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Abstract. This paper considers replacement polices for an extended cumulative damage
model with minimal maintenance at each shock and minimal repair at failure: A system
is replaced at time T or at shock number N , and undergoes maintenance or repair
between replacements. The expected cost rate is obtained and each optimal T ∗ and N∗
to minimize the cost rate is discussed. It is shown that this model would be applied to
the backup of secondary storage files in a database system as an example.

1. Introduction.

We consider the stochastic model where shocks occur at random times and each shock
causes the damage to a system. These damages accumulate additively. A system fails when
the total amount of damage exceeds a failure level K. This stochastic model generates a
cumulative process [1]. Some aspects of such cumulative damage models from reliability
viewpoints were discussed by Esary, Marshall and Proschan [2].

It is of great interest to study the problem when to replace a system before failure as
preventive maintenance. Optimal maintenance policies where a system is replaced at time T
[3], at shock N [4], or at damage Z [5, 6] were studied. Nakagawa and Kijima [7] applied the
periodic replacement with minimal repair [8] to a cumulative damage model and obtained
optimal values T ∗, N∗ and Z∗ which minimize the expected cost.

In recent years, the database in computer systems has become very important in a highly
information-oriented society. In particular, the reliable database is the most indispensable
instrument in on-line transaction processing systems such as real-time systems used for
account of bank. The data in a computer system are frequently updated by adding or
deleting them, and are stored in floppy disks or other secondary media. However, data files
in secondary media are sometimes broken by several errors due to noises, human errors and
hardware faults. In this case, we have to reconstruct the same files from the beginning.

The most simple and dependable method to ensure the safety of data would be always
to make the backup copies of all files in other places as total backup, and to take out them
if files in the original secondary media are broken. But, this method would take hours and
costs, when files become large. To make the backup copies efficiently, we make the backup
copies of only updated files which have changed or are new since the last full backup when
the total updated files do not exceed a threshold level K. We call it incremental backup.
This would reduce significantly both duration time and size of backup [9]. Conversely, we
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perform full backup at periodic time T or at backup number N , whichever occurs first. It
is assumed that the database system returns to an initial state by the full backup.

This paper considers an extended cumulative damage model with minimal maintenance
at each shock and minimal repair at each failure. Reliability measures of this model are
derived, using the theory of cumulative processes. Further, this is applied to the backup of
files in a database system.

2. Problem Formulation. Suppose that shocks occur in accordance with a nonhomoge-
neous Poisson process having the intensity function λ(t) and the mean-value function R(t),
i.e., R(t) ≡ ∫ t

0 λ(u)du. Then, the probability that the shocks occur exactly j times during
(0, t] is

Hj(t) ≡ [R(t)]j

j!
e−R(t) (j = 0, 1, 2, · · · ).(1)

Further, an amount Yj of damage due to the j-th shock has a probability distribution
Gj(x) ≡ Pr{Yj ≤ x} (j = 1, 2, · · · ) with finite mean. Then, the total damage Zj ≡ ∑j

i=1 Yi

to the j-th shock where Z0 ≡ 0 has a distribution

G(j)(x) ≡ Pr{Zj ≤ x} = G1 ∗G2∗ · · · ∗Gj(x) (j = 0, 1, 2, · · · ),(2)

where G(0)(x) ≡ 1 for x ≥ 0, 0 for x < 0, and the asterisk mark represents the Stieltjes
convolution, i.e., a ∗ b(t) ≡ ∫ t

0
b(t − u)da(u) for any functions a(t) and b(t). Then, the

probability that the total amount of damage exceeds a failure level K at the j-th shock
is G(j−1)(K) − G(j)(K). Let Z(t) be the total amount of damage at time t. Then, the
distribution function of Z(t) is

Pr{Z(t) ≤ x} =
∞∑

j=0

Hj(t)G(j)(x).(3)

Consider the system which should operate for an infinite time span and assume: When the
total damage does not exceed a failure level K, the system undergoes minimal maintenance
at each shock. The maintenance cost is c2 + c0(x) when the total damage is x (0 ≤ x < K),
where c0(x) is continuous and strictly increasing and c0(0) ≡ 0. When the total damage
exceeds a failure level K, the system undergoes minimal repair at each shock, and the repair
cost is c3, where c3 = c2 + c0(K). The system is replaced at periodic time T or at shock
number N , whichever occurs first, and the replacement cost is c1, where c3 < c1. The
maintenance time, the repair time and the replacement time are negligible, i.e., the time
considered here is measured only by the total operating time of the system.

