CERTAIN REDUCED FREE PRODUCTS WITH AMALGAMATION OF C^* -ALGEBRAS

Takashi Sakamoto

Received August 26, 1999; revised September 27, 1999

ABSTRACT. It is proved that some of the reduced free products of matrix algebras with amalgamation over finite dimensional commutative C^* -algebras can be identified, up to stable isomorphism, with the reduced free product C^* -algebras obtained from M_n , $C(\mathbb{T})$ and \mathcal{O}_k .

§1. Preliminaries

We shall examine some examples in the reduced free product of two matrix algebras with amalgamation over a finite dimensional commutative C^* -algebra. The notion of reduced free product with amalgamation of C^* -algebras was introduced by D. Voiculescu ([14]). Let $(A_i)_{i\in I}$ be unital C^* -algebras and let B be a unital C^* -algebra with unital embedding $\iota_i: B\hookrightarrow A_i$ for each $i\in I$. In addition, for each $i\in I$, let $E_i: A_i\to B$ be a projection of norm one which satisfies the condition that $x\in A_i$ is equal to 0 whenever $E_i(y^*x^*xy)=0$ for all $y\in A_i$. In this setting, the reduced free product of $(A_i, E_i)_{i\in I}$ with amalgamation over B is the unique unital C^* -algebra A with unital embeddings $\iota_i: A_i\hookrightarrow A$ and a projection of norm one $E: A\to B$ satisfying the following property:

- (i) $\tilde{\iota}_i(\iota_i(b)) = \tilde{\iota}_j(\iota_j(b))$ for all $b \in B$ and $i, j \in I$, (So B can be naturally identified with a C^* -subalgebra of A.)
- (ii) $E \circ \tilde{\iota}_i = E_i$ for each $i \in I$,
- (iii) $(A_i)_{i\in I}$ is free in (A, E), that is, the set

$$\{\iota_{i_1}^{\sim}(x_1)\cdots\iota_{i_n}^{\sim}(x_n)\mid x_l\in\ker E_{i_l}, i_l\neq i_{l+1}(1\leq l\leq n-1), n\in\mathbb{N}\}$$

is contained in $\ker E$,

- (iv) $A = C^*(\bigcup_{i \in I} \tilde{\iota}_i(A_i)),$
- (v) $x \in A$ is equal to 0 whenever $E(y^*x^*xy) = 0$ for all $y \in A$.

We shall denote the reduced free product with amalgamation by

$$(A, E) = \underset{B}{*}(A_i, E_i)$$

and E is called the free product projection of norm one. In particular, for a family $\{(A_i, \varphi_i) \mid i \in I\}$ of a unital C^* -algebra A_i with a state φ_i whose GNS-representation is faithful, the C^* -algebra $(A, \varphi) = \underset{\mathbb{C}}{*}(A_i, \varphi_i)$ is called the reduced free product of $(A_i, \varphi_i)_{i \in I}$, and φ is called the free product state.

In this article, we study some examples of reduced free product C^* -algebras with amalgamation defined as follows:

Key words and phrases, reduced free product with amalgamation of C^* -algebras, 1991 Mathematics Subject Classification. Primary 46L05.

Definition 1.1. Let $p, q_1, ..., q_m, r, s_1, ..., s_m \in \mathbb{N}$, and put $q_0 = 0$, $s_0 = 0$. Let $\{e_{ij}\}_{1 \leq i, j \leq p}$, $\{f_{ij}\}_{1 \leq i, j \leq q_1 + \cdots + q_m}$, $\{g_{ij}\}_{1 \leq i, j \leq r}$ and $\{h_{ij}\}_{1 \leq i, j \leq s_1 + \cdots + s_m}$ be systems of matrix units for the matrix algebras $M_p, M_{q_1 + \cdots + q_m}, M_r$ and $M_{s_1 + \cdots + s_m}$, respectively.

We shall define the reduced free product C^* -algebra with amalgamation

$$(M_p\otimes M_{q_1+\cdots+q_m},E_1)\underset{\mathbb{C}^m}{*}(M_r\otimes M_{s_1+\cdots+s_m},E_2)$$

as follows:

(i) the unital embedding

$$i_1: \mathbb{C}^m \hookrightarrow M_p \otimes M_{q_1+\cdots+q_m}$$

is given by

$$i_1((\lambda_l)_{l=1}^m) = \sum_{l=1}^m \lambda_l (1 \otimes \sum_{k=q_0+\dots+q_{l-1}+1}^{q_0+\dots+q_l} f_{kk}),$$

and $i_2: \mathbb{C}^m \hookrightarrow M_r \otimes M_{s_1 + \dots + s_m}$ is defined analogously to i_1 by replacing p, q_* with r, s_* , respectively.

(ii) the projection of norm one

$$E_1: M_p \otimes M_{q_1 + \dots + q_m} \to \mathbb{C}^m$$

is given by

$$E_1(\sum_{i,j,k,l} \lambda_{ijkl} e_{ij} \otimes f_{kl}) = (\frac{1}{pq_l} \sum_{i=1}^p \sum_{k=q_0+\dots+q_{l-1}+1}^{q_0+\dots+q_l} \lambda_{iikk})_{l=1}^m,$$

and $E_2: M_r \otimes M_{s_1+\cdots+s_m} \to \mathbb{C}^m$ is defined analogously to E_1 by replacing p, q_* with r, s_* , respectively.

Hereafter, the notation

$$(M_p \otimes M_{q_1 + \dots + q_m}, E_1) \underset{\mathbb{C}^m}{*} (M_r \otimes M_{s_1 + \dots + s_m}, E_2)$$

means the reduced free product C^* -algebra with amalgamation defined as in Definition 1.1.

