SOME PROBLEMS AND COUNTER-EXAMPLES ON BCI (BCK)-ALGEBRAS

M.M. ZAHEDI*, A. HASANKHANI, G.H.A. BOZORGEE

Received August 25, 1998; revised March 3, 1999

ABSTRACT. In this note we first show that the answers of the open problems posed in the paper [3], are positive. Then we give some counter-examples of Theorems 6 of [4], 2.3 of [5] and 1 of [8].

A BCI-algebra is a non-empty set X with a binary operation * and a constant 0 satisfying the axioms:

- (1) $\{(x*y)*(x*z)\}*(z*y) = 0$,
- $(2) \quad \{x * (x * y)\} * y = 0,$
- $(3) \quad x * x = 0,$
- (4) x * y = 0 and y * x = 0 imply that x = y, for all $x, y, z \in X$.

A BCI-algebra X satisfying (5) 0 * x = 0 for all $x \in X$, is called a BCK-algebra. From now on X is a BCI-algebra.

Definition 1. A non-empty subset A of X is called an ideal if

- (i) $0 \in A$
- (ii) $x * y \in A$ and $y \in A$ imply that $x \in A$, for all $x, y \in X$.

Definition 2. An ideal A of X is said to be closed if $0 * x \in A$, for all $x \in A$.

Notation. For any elements x, y in X and positive integer n, let us write $x * y^n$ for $(\dots((x * y) * y) * \dots) * y$, where y occurs n times.

Definition 3. An element x in X is said to be a nilpotent element if $0 * x^n = 0$, for some positive integer n.

Definition 4. Let A be any non-empty subset of X. Then for any positive integer k, we define

$$N_k(A) = \{x \in A : 0 * x^k = 0\},\$$

and

$$N(A) = \{ x \in A : 0 * x^n = 0, \text{ for some } k \in \mathbf{N} \}.$$

Open problems ([3]). (1) Is there an infinite BCI-algebra X such that $\{0\} \subset N(X) \subset X$?

(2) Are there an infinite BCI-algebra X and an ideal A of X such that $\{0\} \subset N(A) \subset A \subset X$?

Affirmative answers 5. Let $C^{\circ} = C \setminus \{0\}$, where C is the set of all complex numbers.

Research supported by the National Research Council of I.R. Iran (NRCI) as a National Research project under the grant number 1720.

¹⁹⁹¹ Mathematics Subject Classification. 06F35, 03G25, 04A72.

Key words and phrases. Ideal, Nilpotent Element, Fuzzy Ideal.

Define * on \mathbb{C}° as division as general. Then as it has mentioned in [2], $(\mathbb{C}^{\circ}, *, 1)$ is an infinite BCI-algebra. Consider a subset $\mathbb{R}^{\circ} = \mathbb{R} \setminus \{0\}$ of \mathbb{C}° , where \mathbb{R} is the set of all real numbers. Then $(\mathbb{R}^{\circ}, *, 1)$ is a closed ideal of \mathbb{C}° . Now it is easy to check that

$$N(\mathbf{C}^{\circ}) = \{ z \in \mathbf{C}^{\circ} : z^k = 1, \text{ for some } k \in \mathbf{N} \}.$$

Thus $\{1\} \subset N(\mathbf{C}^{\circ}) \subset \mathbf{C}^{\circ}$. Note that here 1 is the zero of the BCI-algebra $(\mathbf{C}^{\circ}, *, 1)$. On the other hand we can see that

$$N(\mathbf{R}^{\circ}) = \{1, -1\}.$$

So

$$\{1\} \subset \{1, -1\} \subset \mathbf{R}^{\circ} \subset \mathbf{C}^{\circ}.$$

Hence the answeres are complete.

At present we give some counter-examples which shows that Theorems 6 of [4], 2.3 of [5] and 1 of [8] are not correct in general.

Theorem 6 ([8, Theorem 4]). Any Abelian group X is a p-semisimple BCI-algebra under the operation -, that is

$$x * y = x - y, \quad \forall x, y \in X.$$

Counter-example 7. Consider the Abelian group $\mathbf{Z}_2[x]$, of all polynomials with cofficients in \mathbf{Z}_2 . Now consider the BCI-algebra $(\mathbf{Z}_2[x], *, 0)$, where f * g means f - g in $\mathbf{Z}_2[x]$ (see Theorem 6). Since $0 * f^2 = (0 - f) - f = 0 - 2f = 0$, for all $f \in \mathbf{Z}_2[x]$, then each element of $\mathbf{Z}_2[x]$ is nilpotent, that is

$$N(\mathbf{Z}_2[x]) = \mathbf{Z}_2[x],$$

but $(\mathbf{Z}_2[x], *, 0)$ is not a finite BCI-algebra. Thus Theorem 6 of [4] is not correct.

Open problem 8. If N(X) = X, then under what conditions is X finite?

Lemma 9 ([7, Theorem 1]). Let X be a BCI-algebra. Then

$$N_k(X) = \{x \in X | 0 * x^k = 0\}$$

is a subalgebra of X for each $k \in \mathbf{N}$.

Theorem 10. (An answer for the open problem 8) Let X be a BCI-algebra such that N(X) = X. If there is a positive integer n such that $|N_k(X)| \le n$ for all $k \in \mathbb{N}$, then X is finite.