Lemma 2.1 Let PT denote the probability that the system is replaced at time T , and PN

denote the probability that the system is replaced at shock number N . Then,

PT =
N−1∑
j=0

Hj(T ),(4)

PN =
∫ T

0

HN−1(t)λ(t)dt =
∞∑

j=N

Hj(T ),(5)

and PT + PN = 1.
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Lemma 2.2 Let N1(T,N) denote the expected number of minimal maintenances until re-
placement, and N2(T,N) denote the expected number of minimal repairs until replacement.
Then,

N1(T,N) =
N−1∑
j=1

G(j)(K)
∞∑

i=j

Hi(T ),(6)

N2(T,N) =
N−1∑
j=1

[1 −G(j)(K)]
∞∑
i=j

Hi(T ).(7)

Proof: From Lemma 2.1, we have

PT =
N−1∑
j=0

Hj(T )G(j)(K) +
N−1∑
j=1

Hj(T )
j−1∑
i=0

[G(i)(K) −G(i+1)(K)],

PN =
∫ T

0

HN−1(t)λ(t)dtG(N)(K) +
∫ T

0

HN−1(t)λ(t)dt
N−1∑
i=0

[G(i)(K) −G(i+1)(K)].

Thus,

N1(T,N) =
N−1∑
j=0

jHj(T )G(j)(K) +
N−1∑
j=1

Hj(T )
j−1∑
i=0

i[G(i)(K) −G(i+1)(K)]

+(N − 1)
∫ T

0

HN−1(t)λ(t)dtG(N)(K)

+
∫ T

0

HN−1(t)λ(t)dt
N−1∑
i=0

i[G(i)(K) −G(i+1)(K)]

=
N−1∑
j=1

Hj(T )
j∑

i=1

G(i)(K) +
∞∑

j=N

Hj(T )
N−1∑
i=1

G(i)(K)

=
N−1∑
j=1

G(j)(K)
∞∑

i=j

Hi(T ),

and

N2(T,N) =
N−1∑
j=1

Hj(T )
j−1∑
i=0

(j − i)[G(i)(K) −G(i+1)(K)]

+
∫ T

0

HN−1(t)λ(t)dt
N−1∑
i=0

(N − i− 1)[G(i)(K) −G(i+1)(K)]

=
N−1∑
j=1

Hj(T )
j∑

i=1

[1 −G(i)(K)] +
∞∑

j=N

Hj(T )
N−1∑
i=1

[1 −G(i)(K)]

=
N−1∑
j=1

[1 −G(j)(K)]
∞∑
i=j

Hi(T ).
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Lemma 2.3 Let E[U ] denote the mean time to replacement. Then,

E[U ] =
N−1∑
j=0

∫ T

0

Hj(t)dt.(8)

Proof: From Lemma 2.1, we have

E[U ] = T
N−1∑
j=0

Hj(T ) +
∫ T

0

tHN−1(t)λ(t)dt.