In §2, it is proved that, under the settings that

(1)
$$q_1 = 1, s_1 = \dots = s_m = 1$$

or

(2)
$$p=r=1$$
 (so $M_p\cong M_r\cong \mathbb{C}$), $m=2, q_1=s_1=1$ and $q_2=s_2$,
the C^* -algebra $(A,E)=(M_p\otimes M_{q_1+\cdots+q_m},E_1)\underset{\mathbb{C}^m}{*}(M_r\otimes M_{s_1+\cdots+s_m},E_2)$ is stably isomorphic
to the reduced free product C^* -algebra obtained from well-known C^* -algebras such as M_n ,
 $C(\mathbb{T})$, and the Cuntz algebra, \mathcal{O}_k .

In §3, we shall show that, for given $n \in \mathbb{N}$, two C^* -algebras A_1 , A_2 which satisfy $A_1 \ncong A_2$ and $A_1 \otimes M_n \cong A_2 \otimes M_n$ appear in the C^* -algebra $(A, E) = (M_n \otimes M_{n+1}, E_1) \underset{\mathbb{C}^2}{*} (M_2, E_2)$. Moreover, it is proved that the C^* -algebras we exhibit here have the additional property that they are infinite and non-nuclear.

We use the following notations in the rest of sections.

Notation 1.2. Let A be a C^* -algebra and let $X_1, ..., X_n$ be subsets of A. We shall denote the set $\{x_1 \cdots x_s \mid x_i \in X_{l_i}, l_1 \neq l_2 \neq \cdots \neq l_s, s \in \mathbb{N}\}$ by $W(X_1, ..., X_n)$.

$\S 2$. Observation of the C^* -algebras defined as in Definition 1.1

2.1 Statement of main result.

First, we shall describe a basic property of reduced free product C^* -algebras with amalgamation, which will be used in this section.

Lemma 2.1.1. Let $(A, E) = \underset{B}{*}(A_i, E_i)$ be the reduced free product with amalgamation of C^* -algebras. Suppose that E_i is faithful on A_i for each $i \in I$, and suppose that B has a faithful state φ . Then the free product projection of norm one E is faithful on A.

Proof. This lemma is essentially proved in [6]. We can verify the desired faithfulness similarly to [6], replacing states in [6] with projection of norm one here. \Box

Our main results are the followings.

Proposition 2.1.2. For the C^* -algebra

$$(A,E) = (M_p \otimes M_{q_1 + \dots + q_m}, E_1) \underset{\mathbb{C}^m}{*} (M_r \otimes M_{s_1 + \dots + s_m}, E_2),$$

suppose that

$$q_1 = 1, s_1 = \dots = s_m = 1.$$

Then, for suitable states φ_l on $\mathcal{O}_{q_l}(2 \leq l \leq m)$, we have

$$A \cong ((M_p, \frac{1}{p}Tr) * (M_r, \frac{1}{r}Tr) * (\mathcal{O}_{q_2}, \varphi_2) * \cdots * (\mathcal{O}_{q_m}, \varphi_m)) \otimes M_m,$$

where \mathcal{O}_1 means $C(\mathbb{T})$.

In particular, A is non-nuclear when $m \geq 3$.

Proposition 2.1.3. Let $(A, E) = (M_{1+n}, E_1) * (M_{1+n}, E_2)$. Then

$$A \otimes M_n \cong ((M_n, \frac{1}{n}Tr) *_{\mathbb{C}} (C(\mathbb{T}), \tau)) \otimes M_{1+n},$$

where τ is a tracial state on $C(\mathbb{T})$ given by

$$\tau(f) = \int_0^1 f(e^{2\pi i t}) dt \quad \text{for } f \in C(\mathbb{T}).$$

In particular, if $n \geq 3$, we have that A is simple, non-nuclear.

2.2 Proof of Proposition 2.1.2.

Let $(A, E) = (M_p \otimes M_{q_1 + \dots + q_m}, E_1) \underset{\mathbb{C}^m}{*} (M_r \otimes M_{s_1 + \dots + s_m}, E_2)$ be as in Proposition 2.1.2, that is, $q_1 = 1, s_1 = \dots = s_m = 1$. Put $\{e_{ij}\}_{1 \leq i,j \leq p}, \{f_{ij}\}_{1 \leq i,j \leq q_1 + \dots + q_m}, \{g_{ij}\}_{1 \leq i,j \leq r}$ and $\{h_{ij}\}_{1 \leq i,j \leq s_1 + \dots + s_m}$ be systems of matrix units for the matrix algebras $M_p, M_{q_1 + \dots + q_m}, M_r$ and $M_{s_1 + \dots + s_m}$, respectively.

Lemma 2.2.1. In the C^* -algebra A, we have the following identification:

(2.2.1)
$$1 \otimes f_{11} = 1 \otimes h_{11},$$
$$1 \otimes \sum_{j=q_1+\dots+q_l+1}^{q_1+\dots+q_l+1} f_{jj} = 1 \otimes h_{l+1,l+1} \quad (1 \le l \le m-1).$$

Proof. These relations arise from the unital embeddings $\mathbb{C}^m \hookrightarrow M_p \otimes M_{q_1 + \dots + q_m}$ and $\mathbb{C}^m \hookrightarrow M_r \otimes M_{s_1 + \dots + s_m}$ which we start with. \square

Proof of Proposition 2.1.2. We remark that

$$(2.2.2) (1 \otimes h_{11}) A (1 \otimes h_{11}) \otimes M_m \cong A.$$

In fact, the map

$$\Phi: (1 \otimes h_{11}) A (1 \otimes h_{11}) \otimes M_m \ni ((x_{ij})_{1 \le i, j \le m}) \mapsto \sum_{1 \le i, j \le m} (1 \otimes h_{i1}) x_{ij} (1 \otimes h_{1j}) \in A$$

is a *-isomorphism.

