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FURTHER EXTENSIONS OF CHARACTERIZATIONS OF CHAOTIC
ORDER ASSOCIATED WITH KANTOROVICH TYPE INEQUALITIES
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Abstract. We showed characterizations of chaotic order via Kantorovich inequality
in our previous paper. Recently as a nice application of generalized Furuta inequality,

Furuta and Seo showed an extension of one of our results and a related result on operator
equations. In this paper, by using essentially the same idea as theirs, we shall show
further extensions of both their results and the following our another previous result
which is a characterization of chaotic order via Specht’s ratio. “Let A and B be positive
invertible operators satisfying MI ≥ A ≥ mI > 0. Then log A ≥ log B is equivalent to
Mh(p)Ap ≥ Bp holds for all p > 0, where h = M

m
> 1 and

Mh(p) =
h

p
hp−1

e log h
p

hp−1
.”

1. Introduction

An operator means a bounded linear operator on a complex Hilbert space H . An oper-
ator T is said to be positive (denoted by T ≥ 0) if (Tx, x) ≥ 0 for all x ∈ H and also an
operator T is said to be strictly positive (denoted by T > 0) if T is positive and invertible.
The following Löwner-Heinz theorem is well known: A ≥ B ≥ 0 ensures Aα ≥ Bα for
any α ∈ [0, 1]. For the sake of convenience on application, the following Theorem F was
established.
Theorem F (Furuta inequality [9]).

If A ≥ B ≥ 0, then for each r ≥ 0,

(i) (B
r
2 ApB

r
2 )

1
q ≥ (B

r
2 BpB

r
2 )

1
q

and

(ii) (A
r
2 ApA

r
2 )

1
q ≥ (A

r
2 BpA

r
2 )

1
q

hold for p ≥ 0 and q ≥ 1
with (1 + r)q ≥ p+ r.

p

q(1, 0)

(0,−r)

(1, 1)

q = 1 p = q

(1 + r)q = p + r

Figure

We remark that Theorem F yields Löwner-Heinz theorem when we put r = 0 in (i) or (ii)
stated above. Alternative proofs of Theorem F are given in [6][18] and also an elementary
one-page proof in [10]. It is shown in [23] that the domain drawn for p, q and r in the Figure
is best possible one for Theorem F.
As an extension of Theorem F, the following Theorem G was obtained in [13].
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Theorem G ([13]). If A ≥ B ≥ 0 with A > 0, then for each t ∈ [0, 1] and p ≥ 1,

Fp,t(A,B, r, s) = A
−r
2 {A r

2 (A
−t
2 BpA

−t
2 )sA

r
2 } 1−t+r

(p−t)s+r A
−r
2

is decreasing for r ≥ t and s ≥ 1, and Fp,t(A,A, r, s) ≥ Fp,t(A,B, r, s), that is, for each
t ∈ [0, 1] and p ≥ 1,

A1−t+r ≥ {A r
2 (A

−t
2 BpA

−t
2 )sA

r
2 } 1−t+r

(p−t)s+r(1.1)

holds for any s ≥ 1 and r ≥ t.

Ando-Hiai [2] established excellent log majorization results and proved the following
useful inequality equivalent to the main log majorization theorem: If A ≥ B ≥ 0 with
A > 0, then

Ar ≥ {A r
2 (A

−1
2 BpA

−1
2 )rA

r
2 } 1

p

holds for any p ≥ 1 and r ≥ 1. Theorem G interpolates the inequality stated above
by Ando-Hiai and Theorem F itself, and also extends results of [7][11] and [12]. A nice
mean theoretic proof of Theorem G is shown in [8] and one-page proof of (1.1) is shown in
[15]. In [16], we showed equivalence relation among the inequality (1.1), monotonicity of
the function Fp,t(A,B, r, s) in Theorem G and related results. The best possibility of the
outside exponents of both sides in (1.1) is shown in [24] and [26].
On the other hand, related to Löwner-Heinz theorem, the following proposition is also

well known: A ≥ B ≥ 0 does not always assure Aα ≥ Bα for any α > 1. As a way to settle
this inconvenient, the following result is given in [14].

