er; @ fin)

1<4,j<n
for (zij)1<i j<n € Az, and ez : (1@ f11)A(1® f11) = (M, 7)) ¥ (On, ) be the *-isomorphism
constructed in Proposition 2.1.2.
Then it is clear that

(3.1) [t3 0 t2001](14,) = ji(diag(1,0,...,0)) and [t3 0 t2](14,) = ji(diag(l,...,1)),

where 31 : My, = (M, 7) * (On, ) be the unital embedding arising from the construction
of the reduced free productu.

According to Lemma 3.2, we can get the following exact sequence of K-groups

(Ko(i1),— Ko (is)) Ko(j1)+Ko(jz2) ‘
(32) Ko@) —— T Ko (Ma) @ Ko (On) ——— " Ky (B) —— 0,

where B = (M. 7,) % (On, ).
C
Through the group isomorphisms Ko (M,,) 2 Z ([1] = n), Ko(Op) 2 Z/(n— 1)Z ([1] —
[1]) and Ky(e3 0 t2) : Ko(A2) = K¢(B), we can obtain the following exact sequence from

(3.2).

(3.3) 7 — s ZaZ)(n—1)Z —— Ko(As) — 0.
So, from (3.1) and (3.3), it follows that

(3.4) 3 : Ko(As) = Z/(n? — n)Z such that os([1]) = [1]-

On the other hand, using the group isomorphism Ko (r1)EKo(A41) = Ko(Az) with (3.1) and
(3.4), we have

(3.5) A1 Ko(4) Z/(n2 —n)Z such that ¢ ([1]) = [1].

Then, by (3.4) and (3.5), we can conclude A; 2 Ay. O

Remark 3.3. The C*-algebras A1, Ay in Proposition 3.1 are non-nuclear, (See Proposition
2.1.2.) and their Ko-group is Z/(n? — n)Z, their Ki-group is trivial. We remark that
there is a pair of nuclear C*-algebras By, By such that By % By, By @ M,, &£ B, ® M,
and their Ky-group, K-group are the same as those of A, respectively. In fact, if we put
By =0Opz_pi1,B2 = Opz_ i1 @M, then By, By have all the desired properties. (See [12].)



CERTAIN REDUCED FREE PRODUCTS 47

Proposition 3.4. Let (A, E) = (My,+4,,E1) * (M,, Ey) be as in Definition 1.1. Put

G
{eijhi<ij<qi+q» {fijhi<ij<2 be systems of matrix units in My, y4,. My, respectively. If
¢1 < @2, then the C*-algebra ei; Aeqq is infinite.

In particular, the C*-algebras Ay, Ay which appear in Proposition 3.1 are infinite.

To prove Proposition 3.4, we need some lemmas.

Lemma 3.5 ([1]). Let A be a C*-algebra and let p,q be projections with ||p — pgp|| < 1.
Then p is equivalent to a subprojection q' of q, which is given by

¢ =qlp+ > (p—pw)")g-

n=1

Lemma 3.6 ([1]). Suppose A is a simple, unital C*-algebra containing nontrivial projec-
tions p and q. If A is generated by p, q and some other positive elements each of which is
orthogonal to either p or q, then ||q(1 — p)g — q|| < 1.

Lemma 3.7 ([8]). Consider the reduced free product
(Ag) = (€ T ) £ (C7 5, )

/ n m
where oy, 0, By B > 0, 20 ap = 30 B = 1, and 7o, . o, and 75, g, are
defined hy

T(yl,.“,(yn(()‘i)?zl) = Z CV,j)\j,
i=1
Toy et (A)T21) = D Bii
i=1
Ifa; + 3; < 1forall (1,j) € {1,...,n} x {1,...,m}, then A is simple.

Proof of Proposition 3.4. We shall verify the infiniteness of e;;Ae;; by constructing a
proper subprojection of e;; which is equivalent to e;;. Consider the C'*-subalgebra B
of A which is generated by mutually orthogonal projections fajeirfiz, for(ea2 + - +
€qr1q1 ) f125 €411 41+ s €qu+g5 g1+, - Moreover, define a state ¢ on B by ¢ = ¢ o E, where
p: C* 5 (A1, A2) = Xy € C. We remark that, by Lemma 2.1.1, we have that  is faithful
on B.

It is easy to show that

(3.6) (B. )

(12

q1
(C*(farers fras f1 (Y eji) frz)s ) $(C7(Cqit1,q 415 € g has )1 P)

j=2

(12

(C‘szL]_L){k(C{m,Té 1),

q1’ 91" C gy
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Furthermore, by Lemma 3.7, the right side hand of (3.6) is a simple C'*-algebra. Therefore,
B is simple.
Then applying Lemma 3.6 on B, we get the estimation

legi+1,qi+1 - fareiifiz - eq41,g,+1]] < 1.

Therefore, using Lemma 3.5, we can construct a subprojection g of fz1e1)fi» which is
equivalent to eg, 1,¢,4+1-
Moreover, the projection ¢ is not equal to ej7. In fact, since

1 1
o(q) = eleq1,q41) = — and @(farers fr2) = —,
q2 q1

we have ¢ # e from the assumption ¢; # ¢a.

Finally, define p = eq1 fi2¢f21e11. From the above arguments about the projection ¢, we
can easily show that p is a proper subprojection of e;; which is equivalent to e;;. Therefore,
e Aeq 1s infinite. O
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