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CERTAIN REDUCED FREE PRODUCTS

WITH AMALGAMATION OF C�{ALGEBRAS
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Abstract. It is proved that some of the reduced free products of matrix algebras with amal-

gamation over �nite dimensional commutative C�-algebras can be identi�ed, up to stable

isomorphism, with the reduced free product C�-algebras obtained from Mn, C(T) and Ok .

x1. Preliminaries

We shall examine some examples in the reduced free product of two matrix algebras with

amalgamation over a �nite dimensional commutative C�-algebra. The notion of reduced
free product with amalgamation of C�-algebras was introduced by D.Voiculescu ([14]). Let
(Ai)i2I be unital C�-algebras and let B be a unital C�-algebra with unital embedding

�i : B ,! Ai for each i 2 I. In addition, for each i 2 I, let Ei : Ai ! B be a projection of
norm one which satis�es the condition that x 2 Ai is equal to 0 wheneverEi(y

�x�xy) = 0 for

all y 2 Ai. In this setting, the reduced free product of (Ai; Ei)i2I with amalgamation over
B is the unique unital C�-algebra A with unital embeddings ~�i : Ai ,! A and a projection
of norm one E : A! B satisfying the following property:

(i) ~�i(�i(b)) = ~�j(�j(b)) for all b 2 B and i; j 2 I, (So B can be naturally identi�ed with
a C�-subalgebra of A.)

(ii) E � ~�i = Ei for each i 2 I,
(iii) (Ai)i2I is free in (A;E), that is, the set

f ~�i1(x1) � � � ~�in(xn) j xl 2 kerEil ; il 6= il+1(1 � l � n � 1); n 2 Ng

is contained in kerE,

(iv) A = C�([i2I ~�i(Ai)),
(v) x 2 A is equal to 0 whenever E(y�x�xy) = 0 for all y 2 A.

We shall denote the reduced free product with amalgamation by

(A;E) = �
B
(Ai; Ei)

and E is called the free product projection of norm one. In particular, for a family f(Ai; 'i) j

i 2 Ig of a unital C�-algebra Ai with a state 'i whose GNS-representation is faithful, the
C�-algebra (A;') = �

C
(Ai; 'i) is called the reduced free product of (Ai; 'i)i2I , and ' is

called the free product state.

In this article, we study some examples of reduced free product C�-algebras with amal-

gamation de�ned as follows:
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De�nition 1.1. Let p; q1; :::; qm ; r; s1; :::; sm 2 N, and put q0 = 0, s0 = 0. Let feijg1�i;j�p,

ffijg1�i;j�q1+���+qm , fgijg1�i;j�r and fhijg1�i;j�s1+���+sm be systems of matrix units for
the matrix algebras Mp, Mq1+���+qm , Mr and Ms1+���+sm , respectively.

We shall de�ne the reduced free product C�-algebra with amalgamation

(Mp 
Mq1+���+qm ; E1) �
Cm

(Mr 
Ms1+���+sm ; E2)

as follows:

(i) the unital embedding

i1 : C
m ,!Mp 
Mq1+���+qm

is given by

i1((�l)
m
l=1) =

mX
l=1

�l(1


q0+���+qlX
k=q0+���+ql�1+1

fkk);

and i2 : C
m ,!Mr
Ms1+���+sm is de�ned analogously to i1 by replacing p, q� with

r, s�, respectively.
(ii) the projection of norm one

E1 :Mp 
Mq1+���+qm ! C
m

is given by

E1(
X
i;j;k;l

�ijkleij 
 fkl) = (
1

pql

pX
i=1

q0+���+qlX
k=q0+���+ql�1+1

�iikk)
m
l=1;

and E2 : Mr 
Ms1+���+sm ! C
m is de�ned analogously to E1 by replacing p, q�

with r, s�, respectively.

Hereafter, the notation

(Mp 
Mq1+���+qm ; E1) �
Cm

(Mr 
Ms1+���+sm ; E2)

means the reduced free product C�-algebra with amalgamation de�ned as in De�nition 1.1.

In x2, it is proved that, under the settings that

(1) q1 = 1; s1 = � � � = sm = 1

or

(2) p = r = 1 (so Mp
�=Mr

�= C ), m = 2; q1 = s1 = 1 and q2 = s2,

the C�-algebra (A;E) = (Mp
Mq1+���+qm ; E1) �
Cm

(Mr
Ms1+���+sm ; E2) is stably isomorphic

to the reduced free product C�-algebra obtained from well-known C�-algebras such as Mn,

C(T), and the Cuntz algebra, Ok.