Then, using the relations
∫ T

0

Hj(t)dt = THj(T ) −
∫ T

0

tHj−1(t)λ(t)dt +
∫ T

0

tHj(t)λ(t)dt (j = 1, 2, · · · ),

and
∫ T

0

H0(t)dt = TH0(T ) +
∫ T

0

tH0(t)λ(t)dt,

we have

E[U ]

= TH0(T ) +
∫ T

0

tH0(t)λ(t)dt +
N−1∑
j=1

THj(T ) +
N−1∑
j=1

∫ T

0

tHj(t)λ(t)dt−
N−2∑
j=0

∫ T

0

tHj(t)λ(t)dt

= TH0(T ) +
∫ T

0

tH0(t)λ(t)dt +
N−1∑
j=1

[THj(T ) −
∫ T

0

tHj−1(t)λ(t)dt +
∫ T

0

tHj(t)λ(t)dt]

=
N−1∑
j=0

∫ T

0

Hj(t)dt.

From Lemma 2.2, we easily have:

Lemma 2.4 Let E[C] denote the expected cost to replacement. Then,

E[C] = c1 +
N−1∑
j=1

∫ T

0

Hj−1(t)λ(t)dt{
∫ K

0

[c2 + c0(x)]dG(j)(x) + c3[1 −G(j)(K)]}.(9)

From Lemma 2.3 and Lemma 2.4, by using the theory of renewal reward process [10], we
have:

Theorem 2.5 Let C(T,N) denote the expected cost per unit time in the steady-state. Then,

C(T,N) =
E[C]
E[U ]

,(10)

where

E[C] = c1 +
N−1∑
j=1

∫ T

0

Hj−1(t)λ(t)dt{
∫ K

0

[c2 + c0(x)]dG(j)(x) + c3[1 −G(j)(K)]},
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and

E[U ] =
N−1∑
j=0

∫ T

0

Hj(t)dt.

Suppose that shocks occur according to a Poisson process with rate λ, i.e., λ(t) = λ,
R(t) = λt and Hj(t) = [(λt)j/j!]e−λt (j = 0, 1, 2, · · · ). Further, assume that the cost
of minimal maintenance is proportional to the total damage, i.e., c2 + c0(x) = c2 + c0x
(0 ≤ x < K).

Corollary 2.6 When λ(t) = λ and c0(x) = c0x, the expected cost per unit time is

C(T,N) =
c1 + λ

∑N−1
j=1

∫ T

0 Hj−1(t)dt[c3 − c0
∫ K

0 G(j)(x)dx]∑N−1
j=0

∫ T

0
Hj(t)dt

.(11)

3. Optimal Time T ∗.

Lemma 3.1 Let C(T ) denote the expected cost per unit time when the system is replaced
only at time T . Then,

C(T ) ≡ lim
N→∞

C(T,N) = c3λ +
c1 − c0λ

∑∞
j=1

∫ K

0 G(j)(x)dx
∫ T

0 Hj−1(t)dt
T

.(12)

Theorem 3.2 If
∫ K

0
M(x)dx > c1/c0 then there exists a finite T ∗ uniquely which minimizes

C(T ), and it satisfies

∞∑
j=1

Hj(T )
j∑

i=1

∫ K

0

[G(i)(x) −G(j)(x)]dx = c1/c0.(13)

The resulting cost is

C(T ∗)/λ = c3 − c0

∞∑
j=0

Hj(T ∗)
∫ K

0

G(j+1)(x)dx,(14)

where M(x) ≡ ∑∞
j=1 G

(j)(x). If
∫ K

0
M(x)dx ≤ c1/c0 then T ∗ = ∞ and C(∞) = c3λ.

Proof: We easily have that C(∞) ≡ limT→∞ C(T ) = c3λ. Thus, there exists a positive T ∗

(0 < T ∗ ≤ ∞) which minimizes C(T ). A necessary condition that a finite T ∗ exists is that
it satisfies (13) and is given by differentiating C(T ) with respect to T and setting it equal
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to zero. Let U(T ) be the left-hand side of (13), we have

U(0) ≡ lim
T→0

U(T ) = 0,

U(∞) ≡ lim
T→∞

U(T ) = lim
T→∞

∞∑
j=1

∫ K

0

G(j)(x)dx[
∞∑

i=j

Hi(T ) − jHj(T )]