Now we shall examine the C^* -algebra $(1 \otimes h_{11})A(1 \otimes h_{11})$. Consider the C^* -subalgebras $A_1, A_2, B_1, ..., B_{m-1}$ of A and a state φ of $(1 \otimes h_{11})A(1 \otimes h_{11}) \otimes M_m$ defined as follows:

$$A_{1} = C^{*}(\{e_{1j} \otimes f_{11} \mid 2 \leq j \leq p\}), \quad A_{2} = C^{*}(\{g_{1j} \otimes h_{11} \mid 2 \leq j \leq r\}),$$

$$B_{l} = C^{*}(\{S_{l,k} \mid 1 \leq k \leq q_{l+1}\}) \quad (1 \leq l \leq m-1)$$
and $\varphi = \psi \circ E$,

where $S_{l,k} = (1 \otimes h_{1,l+1})(1 \otimes f_{(q_1+\cdots+q_l)+k,1})$ and $\psi : \mathbb{C}^m \ni (\lambda_l)_{l=1}^m \mapsto \lambda_1 \in \mathbb{C}$. From Lemma 2.2.1, it follows that

$$(2.2.3) A_1, A_2, B_1, ..., B_{m-1} \subset (1 \otimes h_{11}) A(1 \otimes h_{11})$$

and

$$(2.2.4) A_1 \cong M_p, A_2 \cong M_r, B_l \cong \mathcal{O}_{q_{l+1}} \ (1 \le l \le m-1).$$

In the case that $q_{l+1} \geq 2$, we can show, by a straightforward computation using Lemma 2.2.1, that the generators of B_l satisfy the relation $S_{l,k}^*S_{l,k} = 1 \otimes h_{11}$ and $\sum_{k=1}^{q_{l+1}} S_{l,k} S_{l,k}^* = 1 \otimes h_{11}$. Therefore $B_l \cong \mathcal{O}_{q_{l+1}}$. Similarly, in the case that $q_{l+1} = 1$, it is easy to see that the one generator $S_{l,1}$ is a unitary with $\varphi(S_{l,1}^n) = 0$ for all $n \in \mathbb{Z} \setminus \{0\}$. So $B_l \cong C(\mathbb{T})$.

In addition, by Lemma 2.2.1, it immediately follows that

$$(2.2.5) (1 \otimes h_{11}) A(1 \otimes h_{11}) = C^*(A_1 \cup A_2 \cup B_1 \cup \cdots \cup B_{m-1}).$$

Furthermore, by Lemma 2.1.1, the state φ is faithful on $(1 \otimes h_{11})A(1 \otimes h_{11})$. Trivially, the faithfulness of φ implies the following (2.2.6).

(2.2.6) If
$$x \in (1 \otimes h_{11}) A(1 \otimes h_{11})$$
 satisfies $\varphi(y^*x^*xy) = 0$ for all $y \in (1 \otimes h_{11}) A(1 \otimes h_{11})$, then $x = 0$.

We shall verify the freeness of $\{A_1, A_2, B_1, ..., B_{m-1}\}$ in $((1 \otimes h_{11}) A (1 \otimes h_{11}), \varphi)$. Consider the following subsets of $(1 \otimes h_{11}) A (1 \otimes h_{11})$:

$$W_{A_1} = \{ (e_{ij} - \frac{\delta_{ij}}{p} 1) \otimes f_{11} \mid 1 \leq i, j \leq p \},$$

$$W_{A_2} = \{ (g_{ij} - \frac{\delta_{ij}}{r} 1) \otimes h_{11} \mid 1 \leq i, j \leq r \},$$

$$W_{B_1} = (1 \otimes h_{11}) W(\{ 1 \otimes h_{1,l+1}, 1 \otimes h_{l+1,1} \}, Y_l) (1 \otimes h_{11}),$$

where

$$Y_{l} = \left\{ 1 \otimes \left(f_{ij} - \frac{\delta_{ij}}{q_{l+1}} \sum_{k=q_{1}+\cdots+q_{l}+1}^{q_{1}+\cdots+q_{l}+1} f_{kk} \right) \middle| \begin{array}{c} (i,j) \in \left\{ 1, q_{1}+\cdots+q_{l}+1, \dots, \\ q_{1}+\cdots+q_{l}+q_{l+1} \right\}^{2} \\ \setminus \left\{ (1,1) \right\} \end{array} \right\}.$$

Then we have that

$$A_1 \cap \ker \varphi \subset \operatorname{span} W_{A_1}, \quad A_2 \cap \ker \varphi \subset \operatorname{span} W_{A_2},$$

$$B_l \cap \ker \varphi \subset \text{ the norm closure of } (\operatorname{span} W_{B_l}) \quad (1 \leq l \leq m-1).$$

Therefore, to verify the desired freeness, it suffices to show that

$$W(W_{A_1}, W_{A_2}, W_{B_1}, ..., W_{B_{m-1}}) \subset W(\ker E_1, \ker E_2) \subset \ker E \subset \ker \varphi$$
.