Theorem A.1 ([14]). If A ≥ B ≥ 0 and MI ≥ A ≥ mI > 0, then(
M

m

)p−1

Ap ≥ K+(m,M, p)Ap ≥ Bp for p ≥ 1,

where

K+(m, M, p) =
(p − 1)p−1

pp

(Mp − mp)p

(M − m) (mMp − mpM)p−1 .(1.2)

We remark that Theorem A.1 is related to both Hölder-McCarthy inequality [19] and
Kantorovich inequality: If MI ≥ A ≥ mI > 0, then

(
A−1x, x

)
(Ax,x) ≤ (m+M)2

4mM holds

for every unit vector x in H . The number (m+M)2

4mM is called Kantorovich constant and

K+(m,M, 2) = (m+M)2

4mM where K+(m,M, p) is stated in (1.2), so that K+(m,M, p) is a
generalization of Kantorovich constant. Many authors investigated a lot of papers on Kan-
torovich inequality, among others, there is a long research series of Mond-Pečarić, some of
them are [20] and [21].
The order between positive invertible operators A and B defined by logA ≥ logB is said

to be chaotic order which is a weaker order than usual order A ≥ B. As an application of
Theorem F, the following characterization of chaotic order is well known.

Theorem A.2 ([7][12]). Let A and B be positive invertible operators. Then the following
assertions are mutually equivalent:
(i) logA ≥ logB.

(ii) Ap ≥ (A
p
2 BpA

p
2 )

1
2 for all p ≥ 0.

(iii) Au ≥ (A
u
2 BpA

u
2 )

u
p+u for all p ≥ 0 and u ≥ 0.
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(i)⇔(ii) of Theorem A.2 is shown in [1]. Recently a simple and excellent proof of (i)⇒(iii)
is shown in [25] by only applying Theorem F, and a simplified proof of (ii)⇒(i) is shown in
[17].
As other characterizations of chaotic order, we prove the following two results as appli-

cations of Theorem A.1 and Theorem A.2 in [27].

Theorem B.1 ([27]). Let A and B be positive invertible operators satisfying MI ≥ A ≥
mI > 0. Then the following assertions are mutually equivalent:
(i) logA ≥ logB.

(ii)
(mp +Mp)2

4mpMp
Ap ≥ Bp for all p ≥ 0.

Theorem B.2 ([27]). Let A and B be positive invertible operators satisfying MI ≥ A ≥
mI > 0. Then the following assertions are mutually equivalent:
(i) logA ≥ logB.

(ii) Mh(p)Ap ≥ Bp for all p ≥ 0, where h = M
m > 1 and

Mh(p) =
h

p
hp−1

e log h
p

hp−1
.(1.3)

Theorem B.2 gives a more precise sufficient condition for chaotic order than Theorem
B.1 since (mp+Mp)2

4mpMp ≥ Mh(p) holds for all p ≥ 0 by the following two lemmas.

Lemma B.3 ([27]). Let K+(m,M, p) be defined in (1.2). Then

F (p, r,m, M) = K+

(
mr, M r,

p+ r

r

)

is an increasing function of p, r and M, and also a decreasing function of m for p > 0,
r > 0 and M > m > 0. And the following inequality holds:(

M

m

)p

≥ K+

(
mr, M r,

p+ r

r

)
≥ 1.(1.4)

Lemma B.4 ([27]). Let M > m > 0, p > 0 and K+(m,M, p) be defined in (1.2). Then

lim
r→+0

K+

(
mr, M r,

p+ r

r

)
= Mh(p),

where h = M
m > 1 and Mh(p) be defined in (1.3).

We remark that Mh(1) =
(h−1)h

1
h−1

e log h is called Specht’s ratio [4][22], which is the best
upper bound of the ratio of the arithmetic mean to the geometric mean of numbers xi

satisfying M ≥ xi ≥ m > 0 ( i = 1, 2, · · · , n ), that is, the following inequality holds:

(h − 1)h
1

h−1

e logh
n
√

x1x2 · · ·xn ≥ x1 + x2 + · · ·+ xn

n
.