=
∫ K

0

∞∑
j=1

G(j)(x)dx =
∫ K

0

M(x)dx,

U ′(T ) = λ

∞∑
j=1

[Hj−1(T ) −Hj(T )]
j∑

i=1

∫ K

0

[G(i)(x) −G(j)(x)]dx

= λ
∞∑

j=1

Hj(T )
∫ K

0

[
j+1∑
i=1

G(i)(x) − (j + 1)G(j+1)(x) −
j∑

i=1

G(i)(x) + jG(j)(x)]dx

= λ
∞∑

j=1

Hj(T )j
∫ K

0

[G(j)(x) −G(j+1)(x)]dx > 0.

Thus, U(T ) is a strictly increasing function from 0 to
∫ K

0 M(x)dx. If
∫ K

0 M(x)dx > c1/c0
then there exists a finite T ∗ uniquely which satisfies (13), and the resulting cost is given in
(14).

Example 3.3 Suppose that a database is updated according to a Poisson process with rate
λ. Further, an amount of only files, which have changed or are new at the j-th update since
the last full backup, is Yj . It is assumed that each Yj has an identical probability distribution
function Gj(x) = 1 − e−µx, i.e., G(j)(x) = 1 − ∑j−1

i=0 [(µx)i/i!]e−µx (j = 1, 2, · · · ) and
M(K) = µK. We replace shock by update, damage by updated files , minimal maintenance
by incremental backup, minimal repair by total backup, and replacement by full backup.

In this case, to compute (13), let gj(s) denote the Laplace-Stieltjes (LS) transform of
Cdf Gj(x), i.e.,

gj(s) ≡
∫ ∞

0

e−sxdGj(x),

for s > 0, and g(j)(s) denote the LS transform of Cdf G(j)(x). When Gj(x) = 1 − e−µx

(j = 1, 2, · · · ), we easily have

g(j)(s) = g(j−1)(s)gj(s),

and

gj(s) =
µ

s + µ
.

Thus,

1
s

[g(j−1)(s) − g(j)(s)] =
1
µ
g(j)(s).(15)

Inverting the LS transforms of (15),
∫ K

0

[G(j−1)(x) −G(j)(x)]dx =
1
µ
G(j)(K).(16)
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From (16), we have

1
µ

∞∑
i=j+1

G(i)(K) =
∞∑

i=j+1

∫ K

0

[G(i−1)(x) −G(i)(x)]dx =
∫ K

0

G(j)(x)dx,

and hence,
j∑

i=1

∫ K

0

[G(i)(x) −G(j)(x)]dx =
1
µ

j−1∑
i=1

iG(i+1)(K).

Thus, the equation (13) is simplified as

∞∑
j=1

Hj+1(T )
j∑

i=1

iG(i+1)(K) =
µc1
c0

.(17)

Let Q(T ) be the left-hand side of (17),

Q(0) ≡ lim
T→0

Q(T ) = 0,

Q(∞) ≡ lim
T→∞

Q(T ) = µU(∞) = µ

∫ K

0

M(x)dx =
(µK)2

2
.

Thus, it is easily proved that Q(T ) is a strictly increasing function of T from 0 to (µK)2/2.
If (µK)2/2 > µc1/c0 then there exists a finite T ∗ uniquely which satisfies (17), and from
(14) and (16), the resulting cost is rewritten as

C(T ∗)/λ = c2 + c0

∞∑
j=0

Hj(T ∗)
∫ K

0

[1 −G(j+1)(x)]dx

= c2 + c0

∞∑
j=0

Hj(T ∗)
j∑

i=0

∫ K

0

[G(i)(x) −G(i+1)(x)]dx

= c2 +
c0
µ

∞∑
j=0

Hj(T ∗)
j+1∑
i=1

G(i)(K).