In x3, we shall show that, for given n 2 N, two C�-algebras A1; A2 which satisfy A1 6�= A2

and A1
Mn
�= A2 
Mn appear in the C�-algebra (A;E) = (Mn 
Mn+1; E1) �

C2
(M2; E2).

Moreover, it is proved that the C�-algebras we exhibit here have the additional property
that they are in�nite and non-nuclear.

We use the following notations in the rest of sections.
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Notation 1.2. Let A be a C�-algebra and let X1; :::;Xn be subsets of A. We shall denote

the set fx1 � � � xs j xi 2 Xli ; l1 6= l2 6= � � � 6= ls; s 2 Ng by W (X1; :::;Xn).

x2. Observation of the C�
-algebras defined as in Definition 1.1

2.1 Statement of main result.

First, we shall describe a basic property of reduced free product C�-algebras with amal-
gamation, which will be used in this section.

Lemma 2.1.1. Let (A;E) = �
B
(Ai; Ei) be the reduced free product with amalgamation of

C�-algebras. Suppose that Ei is faithful on Ai for each i 2 I, and suppose that B has a

faithful state '. Then the free product projection of norm one E is faithful on A.

Proof. This lemma is essentially proved in [6]. We can verify the desired faithfulness simi-
larly to [6], replacing states in [6] with projection of norm one here. �

Our main results are the followings.

Proposition 2.1.2. For the C�-algebra

(A;E) = (Mp 
Mq1+���+qm ; E1) �
Cm

(Mr 
Ms1+���+sm ; E2);

suppose that

q1 = 1; s1 = � � � = sm = 1:

Then, for suitable states 'l on Oql(2 � l � m), we have

A �= ((Mp;
1

p
Tr) �

C
(Mr;

1

r
Tr) �

C
(Oq2 ; '2) �

C
� � � �

C
(Oqm ; 'm))
Mm;

where O1 means C(T).

In particular, A is non-nuclear when m � 3.

Proposition 2.1.3. Let (A;E) = (M1+n; E1) �
C2

(M1+n; E2). Then

A
Mn
�= ((Mn;

1

n
Tr) �

C
(C(T); �))
M1+n;

where � is a tracial state on C(T) given by

�(f) =

Z 1

0

f(e2�it)dt for f 2 C(T):

In particular, if n � 3, we have that A is simple, non-nuclear.

2.2 Proof of Proposition 2.1.2.

Let (A;E) = (Mp
Mq1+���+qm ; E1) �
Cm

(Mr
Ms1+���+sm ; E2) be as in Proposition 2.1.2,

that is, q1 = 1; s1 = � � � = sm = 1. Put feijg1�i;j�p, ffijg1�i;j�q1+���+qm , fgijg1�i;j�r and
fhijg1�i;j�s1+���+sm be systems of matrix units for the matrix algebrasMp, Mq1+���+qm , Mr

and Ms1+���+sm , respectively.
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Lemma 2.2.1. In the C�-algebra A, we have the following identi�cation:

1
 f11 = 1
 h11;(2.2.1)

1


q1+���+ql+1X
j=q1+���+ql+1

fjj = 1
 hl+1;l+1 (1 � l � m� 1):

Proof. These relations arise from the unital embeddings Cm ,!Mp
Mq1+���+qm and Cm ,!
Mr 
Ms1+���+sm which we start with. �

Proof of Proposition 2.1.2. We remark that

(2.2.2) (1
 h11)A(1
 h11)
Mm
�= A:

In fact, the map

� : (1
 h11)A(1
 h11)
Mm 3 ((xij)1�i;j�m) 7!
X

1�i;j�m

(1
 hi1)xij(1
 h1j) 2 A

is a *-isomorphism.

Now we shall examine the C�-algebra (1
 h11)A(1
 h11). Consider the C
�-subalgebras

A1; A2; B1; :::; Bm�1 of A and a state ' of (1
 h11)A(1
 h11)
Mm de�ned as follows:

A1 = C�(fe1j 
 f11 j 2 � j � pg); A2 = C�(fg1j 
 h11 j 2 � j � rg);

Bl = C�(fSl;k j 1 � k � ql+1g) (1 � l � m� 1)

and ' =  �E;

where Sl;k = (1
 h1;l+1)(1
 f(q1+���+ql)+k;1) and  : Cm 3 (�l)
m
l=1 7! �1 2 C .