In [3], we showed a simplified proof of Theorem B.2 by using determinant for positive
operators defined in [4] and [5]. Moreover we showed the following result which interpolates
(i)⇒(ii) of both Theorem B.1 and Theorem B.2 in [27].

Theorem B.5 ([27]). Let A and B be positive invertible operators satisfying MI ≥ A ≥
mI > 0. If logA ≥ logB, then

K+

(
mr, M r,

p+ r

r

)
Ap ≥ Bp holds for p > 0 and r > 0,
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where K+(m,M, p) is defined in (1.2).

As a nice application of Theorem G, Furuta and Seo established the following result in
[17].

Theorem C.1 ([17]). Let A and B be positive invertible operators. Then the following
assertions are mutually equivalent:
(i) logA ≥ logB.

(ii) For each α ∈ [0, 1], p ≥ 0, u ≥ 0 and s ≥ 1 such that (p + αu)s ≥ (1 − α)u, there
exists the unique invertible positive contraction T satisfying

TA(p+αu)sT = (A
αu
2 BpA

αu
2 )s.

(iii) For each α ∈ [0, 1], p ≥ u ≥ 0 and s ≥ 1, there exists the unique invertible positive
contraction T satisfying

TA(p+αu)sT = (A
αu
2 BpA

αu
2 )s.

(iv) For each p ≥ 0, there exists the unique invertible positive contraction T satisfying

TApT = Bp.

Moreover as an extension of Theorem B.1, Furuta and Seo also showed the following
result based on Theorem C.1 in [17].

Theorem C.2 ([17]). Let A and B be positive invertible operators satisfying MI ≥ A ≥
mI > 0. Then the following assertions are mutually equivalent:
(i) logA ≥ logB.
(ii) For each α ∈ [0, 1], p ≥ 0 and u ≥ 0,(

M (p+αu)s +m(p+αu)s
)2

4M (p+αu)sm(p+αu)s
A(p+αu)s ≥ (A

αu
2 BpA

αu
2 )s

holds for s ≥ 1 such that (p+ αu)s ≥ (1− α)u.

(iii) For each α ∈ [0, 1] and p ≥ u ≥ 0,(
M (p+αu)s +m(p+αu)s

)2

4M (p+αu)sm(p+αu)s
A(p+αu)s ≥ (A

αu
2 BpA

αu
2 )s

holds for s ≥ 1.

(iv)
(Mp +mp)2

4Mpmp
Ap ≥ Bp holds for p ≥ 0.

In this paper, we shall show a further extension of Theorem C.1. And also we shall show
a further extension of Theorem C.2 which interpolates both Theorem B.1 and Theorem B.2.

2. Extensions of the results by Furuta and Seo

Firstly, as an extension of Theorem C.1, we have the following characterization of chaotic
order via operator equations.

Theorem 1. Let A and B be positive invertible operators. Then the following assertions
are mutually equivalent:
(i) logA ≥ logB.
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(ii) For each natural number n, α ∈ [0, 1], p ≥ 0, u ≥ 0, s ≥ 1 and r ≥ 1 − α such that
{nr + (n + 1)α}u ≥ (p + αu)s, there exists the unique invertible positive contraction
T = T (n, α, p, u, r, s) satisfying

T (A
(p+αu)s+ru

n+1 T )n = A
−(p+αu)s+nru

2(n+1) (A
αu
2 BpA

αu
2 )sA

−(p+αu)s+nru
2(n+1) .(2.1)

(iii) For each natural number n, α ∈ [0, 1], p ≥ nu ≥ 0, s ≥ 1 and real numbers r such that
{nr + (n + 1)α}u ≥ (p + αu)s, there exists the unique invertible positive contraction
T = T (n, α, p, u, r, s) satisfying

T (A
(p+αu)s+ru

n+1 T )n = A
−(p+αu)s+nru

2(n+1) (A
αu
2 BpA

αu
2 )sA

−(p+αu)s+nru
2(n+1) .

(iv) For each natural number n and p ≥ 0, there exists the unique invertible positive
contraction T = T (n, p) satisfying

T (A
p
n T )n = Bp.