We define $X_1, X_2, V_{A_1}, V_{A_2}, V_{B_l}$ (l = 1, ..., m - 1) as follows:

$$X_{1} = \left\{ x \otimes y \middle| \begin{array}{l} x = e_{ij} - \frac{\delta_{ij}}{p} 1 \ (1 \leq i, j \leq p) \ \text{or} \ 1 \\ 1 \otimes y \in \bigcup_{i=1}^{m-1} Y_{l} \end{array} \right\},$$

$$X_{2} = \left\{ x \otimes y \middle| \begin{array}{l} x = g_{ij} - \frac{\delta_{ij}}{r} 1 \ (1 \leq i, j \leq r) \ \text{or} \ 1 \\ y = h_{ij} \ (1 \leq i, j \leq m, \ i \neq j) \ \text{or} \ h_{11} \end{array} \right\},$$

$$V_{A_{1}} = \left\{ w \in W(X_{1}, X_{2}) \middle| \begin{array}{l} w \ \text{ends with} \ (e_{ij} - \frac{\delta_{ij}}{p} 1) \otimes f_{k1} \\ (1 \leq i, j \leq p, \ 1 \leq k \leq q_{1} + \dots + q_{m}) \end{array} \right\},$$

$$V_{A_{2}} = \left\{ w \in W(X_{1}, X_{2}) \middle| \begin{array}{l} w \ \text{ends with} \ (g_{ij} - \frac{\delta_{ij}}{r} 1) \otimes h_{k1} \\ (1 \leq i, j \leq r, \ 1 \leq k \leq m) \end{array} \right\},$$

$$V_{B_{l}} = \left\{ w \in W(X_{1}, X_{2}) \middle| \begin{array}{l} w \ \text{ends with} \ 1 \otimes h_{l+1, 1} \ \text{or} \\ 1 \otimes f_{q_{1} + \dots + q_{l} + k, 1} \ (1 \leq k \leq q_{l+1}) \end{array} \right\}.$$

By simple inspections, we can show that

$$(2.2.7) W_{A_1} \subset V_{A_1}, W_{A_2} \subset V_{A_2}, W_{B_l} \subset V_{B_1} \ (1 \le l \le m-1)$$

and

$$(2.2.8) V_S W_T \subset V_T, \text{ if } S \neq T, (S,T) \in \{A_1, A_2, B_1, \dots, B_{m-1}\}^2.$$

It is clear that (2.2.7) and (2.2.8) imply

$$(2.2.9) W(W_{A_1}, W_{A_2}, W_{B_1}, ..., W_{B_{m-1}}) \subset W(X_1, X_2).$$

On the other hand, from the definitions of X_1 and X_2 , we get the inclusion

$$(2.2.10) W(X_1, X_2) \subset W(\ker E_1, \ker E_2) (\subset \ker E \subset \ker \varphi).$$

Then, by (2.2.9) and (2.2.10), we can conclude that

$$\{A_1, A_2, B_1, ..., B_{m-1}\} \text{ is free in } ((1 \otimes h_{11}) A (1 \otimes h_{11}), \varphi).$$

As a consequence of (2.2.3), (2.2.5), (2.2.6) and (2.2.11), we get

$$(2.2.12) \ ((1 \otimes h_{11}) A (1 \otimes h_{11}), \varphi) \cong (A_1, \varphi|_{A_1}) * (A_2, \varphi|_{A_2}) * (B_1, \varphi|_{B_1}) * \cdots * (B_{m-1}, \varphi|_{B_{m-1}}).$$

Then, combining (2.2.2), (2.2.4) and (2.2.12), we can get the desired *-isomorphism.

Now we shall show that A is non-nuclear when $m \geq 3$. We only treat the case that $q_2 \geq 2, q_3 \geq 2$. The proof for the other cases are almost similar. Note that there is a projection of norm one from A onto $((\mathcal{O}_{q_2}, \varphi_2) * (\mathcal{O}_{q_3}, \varphi_3)) \otimes M_m$. In addition, using the *-isomorphism

$$(\mathcal{O}_{q_2},\varphi_2) \underset{\mathbb{C}}{*} (\mathcal{O}_{q_3},\varphi_3) \cong (\mathcal{O}_{q_2} \otimes M_{q_2},\varphi_2 \otimes \frac{1}{q_2} Tr) \underset{\mathbb{C}}{*} (\mathcal{O}_{q_3} \otimes M_{q_3},\varphi_3 \otimes \frac{1}{q_3} Tr),$$

we can naturally construct a projection of norm one from the C^* -algebra $(\mathcal{O}_{q_2}, \varphi_2)_{\mathbb{C}}^*(\mathcal{O}_{q_3}, \varphi_3)$ onto $(M_{q_2}, \frac{1}{q_2}Tr)_{\mathbb{C}}^*(M_{q_3}, \frac{1}{q_3}Tr)$. Then, since $(M_{q_2}, \frac{1}{q_2}Tr)_{\mathbb{C}}^*(M_{q_3}, \frac{1}{q_3}Tr)$ is non-nuclear (see [4],[5]), it follows that A is non-nuclear. \square

Remark 2.2.2. In [9], K. Dykema proved that every reduced free product of exact C^* -algebras with amalgamation is exact. Therefore, the C^* -algebra A in Proposition 2.1.2 is exact.

2.3 Proof of Proposition 2.1.3.

Let $(A, E) = (M_{1+n}, E_1) * (M_{1+n}, E_2)$ be as in Proposition 2.1.3, and put $\{e_{ij}\}_{1 \leq i,j \leq 1+n}$, $\{f_{ij}\}_{1 \leq i,j \leq 1+n}$ be systems of matrix units of M_{1+n} , M_{1+n} , respectively.