From Lemma 2.2.1, it follows that

(2.2.3) A1; A2; B1; :::; Bm�1 � (1
 h11)A(1
 h11)

and

(2.2.4) A1
�=Mp; A2

�=Mr; Bl
�= Oql+1 (1 � l � m� 1):

In the case that ql+1 � 2, we can show, by a straightforward computation using Lemma

2.2.1, that the generators of Bl satisfy the relation S�l;kSl;k = 1
 h11 and
Pql+1

k=1 Sl;kS
�

l;k =

1 
 h11. Therefore Bl
�= Oql+1 . Similarly, in the case that ql+1 = 1, it is easy to see that

the one generator Sl;1 is a unitary with '(Snl;1) = 0 for all n 2 Zn f0g. So Bl
�= C(T).

In addition, by Lemma 2.2.1, it immediately follows that

(2.2.5) (1
 h11)A(1
 h11) = C�(A1 [A2 [B1 [ � � � [Bm�1):

Furthermore, by Lemma 2.1.1, the state ' is faithful on (1
 h11)A(1
 h11). Trivially, the
faithfulness of ' implies the following (2.2.6).

(2.2.6)
If x 2 (1
 h11)A(1
 h11) satis�es '(y

�x�xy) = 0

for all y 2 (1
 h11)A(1
 h11); then x = 0:
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We shall verify the freeness of fA1; A2; B1; :::; Bm�1g in ((1
h11)A(1
h11); '). Consider

the following subsets of (1
 h11)A(1
 h11):

WA1
= f(eij �

�ij

p
1)
 f11 j 1 � i; j � pg;

WA2
= f(gij �

�ij

r
1)
 h11 j 1 � i; j � rg;

WBl
= (1
 h11)W (f1
 h1;l+1; 1
 hl+1;1g; Yl)(1
 h11);

where

Yl =

8><
>:1
 (fij �

�ij

ql+1

q1+���+ql+1X
k=q1+���+ql+1

fkk)

�����
(i; j) 2f1; q1 + � � � + ql + 1; :::;

q1 + � � � + ql + ql+1g
2

n f(1; 1)g

9>=
>; :

Then we have that

A1 \ ker' � spanWA1
; A2 \ ker' � spanWA2

;

Bl \ ker' � the norm closure of (spanWBl
) (1 � l � m� 1):

Therefore, to verify the desired freeness, it su�ces to show that

W (WA1
;WA2

;WB1
; :::;WBm�1

) �W (kerE1; kerE2)(� kerE � ker'):

We de�ne X1;X2; VA1
; VA2

; VBl
(l = 1; : : : ;m � 1) as follows:

X1 =

8<
:x
 y

�����
x = eij �

�ij

p
1 (1 � i; j � p) or 1

1
 y 2 [m�1i=1 Yl

9=
; ;

X2 =

8<
:x
 y

����� x = gij �
�ij

r
1 (1 � i; j � r) or 1

y = hij (1 � i; j � m; i 6= j) or h11

9=
; ;

VA1
=

8<
:w 2 W (X1;X2)

����� w ends with (eij �
�ij

p
1)
 fk1

(1 � i; j � p; 1 � k � q1 + � � � + qm)

9=
; ;

VA2
=

8<
:w 2 W (X1;X2)

����� w ends with (gij �
�ij

r
1)
 hk1

(1 � i; j � r; 1 � k � m)

9=
; ;

VBl
=

(
w 2W (X1;X2)

�����
w ends with 1
 hl+1;1 or

1
 fq1+���ql+k;1 (1 � k � ql+1)

)
:

By simple inspections, we can show that

(2.2.7) WA1
� VA1

;WA2
� VA2

;WBl
� VB1

(1 � l � m� 1)

and

(2.2.8) VSWT � VT ; if S 6= T; (S; T ) 2 fA1; A2; B1; :::; Bm�1g
2:



42 TAKASHI SAKAMOTO

It is clear that (2.2.7) and (2.2.8) imply

(2.2.9) W (WA1
;WA2

;WB1
; :::;WBm�1

) �W (X1;X2):