The following Corollary 2 is easily obtained by Theorem 1.

Corollary 2. Let A and B be positive invertible operators. Then the following assertions
are mutually equivalent:
(i) logA ≥ logB.

(ii) For each natural number n, α ∈ [0, 1], p ≥ 0, u ≥ 0 and s ≥ 1 such that (p+ αu)s ≥
n(1 − α)u, there exists the unique invertible positive contraction T = T (n, α, p, u, s)
satisfying

T (A
(p+αu)s

n T )n = (A
αu
2 BpA

αu
2 )s.(2.2)

(iii) For each natural number n, α ∈ [0, 1], p ≥ nu ≥ 0 and s ≥ 1, there exists the unique
invertible positive contraction T = T (n, α, p, u, s) satisfying

T (A
(p+αu)s

n T )n = (A
αu
2 BpA

αu
2 )s.(2.3)

(iv) For each natural number n and p ≥ 0, there exists the unique invertible positive
contraction T = T (n, p) satisfying

T (A
p
n T )n = Bp.

Remark 1. Corollary 2 can be proved by Theorem 1. And (ii), (iii) and (iv) of Corollary 2
implies (ii), (iii) and (iv) of Theorem C.1 respectively when we put n = 1, that is, Theorem
1 includes Theorem C.1 as a special case.

Secondly, as an extension of Theorem C.2, we have the following Kantorovich type char-
acterization of chaotic order.

Theorem 3. Let A and B be positive invertible operators satisfying MI ≥ A ≥ mI > 0
and K+(m,M, p) be defined in (1.2). Then the following assertions are mutually equivalent:
(i) logA ≥ logB.

(ii) For each natural number n, α ∈ [0, 1], p ≥ 0 and u ≥ 0,

K+

(
m

(p+αu)s+ru
n+1 , M

(p+αu)s+ru
n+1 , n+ 1

)
A(p+αu)s ≥ (A

αu
2 BpA

αu
2 )s

holds for all s ≥ 1 and r ≥ 1− α such that {nr + (n+ 1)α}u ≥ (p+ αu)s.
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(iii) For each natural number n, α ∈ [0, 1] and p ≥ nu ≥ 0,

K+

(
m

(p+αu)s+ru
n+1 , M

(p+αu)s+ru
n+1 , n+ 1

)
A(p+αu)s ≥ (A

αu
2 BpA

αu
2 )s(2.4)

holds for all s ≥ 1 and real number r such that {nr + (n+ 1)α}u ≥ (p+ αu)s.

(iv) For each natural number n and p ≥ nu ≥ 0,

K+

(
m

p+ru
n+1 , M

p+ru
n+1 , n+ 1

)
Ap ≥ Bp

holds for real number r such that nru ≥ p.

Remark 2. Theorem 3 implies Theorem C.2 as follows. We have (ii) [resp. (iii)] of
Theorem C.2 when we put n = 1 and r = (p+αu)s

u in (ii) [resp. (iii)] of Theorem 3. And
put n = 1 and r = p

u in (iv) of Theorem 3, then we have (iv) of Theorem C.2.

As mentioned above, Theorem 3 yields Theorem C.2 and Theorem C.2 yields Theo-
rem B.1. Moreover Theorem 3 also yields the following Theorem 4 and Theorem 4 yields
Theorem B.2, which is a more precise estimation than Theorem B.1.

Theorem 4. Let A and B be positive invertible operators satisfying MI ≥ A ≥ mI > 0,
and K+(m,M, p) and Mh(p) be defined in (1.2) and (1.3), respectivery. Then the following
assertions are mutually equivalent:

(i) logA ≥ logB.

(ii) For each natural number n, α ∈ [0, 1], p ≥ 0 and u ≥ 0

K+

(
m

(p+αu)s−αu
n , M

(p+αu)s−αu
n , n+ 1

)
A(p+αu)s ≥ (A

αu
2 BpA

αu
2 )s

holds for all s ≥ 1 such that (p+ αu)s ≥ (n+ α)u.