Corollary 3.4 When Gj(x) = 1−e−µx (j = 1, 2, · · · ), we have the following optimal policy:
If µK2/2 > c1/c0 then there exists a finite T ∗ (0 < T ∗ < ∞) uniquely which satisfies (17).
The resulting cost is

C(T ∗)/λ = c2 +
c0
µ

∞∑
j=0

Hj(T ∗)
j+1∑
i=1

G(i)(K).(18)

If µK2/2 ≤ c1/c0 then T ∗ = ∞, and the resulting cost is c3λ.

Example 3.5 It is supposed in example 3.3 that the total volume of files is 5 × 105 trucks
and a threshold level K is 3 × 105 trucks which correspond to 60% of the total volume.
Table 1 gives the optimal full backup times λT ∗, the resulting costs C(T ∗)/λ for c1 =
40, 50, 75, 100, 150, 200, and µK = 8, 12 when c2 = 10 and c0 = 10−4. It is found from the
optimal policy that if 15µK > c1 then T ∗ < ∞, and conversely, if 15µK ≤ c1 then T ∗ = ∞
and C(∞)/λ = 40. This shows that both optimal T ∗ and costs C(T ∗) are increasing with
c1, and C(T ∗) are decreasing with µK. However, T ∗ are smaller for small c1, and conversely,
are greater for large c1, when µK is smaller. This reason would be explained that if the
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cost c1 is small then it is better to perform the full backup early, but if c1 is large then it
is better to do it lately, especially when its mean updated file is large.

Table 1. Optimal full backup times λT ∗ and resulting costs C(T ∗)/λ

c1 40 50 75 100 150 200

µK = 8
λT ∗ 5.144 5.946 8.098 11.149 ∞ ∞

C(T ∗)/λ 30.467 32.274 35.878 38.537 40.000 40.000

µK = 12
λT ∗ 5.823 6.587 8.371 10.163 14.895 ∞

C(T ∗)/λ 26.537 28.149 31.505 34.213 38.328 40.000

For example, when the mean time of update is 1/λ = 1 day, c1 = 50 and µK = 12, the
optimal full backup time T ∗ is about 7 days. In this case, K/(λ/µ) = 12 days, and note
that it represents the mean time until the total updated files exceed a threshold level K.

4. Optimal Shock Number N∗.

Lemma 4.1 Let C(N) denote the expected cost per unit time when the system is replaced
only at shock number N . Then,

C(N)
λ

≡ lim
T→∞

C(T,N)
λ

= c3 +
c1 − c2 − c0

∑N−1
j=0

∫ K

0 G(j)(x)dx
N

.(19)

Proof: From Corollary 2.6, using the relation

lim
T→∞

∫ T

0

Hj(t)λdt = lim
T→∞

∞∑
i=j+1

Hi(T ) = 1,

we have

C(N)
λ

=
c1 + c3(N − 1) − c0

∑N−1
j=1

∫ K

0
G(j)(x)dx

N

= c3 +
c1 − c2 − c0

∑N−1
j=0

∫ K

0 G(j)(x)dx
N

.

Theorem 4.2 If
∫ K

0 M(x)dx > (c1 − c3)/c0 then there exists a finite N∗ uniquely which
minimizes C(N) and it satisfies

L(N) ≥ (c1 − c2)/c0 and L(N − 1) < (c1 − c2)/c0,(20)

where

L(N) ≡
N−1∑
j=0

∫ K

0

[G(j)(x) −G(N)(x)]dx.(21)

If
∫ K

0
M(x)dx ≤ (c1 − c3)/c0 then N∗ = ∞.
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Proof: A necessary condition that a finite N∗ minimizes C(N) is given by forming the
inequalities C(N + 1) ≥ C(N) and C(N) < C(N − 1). From these inequalities, we have
(20). Further,

L(1) =
∫ K

0

[1 −G(1)(x)]dx,

L(∞) ≡ lim
N→∞

L(N) =
∫ K

0

[1 + M(x)]dx,

L(N + 1) − L(N) = (N + 1)
∫ K

0

[G(N)(x) −G(N+1)(x)]dx > 0.