Proof. Assume that N(X) = X and there exists $n \in \mathbb{N}$ such that $|N_k(X)| \leq n$ for all $K \in \mathbb{N}$. Then $X = \bigcup_{k=1}^{\infty} N_k(X)$. Let $x \in N_k(X)$ for $k \in \mathbb{N}$. Then $0 * x, 0 * x^2, \dots, 0 * x^{n+1} \in \mathbb{N}$

 $N_k(X)$ since $N_k(X)$ is a subalgebra of X (see Lemma 9). It follows from $|N_k(X)| \le n$ that there exists $s, r \in \mathbb{N}$ such that $0 \le r \le s \le n+1$ and $0 * x^s = 0 * x^r$. Hence we have

$$\begin{array}{lll} 0 & = & (0*x^s)*(0*x^r) \\ & = & ((0*x^{s-1})*x)*((0*x^{r-1})*x) \\ & \leq & (0*x^{s-1})*(0*x^{r-1}), \end{array}$$

and so $(0*x^{s-1})*(0*x^{r-1})=0$ because $(0*x^{s-1})*(0*x^{r-1})$ is an atom of X. Continuing this process one can shows that $0*x^{s-r}=0$, i.e., $x\in N_{s-r}(X)$ where $0\leq s-r\leq n+1$.

Therefore $N_k(X) \subseteq N_{s-r}(X) \subseteq \bigcup_{k=1}^{n+1} N_k(X)$ and thus $X = \bigcup_{k=1}^{n+1} N_k(X)$. This means that X is finite. Λ

The following example shows that the condition $t_1 < \mu(x) < t_2$ must replaced by $t_1 \le \mu(x) < t_2$ in Theorem 2.3 of [5]. For more details see [7].

Counter-example 11. Let X be a BCK-algebra. Define the fuzzy subset μ of X as follows:

$$\mu(x) = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{otherwise, } \forall x \in X. \end{cases}$$

Then $\mu_1 = \{0\}$ and $\mu_0 = X$, thus μ is a fuzzy ideal of X and there is not $x \in X$ such that $0 < \mu(x) < 1$.

Finally we give a counter-example of Theorem 1 of [8].

Counter-example 12. Let $X = \{0, a, b, 1\}$. Consider the following table

*	0	a	b	1
0	0	0	0	0
a	a	0	0	0
b	b	b	0	0
1	1	b	a	0

Then according to [6], (X, *, 0) is a BCK-algebra. Define the fuzzy subset $\mu: X \longrightarrow [0, 1]$ as follows:

$$\mu(x) = \begin{cases} \frac{1}{2} & \text{if } x = 1\\ 1 & \text{otherwise.} \end{cases}$$

Then for any $t \in [0, 1]$, $t \le \mu(1)$, we have $\mu_t = X$, and hence μ_t is a dual ideal of X. But μ is not a fuzzy dual ideal of X, because $\mu(1) < \mu(x)$, $\forall x \in X, x \ne 1$.

Now we give a correct version of Theorem 1 of [8]

Theorem 13. Let X be a BCK-algebra and μ be a fuzzy subset of X. Then μ is a fuzzy dual ideal of X if and only if μ_t is a dual ideal of X, for all non-empty level subset μ_t of μ .

Proof. The proof is not difficult.

Acknowledgment: The authors would like to thank the referee for giving Theorem 10.

References

- 1. W. Huang, Nil-radical in BCI-algebra, Math. Japonica 37 (1992), 363-366.
- 2. Y.B. Jun, A note on nil ideals in BCI-algebras, Math. Japonica 38 (1993), 1017-1021.
- 3. Y.B. Jun and E.H. Roh, Nil ideals in BCI-algebra, Math. Japonica 41 (1993), 297-302.
- 4. Y.B. Jun and E.H. Roh, Nil ideals in BCI-algebras (II), Math. Japonica 41 (1995), 553-556.
- Y.B. Jun, Characterization of fuzzy ideals by their level ideals in BCK (BCI)-algebra, Math. Japonica 38 (1993), 67-71.
- Y.B. Jun, S.M. Hong, S.J. Kim, S.Z. Song and E.H. Roh, Fuzzy dual ideals in BCK-algebra (III), Math. Japonica 43 (1996), 383-388.
- 7. Y.B. Jun, J. Meng and E.H. Roh, On nil ideals in BCI-algebras, Math. Japonica 38 (1993), 1051-1056.
- 8. T. Lei, C. Xi, The p-semisimple BCI-algebras, J. of Shaanxi Normal University, 2 (1984), 25-29.
- 9. M. Mashinchi, M.M. Zahedi, A counter-example of P.S. Das's paper, J. Math. Anal. Appl. Vol. 153, No. 2, (1990), 591-592.
- 10. J. Meng and Y.B. Jun, Fuzzy dual ideals in BCK-algebras, Comm. Korean Math. Soc. 8 (1993), 225-231.

*: Corresponding author M.M. Zahedi, Dept. of Math., Shahid Bahonar University of Kerman, Kerman, IRAN E-mail: Zahedi@arg3.uk.ac.ir

A. Hassankhani, Dept. of Math., Sistan and Baluchestan University, Zahedan, IRAN

G.H.A. Bozorgee, Dept. of Math., Azad University of Kerman, Kerman, IRAN