(iii) For each natural number n, α ∈ [0, 1] and p ≥ nu ≥ 0,

K+

(
m

(p+αu)s−αu
n , M

(p+αu)s−αu
n , n+ 1

)
A(p+αu)s ≥ (A

αu
2 BpA

αu
2 )s

holds for all s ≥ 1.

(iv) Mh(p)Ap ≥ Bp holds for p ≥ 0, where h = M
m > 1.

3. Proofs of results

Proof of Theorem 1. We shall show (i)⇒(ii)⇒(iii)⇒(iv)⇒(i) as follows.

(i)=⇒(ii): In case u = 0, (ii) holds obviously since the assumption of (ii) ensures ps = 0
and (2.1) turns out to be T n+1 = I, so that we have only to show the case u > 0 as follows.
By Theorem A.2, (i) ensures the following inequality:

Au ≥ (A
u
2 BpA

u
2 )

u
p+u for p ≥ 0 and u > 0.

Put A1 = Au and B1 = (A
u
2 BpA

u
2 )

u
p+u , then A1 and B1 satisfy A1 ≥ B1 > 0. By applying

Theorem G, we have

A
(p1−t)s+r

q

1 ≥ {A r
2
1 (A

−t
2

1 Bp1
1 A

−t
2

1 )sA
r
2
1 }

1
q(3.1)
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holds for t ∈ [0, 1], p1 ≥ 1, s ≥ 1, r ≥ t and q ≥ 1 such that (1 − t + r)q ≥ (p1 − t)s + r.
We can put t = 1− α ∈ [0, 1], p1 = p+u

u ≥ 1 and q = n+ 1 ≥ 1 since the hypotheses of (ii)
r ≥ 1− α and {nr + (n+ 1)α}u ≥ (p+ αu)s ensure the inequalities

r ≥ 1− α = t

and

(1− t+ r)q = (α+ r)(n + 1) = nr + (n+ 1)α+ r ≥ (p+ αu)s
u

+ r = (p1 − t)s+ r

respectively. Then (3.1) can be rewritten as follows:

A
(p+αu)s+ru

n+1 ≥ {A ru
2 (A

αu
2 BpA

αu
2 )sA

ru
2 } 1

n+1 .(3.2)

Let T be defined as follows:

T = A
−{(p+αu)s+ru}

2(n+1) (A
ru
2 DsA

ru
2 )

1
n+1 A

−{(p+αu)s+ru}
2(n+1) ,(3.3)

where D = A
αu
2 BpA

αu
2 . Then T is an invertible positive contraction and

A
(p+αu)s+ru

2(n+1) TA
(p+αu)s+ru

2(n+1) = (A
ru
2 DsA

ru
2 )

1
n+1(3.4)

holds by (3.3). Therefore we have

(A
(p+αu)s+ru

2(n+1) TA
(p+αu)s+ru

2(n+1) )n+1 = A
ru
2 DsA

ru
2 .(3.5)

It is equivalent to

A
(p+αu)s+ru

2(n+1) T (A
(p+αu)s+ru

n+1 T )nA
(p+αu)s+ru

2(n+1) = A
ru
2 (A

αu
2 BpA

αu
2 )sA

ru
2 ,

that is, we have (2.1).
Uniqueness of T can be shown as follows: Assume that for each natural number n,

α ∈ [0, 1], p ≥ 0, u ≥ 0, s ≥ 1 and r ≥ 1− α such that {nr+ (n+ 1)α}u ≥ (p+ αu)s, there
exists an invertible positive contraction S satisfying

S(A
(p+αu)s+ru

n+1 S)n = A
−(p+αu)s+nru

2(n+1) (A
αu
2 BpA

αu
2 )sA

−(p+αu)s+nru
2(n+1) .(3.6)

By (2.1) and (3.6), we have

S(A
(p+αu)s+ru

n+1 S)n = T (A
(p+αu)s+ru

n+1 T )n.(3.7)

(3.7) is equivalent to

(A
(p+αu)s+ru

2(n+1) SA
(p+αu)s+ru

2(n+1) )n+1 = (A
(p+αu)s+ru

2(n+1) TA
(p+αu)s+ru

2(n+1) )n+1.