Lemma 2.3.1. The C^* -algebra A has the relation

(2.3.1)
$$e_{11} = f_{11},$$

$$e_{22} + \dots + e_{1+n,1+n} = f_{22} + \dots + f_{1+n,1+n}.$$

Proof. The relation (2.3.1) arises from the embeddings $i_1 : \mathbb{C}^2 \hookrightarrow M_{1+n}$ and $i_2 : \mathbb{C}^2 \hookrightarrow M_{1+n}$ which we start with. \square

Proof of Proposition 2.1.3. We remark that

(2.3.2)
$$(e_{11}Ae_{11}) \otimes M_{1+n} \cong A \text{ and}$$

$$(e_{11}Ae_{11}) \otimes M_n \cong (e_{22} + \dots + e_{1+n,1+n}) A(e_{22} + \dots + e_{1+n,1+n}).$$

We shall examine the C^* -algebra $(e_{22} + \cdots + e_{1+n,1+n})A(e_{22} + \cdots + e_{1+n,1+n})$. Consider the C^* -subalgebras A_1, A_2 of A and a state φ on $(e_{22} + \cdots + e_{1+n,1+n})A(e_{22} + \cdots + e_{1+n,1+n})$ defined as follows:

$$A_1 = C^*(\{e_{2j} \mid 3 \le j \le 1 + n\}), \quad A_2 = C^*(\sum_{i=2}^{1+n} e_{i1}f_{1i})$$

and

$$\varphi = \psi \circ E$$
,

where $\psi : \mathbb{C}^2 \ni (\lambda_1, \lambda_2) \mapsto \lambda_2 \in \mathbb{C}$. From Lemma 2.3.1, it follows that

$$(2.3.3) A_1, A_2 \subset (e_{22} + \dots + e_{1+n,1+n}) A(e_{22} + \dots + e_{1+n,1+n})$$

and

$$(2.3.4) A_1 \cong M_n, \quad A_2 \cong C(\mathbb{T}).$$

By a straightforward computation using Lemma 2.3.1, we can show that the one generator $u = \sum_{i=2}^{1+n} e_{i1} f_{1i}$ is a unitary with $\varphi(u^n) = 0$ for all $n \in \mathbb{Z} \setminus \{0\}$. Therefore, $A_2 \cong C(\mathbb{T})$. In addition, by Lemma 2.3.1, it immediately follows that

$$(2.3.5) (e_{22} + \dots + e_{1+n.1+n}) A(e_{22} + \dots + e_{1+n.1+n}) = C^*(A_1 \cup A_2).$$

Furthermore, by Lemma 2.1.1, the state φ is faithful on the C^* -algebra

$$(e_{22} + \cdots + e_{1+n,1+n})A(e_{22} + \cdots + e_{1+n,1+n}).$$

Trivially, the faithfulness of φ implies the following (2.3.6).

(2.3.6) If
$$x \in (e_{22} + \dots + e_{1+n,1+n}) A(e_{22} + \dots + e_{1+n,1+n})$$
 satisfies $\varphi(y^*x^*xy) = 0$ for all $y \in (e_{22} + \dots + e_{1+n,1+n}) A(e_{22} + \dots + e_{1+n,1+n})$, then $x = 0$.

Now we shall verify the freeness of $\{A_1, A_2\}$ in $((e_{22} + \cdots + e_{1+n,1+n})A(e_{22} + \cdots + e_{1+n,1+n}), \varphi)$. Consider the following subsets of $(e_{22} + \cdots + e_{1+n,1+n})A(e_{22} + \cdots + e_{1+n,1+n})$.

$$W_{A_1} = \{e_{ij} - E(e_{ij}) \mid 2 \le i, j \le 1 + n\},\$$

$$W_{A_2} = \{(\sum_{i=2}^{1+n} e_{i1} f_{1i})^m \mid m \in \mathbb{Z} \setminus \{0\}\}.$$

Then we have that

$$A_l \cap \ker \varphi \subset \operatorname{span} W_{A_l} \quad (l = 1, 2).$$

Therefore, to verify the desired freeness, it suffices to show that

$$W(W_{A_1}, W_{A_2}) \subset \operatorname{span} W(\ker E_1, \ker E_2) (\subset \ker E \subset \ker \varphi).$$

Let $W_{e,f}$, $W_{f,e}$, W_e and W_f be as follows:

$$W_{e,f} = \{ (\sum_{i=2}^{1+n} e_{i1} f_{1i})^m \mid m \in \mathbb{N} \} \cup \{ e_{i1} f_{1j} \mid 2 \le i, j \le 1+n, \ i \ne j \},$$

$$W_{f,e} = \{ (\sum_{i=2}^{1+n} f_{i1} e_{1i})^m \mid m \in \mathbb{N} \} \cup \{ f_{i1} e_{1j} \mid 2 \le i, j \le 1+n, \ i \ne j \},$$

$$W_f = \{ f_{ij} - E(f_{ij}) \mid 2 \le i, j \le 1+n \},$$

$$W_e = \{ e_{ij} - E(e_{ij}) \mid 2 \le i, j \le 1+n \}.$$

We define V a set of all elements $x_1 \cdots x_m$, where $m \in \mathbb{N}$, $x_j \in W_{e,f} \cup W_{f,e} \cup W_e \cup W_f$ $(1 \le j \le m)$ which satisfies the following condition (*):

(*) for
$$2 \le j \le m-1$$
 and $(s,t)=(e,f)$ or (f,e) ,
$$x_j \in W_{s,t} \text{ if and only if } x_{j-1} \in W_s \text{ and } x_{j+1} \in W_t, \text{ and}$$
$$x_i \in W_s \text{ if and only if } x_{j-1} \in W_{s,t} \cup W_t \text{ and } x_{j+1} \in W_{t,s} \cup W_t.$$

Moreover, define V_{A_1}, V_{A_2} by

$$V_{A_{1}} = \left\{ w \in V \middle| \begin{array}{l} w \text{ ends with } e_{ij} - E(e_{ij}) \ (2 \leq i, j \leq 1 + n) \text{ or } \\ f_{i1}e_{1j} \ (2 \leq i, j \leq 1 + n, \ i \neq j) \end{array} \right\},$$

$$V_{A_{2}} = \left\{ w \in V \middle| \begin{array}{l} w \text{ ends with } (\sum_{k=2}^{1+n} e_{k1}f_{1k})^{m} \ (m \in \mathbb{Z} \setminus \{0\}) \text{ or } \\ f_{ij} - E(f_{ij}) \ (2 \leq i, j \leq 1 + n) \text{ or } \\ e_{i1}f_{1j} \ (2 \leq i, j \leq 1 + n, \ i \neq j) \end{array} \right\}.$$