On the other hand, from the de�nitions of X1 and X2, we get the inclusion

(2.2.10) W (X1;X2) �W (kerE1; kerE2)(� kerE � ker'):

Then, by (2.2.9) and (2.2.10), we can conclude that

(2.2.11) fA1; A2; B1; :::; Bm�1g is free in ((1
 h11)A(1
 h11); '):

As a consequence of (2.2.3), (2.2.5), (2.2.6) and (2.2.11), we get

(2.2.12) ((1
h11)A(1
h11); ') �= (A1; 'jA1
)�
C
(A2; 'jA2

)�
C
(B1; 'jB1

)�
C
� � ��

C
(Bm�1; 'jBm�1

):

Then, combining (2.2.2), (2.2.4) and (2.2.12), we can get the desired *-isomorphism.
Now we shall show that A is non-nuclear when m � 3. We only treat the case that

q2 � 2; q3 � 2. The proof for the other cases are almost similar. Note that there is a
projection of norm one from A onto ((Oq2; '2) �

C
(Oq3 ; '3)) 
Mm. In addition, using the

*-isomorphism

(Oq2 ; '2) �
C
(Oq3 ; '3)

�= (Oq2 
Mq2 ; '2 

1

q2
Tr) �

C
(Oq3 
Mq3 ; '3 


1

q3
Tr);

we can naturally construct a projection of norm one from the C�-algebra (Oq2 ; '2)�
C
(Oq3 ; '3)

onto (Mq2 ;
1
q2
Tr) �

C
(Mq3;

1
q3
Tr). Then, since (Mq2 ;

1
q2
Tr) �

C
(Mq3 ;

1
q3
Tr) is non-nuclear (see

[4],[5]), it follows that A is non-nuclear. �

Remark 2.2.2. In [9], K. Dykema proved that every reduced free product of exact C�-
algebras with amalgamation is exact. Therefore, the C�-algebra A in Proposition 2.1.2 is

exact.

2.3 Proof of Proposition 2.1.3.

Let (A;E) = (M1+n; E1) �
C2
(M1+n; E2) be as in Proposition 2.1.3, and put feijg1�i;j�1+n,

ffijg1�i;j�1+n be systems of matrix units of M1+n, M1+n, respectively.

Lemma 2.3.1. The C�-algebra A has the relation

e11 = f11;(2.3.1)

e22 + � � � + e1+n;1+n = f22 + � � � + f1+n;1+n:

Proof. The relation (2.3.1) arises from the embeddings i1 : C
2 ,!M1+n and i2 : C

2 ,!M1+n

which we start with. �

Proof of Proposition 2.1.3. We remark that

(2.3.2)
(e11Ae11)
M1+n

�= A and

(e11Ae11)
Mn
�= (e22 + � � � + e1+n;1+n)A(e22 + � � � + e1+n;1+n):
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We shall examine the C�-algebra (e22+ � � �+ e1+n;1+n)A(e22+ � � �+ e1+n;1+n). Consider

the C�-subalgebras A1; A2 of A and a state ' on (e22+ � � �+e1+n;1+n)A(e22+ � � �+e1+n;1+n)
de�ned as follows:

A1 = C�(fe2j j 3 � j � 1 + ng); A2 = C�(

1+nX
i=2

ei1f1i)

and

' =  �E;

where  : C 2 3 (�1; �2) 7! �2 2 C .

From Lemma 2.3.1, it follows that

(2.3.3) A1; A2 � (e22 + � � � + e1+n;1+n)A(e22 + � � � + e1+n;1+n)

and

(2.3.4) A1
�=Mn; A2

�= C(T):

By a straightforward computation using Lemma 2.3.1, we can show that the one generator

u =
P1+n

i=2 ei1f1i is a unitary with '(un) = 0 for all n 2Zn f0g. Therefore, A2
�= C(T).

In addition, by Lemma 2.3.1, it immediately follows that

(2.3.5) (e22 + � � � + e1+n;1+n)A(e22 + � � � + e1+n;1+n) = C�(A1 [A2):

Furthermore, by Lemma 2.1.1, the state ' is faithful on the C�-algebra

(e22 + � � � + e1+n;1+n)A(e22 + � � � + e1+n;1+n):

Trivially, the faithfulness of ' implies the following (2.3.6).