Then we have S = T .
Hence the proof of (i)=⇒(ii) is complete.

(ii)=⇒(iii): (iii) holds in case u = 0 obviously by the same discussion as (ii). Let p ≥ nu > 0
in (ii), then the condition r ≥ 1 − α follows from p ≥ nu > 0 and the other assumption of
(ii) since

r ≥ (p+ αu)s
nu

− n+ 1
n

α ≥ p+ αu

nu
− n+ 1

n
α =

p

nu
− α ≥ 1− α,

so that we have (iii).

(iii)=⇒(iv): Put r = (p+αu)s
nu , α = 0 and s = 1 in (iii), then we have

T (A
p
n T )n = Bp

holds for each nutural number n and p ≥ nu > 0, i.e., p > 0. (iv) holds in case p = 0
obviously, so that the proof of (iii)=⇒(iv) is complete.
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(iv)=⇒(i): Put n = 1 in (iv), then we have (i) by using (iv)=⇒(i) in Theorem C.1.

Consequently the proof of Theorem 1 is complete.

Proof of Corollary 2. Put r = (p+αu)s
nu in Theorem 1, then the condition {nr+(n+1)α}u ≥

(p+αu)s in (ii) is satisfied and r ≥ 1−α in (ii) can be rewritten as (p+αu)s ≥ n(1−α)u.
Then we have Corollary 2.

In order to prove Theorem 3, we prepare the following lemma.

Lemma 5. Let A be a positive invertible operator satisfying MI ≥ A ≥ mI > 0 and T be
an invertible positive contraction. Then

K+(m,M, p+ 1)Ap ≥ T
1
2 (T

1
2 AT

1
2 )pT

1
2

holds for p ≥ 0, where K+(m,M, p) is defined in (1.2).

We need the following Lemma D.1 to prove Lemma 5.

Lemma D.1 ([13]). Let A be a positive invertible operator and B be an invertible operator.
Then

(BAB∗)λ = BA
1
2 (A

1
2 B∗BA

1
2 )λ−1A

1
2 B∗

holds for any real number λ.

Proof of Lemma 5. The condition I ≥ T > 0 asserts A ≥ A
1
2 TA

1
2 > 0. Put A1 = A and

B1 = A
1
2 TA

1
2 , then A1 and B1 satisfy A1 ≥ B1 > 0 with MI ≥ A1 ≥ mI > 0. Applying

Theorem A.1,

K+(m,M, p+ 1)A1
p+1 ≥ B1

p+1(3.8)

holds for p ≥ 0, where K+(m,M, p) is defined in (1.2). (3.8) is equivalent to the following
by Lemma D.1.

K+(m,M, p+ 1)Ap+1 ≥ (A
1
2 TA

1
2 )p+1

= A
1
2 T

1
2 (T

1
2 AT

1
2 )pT

1
2 A

1
2 .

(3.9)

Multiplying A
−1
2 on both sides of (3.9), the proof is complete.

Proof of Theorem 3.

(i)=⇒(ii): Let n be a nutural number, α ∈ [0, 1], p ≥ 0, u ≥ 0, s ≥ 1 and r ≥ 1 − α such
that {nr + (n + 1)α}u ≥ (p + αu)s. By (i)⇒(ii) of Theorem 1, there exists the unique
invertible positive contraction T satisfying the following (2.1):

T (A
(p+αu)s+ru

n+1 T )n = A
−(p+αu)s+nru

2(n+1) (A
αu
2 BpA

αu
2 )sA

−(p+αu)s+nru
2(n+1) .(2.1)

By scrutinizing the proof of Theorem 1, (2.1) is equivalent to the following (3.5):

(A
(p+αu)s+ru

2(n+1) TA
(p+αu)s+ru

2(n+1) )n+1 = A
ru
2 DsA

ru
2 ,(3.5)

where D = A
αu
2 BpA

αu
2 . (3.5) can be rewritten as

A
(p+αu)s+ru

2(n+1) T
1
2 (T

1
2 A

(p+αu)s+ru
n+1 T

1
2 )nT

1
2 A

(p+αu)s+ru
2(n+1) = A

ru
2 DsA

ru
2 .(3.10)