Thus, L(N) is a strictly increasing function from 0 to
∫ K

0 [1+M(x)]dx . If
∫ K

0 [1+M(x)]dx >

(c1 − c2)/c0 then there exists a finite N∗ uniquely which satisfies (20), and if
∫ K

0 [1 +
M(x)]dx ≤ (c1 − c2)/c0 then N∗ = ∞.

Example 4.3 In example 3.3, we perform a full backup at backup number N when Gj(x) =
1 − eµx and M(x) = µx. In this case, from (16),

N−1∑
j=0

∫ K

0

[G(j)(x) −G(N)(x)]dx =
1
µ

N−1∑
j=0

N∑
i=j+1

G(i)(K) =
1
µ

N∑
j=1

jG(j)(K).

Thus, the equation (20) is simpfied as

N∑
j=1

jG(j)(K) ≥ µ(c1 − c2)
c0

and

N−1∑
j=1

jG(j)(K) <
µ(c1 − c2)

c0
.(22)

Let L1(N) ≡ ∑N
j=1 jG

(j)(K),

L1(1) = 1 − e−µK ,

L1(∞) ≡ lim
N→∞

L1(N) = µL(∞) = µK +
(µK)2

2
.

Thus, L1(N) is a strictly increasing function of N from 1 − e−µK to µK + (µK)2/2. If
µK + (µK)2/2 > µ(c1 − c2)/c0 then there exists a finite N∗ uniquely which satisfies (22),
and from (19), the resulting cost is

C(N∗)
λ

= c2 +
c1 − c2 + c0

∑N∗−1
j=0

∫ K

0 [1 −G(j)(x)]dx
N∗

= c2 +
c1 − c2 + c0

µ

∑N∗−1
j=1

∑j
i=1 G

(i)(K)

N∗

= c2 +
c1 − c2 + c0

µ [N∗ ∑N∗

j=1 G
(j)(K) − ∑N∗

j=1 jG
(j)(K)]

N∗ .

Corollary 4.4 When Gj(x) = 1−e−µx (j = 1, 2, · · · ), we have the following optimal policy:
If µK2/2 > (c1 − c3)/c0 then there exists a finite N∗ uniquely which minimizes C(N), and
it satisfies (22). The resulting cost is

C(N∗)
λ

= c2 +
c0
µ

N∗∑
j=1

G(j)(K) +
c1 − c2 − c0

µ

∑N∗

j=1 jG
(j)(K)

N∗ .(23)
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If µK2/2 ≤ (c1 − c3)/c0 then N∗ = ∞.

Example 4.5 It is supposed in example 4.3 that the total volume of files is 5 × 105 trucks
and a threshold level K is 3 × 105 trucks which correspond to 60% of the total volume.
Table 2 gives the optimal full backup number N∗ and the resulting costs C(N∗)/λ for
c1 = 40, 50, 75, 100, 150, 200 and µK = 8, 12 when c2 = 10 and c0 = 10−4. It is found from
the optimal policy that if c1 < 210 then N∗ < ∞, and conversely, if c1 ≥ 210 then N∗ = ∞
and C(∞)/λ = 40, when µK = 12. For example, when c1 = 50, the optimal number is
N∗ = 6.

Table 2. Optimal full backup number N∗ and resulting costs C(N∗)/λ

c1 40 50 75 100 150 200

µK = 8
N∗ 4 5 6 8 12 ∞

C(N∗)/λ 23.106 25.440 30.058 33.788 38.913 40.000

µK = 12
N∗ 5 6 7 9 11 15

C(N∗)/λ 20.998 22.911 26.770 29.931 34.972 38.839

The change of optimal number N∗ is similar to the optimal times λT ∗. It is noted that
λT ∗ represents the expected number of updates during (0, T ∗], and N∗ < λT ∗, C(N∗)/λ <
C(T ∗)/λ under the same conditions. In general, a replacement policy for backup number
N would be more economical than that for time T under the same conditions.
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