By simple inspections, we can show that

$$(2.3.7) W_{A_1} \subset V_{A_1}, W_{A_2} \subset V_{A_2}$$

and

$$(2.3.8) V_S W_T \subset V_T, \text{ if } S \neq T, (S,T) \in \{A_1, A_2\}^2.$$

It is clear that (2.3.7) and (2.3.8) imply

$$(2.3.9) W(W_{A_1}, W_{A_2}) \subset V.$$

On the other hand, from the definition of V, we get the inclusion

$$(2.3.10) V \subset \operatorname{span}W(\ker E_1, \ker E_2)(\subset \ker E \subset \ker \varphi).$$

Then, by (2.3.9) and (2.3.10), we can conclude that

$$\{A_1, A_2\}$$
 is free in $((e_{22} + \cdots + e_{1+n,1+n})A(e_{22} + \cdots + e_{1+n,1+n}), \varphi)$.

As a consequence of (2.3.3), (2.3.5), (2.3.6) and (2.3.11), we get

$$(2.3.12) \qquad ((e_{22} + \dots + e_{1+n,1+n}) A(e_{22} + \dots + e_{1+n,1+n}), \varphi) \cong (A_1, \varphi|_{A_1}) \underset{\mathbb{C}}{*} (A_2, \varphi|_{A_2}).$$

Then, combining (2.3.2), (2.3.4) and (2.3.12) we can easily get the desired *-isomorphism. Since the C^* -algebra $(M_n, \frac{1}{n}Tr) *_{\mathbb{C}} (C(\mathbb{T}), \tau)$ is non-nuclear (see [4],[5]), it is trivial that A is non-nuclear.

Now we shall investigate the simplicity of A. By [2, Proposition 3.1], the C^* -algebra $(M_n, \frac{1}{n}Tr) * (C(\mathbb{T}), \tau)$ is simple. Therefore, it immediately follows that A is simple. \square

Remark 2.3.2. As stated in Remark 2.2.2, it is known that the C^* -algebra A in Proposition 2.1.3 is exact.

Remark 2.3.3. In [13], K. McClanahan gives a sufficient condition for simplicity of reduced free product C^* -algebras with amalgamation. But the C^* -algebra A in Proposition 2.1.3 does not satisfy McClanahan's condition. Therefore, we cannot determine whether A is simple or not from his condition.

§3. Related topics

Let $n \in \mathbb{N}$. Here we shall give a pair of C^* -algebras A, B such that $A \not\cong B$ and $A \otimes M_n \cong B \otimes M_n$.

Proposition 3.1. Let $(A, E) = (M_n \otimes M_{n+1}, E_1) \underset{\mathbb{C}^2}{*} (M_2, E_2)$ be as in Definition 1.1, and let $\{e_{ij}\}_{1 \leq i,j \leq n}$, $\{f_{ij}\}_{1 \leq i,j \leq n}$ and $\{g_{ij}\}_{1 \leq i,j \leq 2}$ be systems of matrix units of M_n , M_{n+1} and M_2 , respectively. Then, for C^* -algebras $A_1 = (e_{11} \otimes f_{11})A(e_{11} \otimes f_{11})$, $A_2 = A_1 \otimes M_n$, we have $A_1 \ncong A_2$ and $A_1 \otimes M_n \cong A_2 \otimes M_n$.

In the proof of Proposition 3.1, the following lemma, proved by E. Germain, is used.

Lemma 3.2 ([10], [11]). Given unital C^* -algebras A_1 and A_2 with states φ_1 and, respectively, φ_2 , whose GNS-representations are faithful, let $(A, \varphi) = (A_1, \varphi_1) *_{\mathbb{C}} (A_2, \varphi_2)$ be the corresponding reduced free product. Suppose that A_1 and A_2 are nuclear. Then there is an exact sequence of K-groups,

$$\mathbb{Z} \cong K_0(\mathbb{C}) \xrightarrow{(K_0(i_1), -K_0(i_2))} K_0(A_1) \oplus K_0(A_2) \xrightarrow{K_0(j_1) + K_0(j_2)} K_0(A)$$

$$\uparrow \qquad \qquad \downarrow$$

$$K_1(A) \xleftarrow{K_1(j_1) + K_1(j_2)} K_1(A_1) \oplus K_1(A_2) \xleftarrow{(K_1(i_1), -K_1(i_2))} K_1(\mathbb{C}) = 0,$$

where $i_k : \mathbb{C} \to A_k$ is the unital *-homomorphism and where $j_k : A_k \to A$ is the unital embedding arising from the construction of the reduced free product (A, φ) .

Proof of Proposition 3.1. First, we shall show that $A_1 \otimes M_n \cong A_2 \otimes M_n$. Note that there is a relation in A given by

$$1 \otimes f_{11} = g_{11}$$
 and $1 \otimes (f_{22} + \cdots + f_{n+1,n+1}) = g_{22}$.

Since the map

$$A_1 \otimes M_n \ni (x_{ij})_{1 \le i, j \le n} \mapsto \sum_{1 \le i, j \le n} (e_{i1} \otimes f_{11}) x_{ij} (e_{1j} \otimes f_{11}) \in (1 \otimes f_{11}) A (1 \otimes f_{11})$$

is a *-isomorphism, we get $A_1 \otimes M_n \cong g_{11} A g_{11}$. Similarly, we can construct a *-isomorphism between $A_2 \otimes M_n$ and $g_{11} A g_{11}$ by

$$A_2 \otimes M_n \cong A_1 \otimes M_n \otimes M_n \cong (1 \otimes f_{11}) A(1 \otimes f_{11}) \otimes M_n$$

 $\cong (1 \otimes (f_{22} + \dots + f_{n+1,n+1})) A(1 \otimes (f_{22} + \dots + f_{n+1,n+1}))$
 $\cong g_{22} Ag_{22} \cong g_{11} Ag_{11}.$

Therefore, $A_1 \otimes M_n \cong A_2 \otimes M_n$.