(2.3.6)
If x 2 (e22 + � � � + e1+n;1+n)A(e22 + � � � + e1+n;1+n) satis�es '(y

�x�xy) = 0

for all y 2 (e22 + � � � + e1+n;1+n)A(e22 + � � � + e1+n;1+n); then x = 0:

Now we shall verify the freeness of fA1; A2g in ((e22 + � � � + e1+n;1+n)A(e22 + � � � +
e1+n;1+n); '). Consider the following subsets of (e22+ � � �+e1+n;1+n)A(e22+ � � �+e1+n;1+n).

WA1
= feij �E(eij) j 2 � i; j � 1 + ng;

WA2
= f(

1+nX
i=2

ei1f1i)
m j m 2Zn f0gg:

Then we have that

Al \ ker' � spanWAl
(l = 1; 2):

Therefore, to verify the desired freeness, it su�ces to show that

W (WA1
;WA2

) � spanW (kerE1; kerE2)(� kerE � ker'):
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Let We;f , Wf;e, We and Wf be as follows:

We;f = f(

1+nX
i=2

ei1f1i)
m j m 2 Ng [ fei1f1j j 2 � i; j � 1 + n; i 6= jg;

Wf;e = f(

1+nX
i=2

fi1e1i)
m j m 2 Ng [ ffi1e1j j 2 � i; j � 1 + n; i 6= jg;

Wf = ffij � E(fij) j 2 � i; j � 1 + ng;

We = feij �E(eij) j 2 � i; j � 1 + ng:

We de�ne V a set of all elements x1 � � � xm, where m 2 N, xj 2 We;f [Wf;e[We [Wf (1 �

j � m) which satis�es the following condition (*):

(*) for 2 � j � m� 1 and (s; t) = (e; f) or (f; e),

xj 2Ws;t if and only if xj�1 2Ws and xj+1 2 Wt; and

xj 2Ws if and only if xj�1 2Ws;t [Wt and xj+1 2Wt;s [Wt:

Moreover, de�ne VA1
; VA2

by

VA1
=

(
w 2 V

�����
w ends with eij �E(eij) (2 � i; j � 1 + n) or

fi1e1j (2 � i; j � 1 + n; i 6= j)

)
;

VA2
=

8>>>><
>>>>:
w 2 V

�����
w ends with (

1+nX
k=2

ek1f1k)
m (m 2 Zn f0g) or

fij �E(fij) (2 � i; j � 1 + n) or

ei1f1j (2 � i; j � 1 + n; i 6= j)

9>>>>=
>>>>;
:

By simple inspections, we can show that

(2.3.7) WA1
� VA1

;WA2
� VA2

and

(2.3.8) VSWT � VT ; if S 6= T; (S; T ) 2 fA1; A2g
2:

It is clear that (2.3.7) and (2.3.8) imply

(2.3.9) W (WA1
;WA2

) � V:

On the other hand, from the de�nition of V , we get the inclusion

(2.3.10) V � spanW (kerE1; kerE2)(� kerE � ker'):

Then, by (2.3.9) and (2.3.10), we can conclude that

(2.3.11) fA1; A2g is free in ((e22 + � � � + e1+n;1+n)A(e22 + � � � + e1+n;1+n); '):

As a consequence of (2.3.3), (2.3.5), (2.3.6) and (2.3.11), we get

(2.3.12) ((e22 + � � � + e1+n;1+n)A(e22 + � � � + e1+n;1+n); ') �= (A1; 'jA1
) �
C
(A2; 'jA2

):
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Then, combining (2.3.2), (2.3.4) and (2.3.12) we can easily get the desired *-isomorphism.

Since the C�-algebra (Mn;
1
n
Tr) �

C
(C(T); �) is non-nuclear (see [4],[5]), it is trivial that

A is non-nuclear.

Now we shall investigate the simplicity of A. By [2, Proposition 3.1], the C�-algebra
(Mn;

1
n
Tr) �

C
(C(T); �) is simple. Therefore, it immediately follows that A is simple. �

Remark 2.3.2. As stated in Remark 2.2.2, it is known that the C�-algebra A in Proposition
2.1.3 is exact.