Let A1 = A
(p+αu)s+ru

n+1 . ThenMI ≥ A ≥ mI > 0 ensures M
(p+αu)s+ru

n+1 I ≥ A1 ≥ m
(p+αu)s+ru

n+1 I
> 0 and

K+

(
m

(p+αu)s+ru
n+1 , M

(p+αu)s+ru
n+1 , n+ 1

)
A1

n ≥ T
1
2 (T

1
2 A1T

1
2 )nT

1
2(3.11)
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holds for each nutural number n by Lemma 5. (3.11) can be rewritten as

K+

(
m

(p+αu)s+ru
n+1 , M

(p+αu)s+ru
n+1 , n+ 1

)
A

{(p+αu)s+ru}n
n+1

≥ T
1
2 (T

1
2 A

(p+αu)s+ru
n+1 T

1
2 )nT

1
2 .

(3.12)

Multiplying A
(p+αu)s+ru

2(n+1) on both sides of (3.12), we have

K+

(
m

(p+αu)s+ru
n+1 , M

(p+αu)s+ru
n+1 , n+ 1

)
A(p+αu)s+ru

≥ A
(p+αu)s+ru

2(n+1) T
1
2 (T

1
2 A

(p+αu)s+ru
n+1 T

1
2 )nT

1
2 A

(p+αu)s+ru
2(n+1)

= A
ru
2 DsA

ru
2 .

(3.13)

Hence the proof of (i)=⇒(ii) is complete.

(ii)=⇒(iii): (iii) holds in case u = 0 since the assumption of (iii) ensures ps = 0 and (2.4)
turns out to be K+(1, 1, n+ 1)I = I by (1.4) in Lemma B.3. Let p ≥ nu > 0 in (ii), then
the condition r ≥ 1− α follows from p ≥ nu > 0 and the other assumption of (ii) since

r ≥ (p+ αu)s
nu

− n+ 1
n

α ≥ p+ αu

nu
− n+ 1

n
α =

p

nu
− α ≥ 1− α,

so that we have (iii).

(iii)=⇒(iv): Put α = 0 and s = 1 in (iii).

Proof of (iv)=⇒(i). Put n = 1 and r = p
u in (iv). Then K+(mp, Mp, 2) =

(Mp +mp)2

4mpMp
by

(1.2), so that

(Mp +mp)2

4mpMp
Ap ≥ Bp(3.14)

holds for all p ≥ nu > 0, i.e., p > 0. By Theorem B.1, (3.14) implies (i).
Whence the proof of Theorem 3 is complete.

Proof of Theorem 4.
In case u = 0, (i)⇒(ii)⇒(iii) holds by Theorem B.5, because (ii) and (iii) can be rewritten
as follows: For each nutural number n,

K+

(
m

ps
n , M

ps
n ,

ps+ ps
n

ps
n

)
Aps ≥ Bps

holds for ps ≥ 0.

(i)=⇒(ii): In the proof of (i)⇒(ii) of Theorem 3, we can put r = (p+αu)s
nu − n+1

n α since
(p+ αu)s ≥ (n+ α)u yields r = (p+αu)s

nu − n+1
n α ≥ 1 − α. Hence the proof of (i)=⇒(ii) is

complete.

(ii)=⇒(iii): Put p ≥ nu ≥ 0, then the required condition (p+ αu)s ≥ (n+ α)u is satisfied.

(iii)=⇒(iv): Put u = 0 in (iii), we have, for each nutural number n,

K+

(
m

ps
n , M

ps
n , n+ 1

)
Aps ≥ Bps(3.15)

holds for ps ≥ 0. (3.15) is equivalent to

K+

(
m

ps
n , M

ps
n ,

ps+ ps
n

ps
n

)
Aps ≥ Bps.

Tending n → ∞ (i.e., ps
n → 0), we have (iv) by Lemma B.4.
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(iv)⇒(i) is already shown in Theorem B.2.
Hence the proof of Theorem 4 is complete.
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