Next, we prove that $A_1 \not\cong A_2$ by investigating $K_0(A_1)$ and $K_0(A_2)$. Define $\iota_1 : A_1 \to A_2 = A_1 \otimes M_n$ and $\iota_2 : A_2 \to (1 \otimes f_{11}) A(1 \otimes f_{11})$ by

$$\iota_1(x) = \text{diag}(x, 0, ..., 0) \quad \text{for } x \in A_1,$$

$$\iota_2((x_{ij})_{1 \le i, j \le n}) = \sum_{1 \le i, j \le n} (e_{i1} \otimes f_{11}) x_{ij} (e_{1j} \otimes f_{11})$$

for $(x_{ij})_{1 \leq i,j \leq n} \in A_2$, and $\iota_3 : (1 \otimes f_{11}) A (1 \otimes f_{11}) \to (M_n, \tau_n) * (\mathcal{O}_n, \varphi)$ be the *-isomorphism constructed in Proposition 2.1.2.

Then it is clear that

$$[\iota_3 \circ \iota_2 \circ \iota_1](1_{A_1}) = j_1(\operatorname{diag}(1,0,...,0)) \text{ and } [\iota_3 \circ \iota_2](1_{A_2}) = j_1(\operatorname{diag}(1,...,1)),$$

where $j_1: M_n \hookrightarrow (M_n, \tau_n) *_{\mathbb{C}} (\mathcal{O}_n, \varphi)$ be the unital embedding arising from the construction of the reduced free product.

According to Lemma 3.2, we can get the following exact sequence of K-groups

$$(3.2) \qquad K_0(\mathbb{C}) \xrightarrow{(K_0(i_1), -K_0(i_2))} K_0(M_n) \oplus K_0(\mathcal{O}_n) \xrightarrow{K_0(j_1) + K_0(j_2)} K_0(B) \longrightarrow 0,$$

where $B = (M_n, \tau_n) *_{\mathbb{C}} (\mathcal{O}_n, \varphi)$.

Through the group isomorphisms $K_0(M_n) \cong \mathbb{Z}$ ([1] $\mapsto n$), $K_0(\mathcal{O}_n) \cong \mathbb{Z}/(n-1)\mathbb{Z}$ ([1] \mapsto [1]) and $K_0(\iota_3 \circ \iota_2) : K_0(A_2) \cong K_0(B)$, we can obtain the following exact sequence from (3.2).

$$(3.3) \mathbb{Z} \longrightarrow \mathbb{Z} \oplus \mathbb{Z}/(n-1)\mathbb{Z} \longrightarrow K_0(A_2) \longrightarrow 0.$$

So, from (3.1) and (3.3), it follows that

(3.4)
$$\exists \varphi_2 : K_0(A_2) \cong \mathbb{Z}/(n^2 - n)\mathbb{Z} \text{ such that } \varphi_2([1]) = [n].$$

On the other hand, using the group isomorphism $K_0(\iota_1)K_0(A_1) \cong K_0(A_2)$ with (3.1) and (3.4), we have

$$(3.5) \exists \varphi_1 : K_0(A_1) \cong \mathbb{Z}/(n^2 - n)\mathbb{Z} \text{ such that } \varphi_1([1]) = [1].$$

Then, by (3.4) and (3.5), we can conclude $A_1 \not\cong A_2$. \square

Remark 3.3. The C^* -algebras A_1, A_2 in Proposition 3.1 are non-nuclear, (See Proposition 2.1.2.) and their K_0 -group is $\mathbb{Z}/(n^2-n)\mathbb{Z}$, their K_1 -group is trivial. We remark that there is a pair of nuclear C^* -algebras B_1, B_2 such that $B_1 \not\cong B_2$, $B_1 \otimes M_n \cong B_2 \otimes M_n$ and their K_0 -group, K_1 -group are the same as those of A_1 , respectively. In fact, if we put $B_1 = \mathcal{O}_{n^2-n+1}, B_2 = \mathcal{O}_{n^2-n+1} \otimes M_n$, then B_1, B_2 have all the desired properties. (See [12].)

Proposition 3.4. Let $(A, E) = (M_{q_1+q_2}, E_1) * (M_2, E_2)$ be as in Definition 1.1. Put $\{e_{ij}\}_{1 \leq i,j \leq q_1+q_2}, \{f_{ij}\}_{1 \leq i,j \leq 2}$ be systems of matrix units in $M_{q_1+q_2}, M_2$, respectively. If $q_1 < q_2$, then the C^* -algebra $e_{11}Ae_{11}$ is infinite.

In particular, the C^* -algebras A_1 , A_2 which appear in Proposition 3.1 are infinite.

To prove Proposition 3.4, we need some lemmas.

Lemma 3.5 ([1]). Let A be a C^* -algebra and let p,q be projections with ||p - pqp|| < 1. Then p is equivalent to a subprojection q' of q, which is given by

$$q' = q(p + \sum_{n=1}^{\infty} (p - pqp)^n)q.$$

Lemma 3.6 ([1]). Suppose A is a simple, unital C^* -algebra containing nontrivial projections p and q. If A is generated by p, q and some other positive elements each of which is orthogonal to either p or q, then ||q(1-p)q-q|| < 1.