Remark 2.3.3. In [13], K. McClanahan gives a su�cient condition for simplicity of reduced

free product C�-algebras with amalgamation. But the C�-algebra A in Proposition 2.1.3
does not satisfy McClanahan's condition. Therefore, we cannot determine whether A is

simple or not from his condition.

x3. Related topics

Let n 2 N. Here we shall give a pair of C�-algebras A;B such that A 6�= B and A
Mn
�=

B 
Mn.

Proposition 3.1. Let (A;E) = (Mn 
Mn+1; E1) �
C2

(M2; E2) be as in De�nition 1.1, and

let feijg1�i;j�n, ffijg1�i;j�n and fgijg1�i;j�2 be systems of matrix units ofMn, Mn+1 and

M2, respectively. Then, for C�-algebras A1 = (e11 
 f11)A(e11 
 f11), A2 = A1 
Mn, we

have A1 6�= A2 and A1 
Mn
�= A2 
Mn.

In the proof of Proposition 3.1, the following lemma, proved by E. Germain, is used.

Lemma 3.2 ([10], [11]). Given unital C�-algebras A1 and A2 with states '1 and, respec-

tively, '2, whose GNS-representations are faithful, let (A;') = (A1; '1) �
C
(A2; '2) be the

corresponding reduced free product. Suppose that A1 and A2 are nuclear. Then there is

an exact sequence of K-groups,

Z�= K0(C )
(K0(i1);�K0(i2))

�����������! K0(A1)�K0(A2)
K0(j1)+K0(j2)

����������! K0(A)x?? ??y
K1(A)

K1(j1)+K1(j2)

 ���������� K1(A1)�K1(A2)
(K1(i1);�K1(i2))

 ����������� K1(C ) = 0;

where ik : C ! Ak is the unital *-homomorphism and where jk : Ak ! A is the unital

embedding arising from the construction of the reduced free product (A;').

Proof of Proposition 3.1. First, we shall show that A1 
Mn
�= A2 
Mn. Note that there

is a relation in A given by

1
 f11 = g11 and 1
 (f22 + � � � + fn+1;n+1) = g22:

Since the map

A1 
Mn 3 (xij)1�i;j�n 7!
X

1�i;j�n

(ei1 
 f11)xij(e1j 
 f11) 2 (1
 f11)A(1
 f11)
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is a *-isomorphism, we get A1
Mn
�= g11Ag11. Similarly, we can construct a *-isomorphism

between A2 
Mn and g11Ag11 by

A2 
Mn
�= A1 
Mn 
Mn

�= (1
 f11)A(1
 f11)
Mn

�= (1
 (f22 + � � � + fn+1;n+1))A(1
 (f22 + � � � + fn+1;n+1))

�= g22Ag22 �= g11Ag11:

Therefore, A1 
Mn
�= A2 
Mn.

Next, we prove that A1 6�= A2 by investigating K0(A1) and K0(A2). De�ne �1 : A1 !
A2 = A1 
Mn and �2 : A2 ! (1
 f11)A(1
 f11) by

�1(x) = diag(x; 0; :::; 0) for x 2 A1;

�2((xij)1�i;j�n) =
X

1�i;j�n

(ei1 
 f11)xij(e1j 
 f11)

for (xij)1�i;j�n 2 A2, and �3 : (1
f11)A(1
f11)! (Mn; �n)�(On; ') be the *-isomorphism

constructed in Proposition 2.1.2.

Then it is clear that

(3.1) [�3 � �2 � �1](1A1
) = j1(diag(1; 0; :::; 0)) and [�3 � �2](1A2

) = j1(diag(1; :::; 1));

where j1 :Mn ,! (Mn; �n) �
C
(On; ') be the unital embedding arising from the construction

of the reduced free product.

According to Lemma 3.2, we can get the following exact sequence of K-groups

(3.2) K0(C )
(K0(i1);�K0(i2))

�����������! K0(Mn)�K0(On)
K0(j1)+K0(j2)

����������! K0(B) ����! 0;

where B = (Mn; �n) �
C
(On; ').

Through the group isomorphisms K0(Mn) �= Z([1] 7! n), K0(On) �= Z=(n� 1)Z([1] 7!
[1]) and K0(�3 � �2) : K0(A2) �= K0(B), we can obtain the following exact sequence from

(3.2).

(3.3) Z ����! Z�Z=(n� 1)Z ����! K0(A2) ����! 0:

So, from (3.1) and (3.3), it follows that

(3.4) 9'2 : K0(A2) �=Z=(n2� n)Z such that '2([1]) = [n]:

On the other hand, using the group isomorphism K0(�1)K0(A1) �= K0(A2) with (3.1) and

(3.4), we have

(3.5) 9'1 : K0(A1) �= Z=(n2� n)Z such that '1([1]) = [1]:

Then, by (3.4) and (3.5), we can conclude A1 6�= A2. �

Remark 3.3. The C�-algebras A1; A2 in Proposition 3.1 are non-nuclear, (See Proposition
2.1.2.) and their K0-group is Z=(n2 � n)Z, their K1-group is trivial. We remark that

there is a pair of nuclear C�-algebras B1; B2 such that B1 6�= B2, B1 
Mn
�= B2 
Mn

and their K0-group, K1-group are the same as those of A1, respectively. In fact, if we put
B1 = On2�n+1; B2 = On2�n+1
Mn, then B1; B2 have all the desired properties. (See [12].)
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Proposition 3.4. Let (A;E) = (Mq1+q2 ; E1) �
C2

(M2; E2) be as in De�nition 1.1. Put

feijg1�i;j�q1+q2 , ffijg1�i;j�2 be systems of matrix units in Mq1+q2 , M2, respectively. If

q1 < q2, then the C�-algebra e11Ae11 is in�nite.

In particular, the C�-algebras A1, A2 which appear in Proposition 3.1 are in�nite.

To prove Proposition 3.4, we need some lemmas.

Lemma 3.5 ([1]). Let A be a C�-algebra and let p; q be projections with kp� pqpk < 1.

Then p is equivalent to a subprojection q0 of q, which is given by

q0 = q(p+

1X
n=1

(p� pqp)n)q:

Lemma 3.6 ([1]). Suppose A is a simple, unital C�-algebra containing nontrivial projec-

tions p and q. If A is generated by p, q and some other positive elements each of which is

orthogonal to either p or q, then kq(1� p)q � qk < 1.

Lemma 3.7 ([8]). Consider the reduced free product

(A;') = (C n ; ��1;:::;�n ) �
C
(Cm ; ��1 ;:::;�n );

where �1; :::; �n ; �1; :::; �n > 0,
Pn

i=1 �i =
Pm

i=1 �i = 1, and ��1;:::;�n and ��1;:::;�n are

de�ned by

��1;:::;�n((�i)
n
i=1) =

nX
i=1

�i�i;

��1;:::;�n((�i)
n
i=1) =

nX
i=1

�i�i:

If �i + �j < 1 for all (i; j) 2 f1; :::; ng � f1; :::;mg, then A is simple.

Proof of Proposition 3.4. We shall verify the in�niteness of e11Ae11 by constructing a
proper subprojection of e11 which is equivalent to e11. Consider the C�-subalgebra B
of A which is generated by mutually orthogonal projections f21e11f12; f21(e22 + � � � +

eq1q1)f12; eq1+1;q1+1; :::; eq1+q2;q1+q2 . Moreover, de�ne a state ' on B by ' =  �E, where
 : C 2 3 (�1; �2) 7! �2 2 C . We remark that, by Lemma 2.1.1, we have that ' is faithful

on B.

It is easy to show that

(B;')(3.6)

�=(C�(f21e11f12; f21(

q1X
j=2

ejj)f12); ') �
C
(C�(eq1+1;q1+1; :::; eq1+q2;q1+q2); ')

�=(C 2 ; � 1

q1
;1� 1

q1

) �
C
(C q2 ; � 1

q2
;:::; 1

q2

):
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Furthermore, by Lemma 3.7, the right side hand of (3.6) is a simple C�-algebra. Therefore,

B is simple.
Then applying Lemma 3.6 on B, we get the estimation

keq1+1;q1+1 � f21e11f12 � eq1+1;q1+1k < 1:

Therefore, using Lemma 3.5, we can construct a subprojection q of f21e11f12 which is
equivalent to eq1+1;q1+1.

Moreover, the projection q is not equal to e11. In fact, since

'(q) = '(eq1+1;q1+1) =
1

q2
and '(f21e11f12) =

1

q1
;

we have q 6= e11 from the assumption q1 6= q2.
Finally, de�ne p = e11f12qf21e11. From the above arguments about the projection q, we

can easily show that p is a proper subprojection of e11 which is equivalent to e11. Therefore,

e11Ae11 is in�nite. �
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