Lemma 3.7 ([8]). Consider the reduced free product

$$(A,\varphi) = (\mathbb{C}^n, \tau_{\alpha_1,\dots,\alpha_n}) *_{\mathbb{C}} (\mathbb{C}^m, \tau_{\beta_1,\dots,\beta_n}),$$

where $\alpha_1,...,\alpha_n,\beta_1,...,\beta_n>0, \sum_{i=1}^n\alpha_i=\sum_{i=1}^m\beta_i=1, \text{ and } \tau_{\alpha_1,...,\alpha_n} \text{ and } \tau_{\beta_1,...,\beta_n}$ are defined by

$$\tau_{\alpha_1,\dots,\alpha_n}((\lambda_i)_{i=1}^n) = \sum_{i=1}^n \alpha_i \lambda_i,$$

$$\tau_{\beta_1,\dots,\beta_n}((\lambda_i)_{i=1}^n) = \sum_{i=1}^n \beta_i \lambda_i.$$

If $\alpha_i + \beta_i < 1$ for all $(i, j) \in \{1, ..., n\} \times \{1, ..., m\}$, then A is simple.

Proof of Proposition 3.4. We shall verify the infiniteness of $e_{11}Ae_{11}$ by constructing a proper subprojection of e_{11} which is equivalent to e_{11} . Consider the C^* -subalgebra B of A which is generated by mutually orthogonal projections $f_{21}e_{11}f_{12}$, $f_{21}(e_{22} + \cdots + e_{q_1q_1})f_{12}$, $e_{q_1+1,q_1+1}, \ldots, e_{q_1+q_2,q_1+q_2}$. Moreover, define a state φ on B by $\varphi = \psi \circ E$, where $\psi : \mathbb{C}^2 \ni (\lambda_1, \lambda_2) \mapsto \lambda_2 \in \mathbb{C}$. We remark that, by Lemma 2.1.1, we have that φ is faithful on B.

It is easy to show that

$$(3.6) (B,\varphi)$$

$$\cong (C^*(f_{21}e_{11}f_{12}, f_{21}(\sum_{j=2}^{q_1} e_{jj})f_{12}), \varphi) \underset{\mathbb{C}}{*} (C^*(e_{q_1+1,q_1+1}, ..., e_{q_1+q_2,q_1+q_2}), \varphi)$$

$$\cong (\mathbb{C}^2, \tau_{\frac{1}{q_1}, 1-\frac{1}{q_1}}) \underset{\mathbb{C}}{*} (\mathbb{C}^{q_2}, \tau_{\frac{1}{q_2}, ..., \frac{1}{q_2}}).$$

Furthermore, by Lemma 3.7, the right side hand of (3.6) is a simple C^* -algebra. Therefore, B is simple.

Then applying Lemma 3.6 on B, we get the estimation

$$||e_{q_1+1,q_1+1} \cdot f_{21}e_{11}f_{12} \cdot e_{q_1+1,q_1+1}|| < 1.$$

Therefore, using Lemma 3.5, we can construct a subprojection q of $f_{21}e_{11}f_{12}$ which is equivalent to e_{q_1+1,q_1+1} .

Moreover, the projection q is not equal to e_{11} . In fact, since

$$\varphi(q) = \varphi(e_{q_1+1,q_1+1}) = \frac{1}{q_2} \text{ and } \varphi(f_{21}e_{11}f_{12}) = \frac{1}{q_1},$$

we have $q \neq e_{11}$ from the assumption $q_1 \neq q_2$.

Finally, define $p = e_{11}f_{12}qf_{21}e_{11}$. From the above arguments about the projection q, we can easily show that p is a proper subprojection of e_{11} which is equivalent to e_{11} . Therefore, $e_{11}Ae_{11}$ is infinite. \square

Acknowledgement

I would like to express my deep gratitude to M. Nagisa for his help with this paper.

References

- [1] J. Anderson, B. Blackadar and U. Haagerup, Minimal projection in the reduced group C^* -algebra of $\mathbb{Z}_n * \mathbb{Z}_m$, J. Operator Theory **26** (1991), 3–23.
- [2] D. Avitzour, Free products of C*-algebras, Trans. Amer. Math. Soc. 271 (1982), 423-435.
- [3] B. Blackadar, K-Theory for operator algebras, Mathematical Sciences Research Institute Publication Series, Springer-Verlag, New York-Heidelberg-Berlin-Tokyo, 5 (1986).
- [4] K. J. Dykema, Free products of hyperfinite von Neumann algebras and free dimension, Duke Math. J. 69 (1993), 97-119.
- [5] K. J. Dykema, Interpolated free group factors, Pacific J. Math. 163 (1994), 123-135.
- [6] K. J. Dykema, Faithfulness of free product states, J. Funct. Anal. 154 (1998), 323–329.
- [7] K. J. Dykema, Purely infinite, simple C*-algebras arising from free product constructions, II, Preprint.
- [8] K. J. Dykema, Simplicity and the stable rank of some free product C*-algebras, Preprint.
- [9] K. J. Dykema, Exactness of reduced amalgamated free product C*-algebras, Preprint.
- [10] E. Germain, KK-theory of reduced free product C*-algebras, Duke Math. J. 82 (1996), 707–723.
- [11] E. Germain, KK-theory of the full free product of unital C*-algebras, J. reine. angew. Math. 485 (1997), 1-10.
- [12] E. Kirchberg, The classification of purely infinite C*-algebras using Kasparov's theory, Preprint.
- [13] K. McClanahan, Simplicity of reduced amalgamated free products of C*-algebras, Can. J. Math. 46 (1994), 793–807.
- [14] D. Voiculescu, Symmetries of some reduced free product C*-algebras, in Operator algebras and their connections with topology and ergodic theory, Springer Lecture notes in Mathematics, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 1132 (1985), 556-588.

MITO KIRYOU HIGH SCHOOL, SENBA-CHO 2369-3, MITO 310-0851, JAPAN

E-mail: fwns9170@mb.infoweb.ne.jp