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FUZZY BCC-SUBALGEBRAS OF BCC-ALGEBRAS

WITH RESPECT TO A t-NORM

Wies�law A. Dudek, Kyung Ho Kim and Young Bae Jun

Abstract. The notion of T -fuzzy BCC-subalgebras is introduced, and then some related re-
sults are obtained. Using a t-norm T , the direct product and T -product of T -fuzzy subalgebras
are discussed, and their properties are investigated.

1. Introduction

A BCK-algebra is an important class of logical algebras introduced by K. Iséki and
was extensively investigated by several researchers. The class of all BCK-algebras is a
quasivariety. K. Iséki posed an interesting problem (solved by A. Wroński [20]) whether
the class of BCK-algebras is a variety. In connection with this problem, Y. Komori ([18])
introduced a notion of BCC-algebras, and W. A. Dudek ([2, 3]) redefined the notion of
BCC-algebras by using a dual form of the ordinary definition in the sense of Y. Komori.
L. A. Zadeh [23] introduced the notion of fuzzy sets. At present this concept has been
applied to many mathematical branches, such as group, functional analysis, probability
theory, topology, and so on. In 1991, O. G. Xi [21] applied this concept to BCK-algebras,
and he introduced the notion of fuzzy subalgebras(ideals) of the BCK-algebras with respect
to minimum, and since then Y. B. Jun et al. studied fuzzy subalgebras and fuzzy ideals
(see [11, 15, 16]), and moreover several fuzzy structures in BCC-algebras are considered
(see [4, 5, 6, 7, 8]). In the present paper, we will redefine the fuzzy BCC-subalgebra of
the BCC-algebras with respect to a t-norm T and hence generalize the notion in [4], and
obtain some related results. we consider the direct product and t-normed product of fuzzy
BCC-subalgebras of BCC-algebras with respect to a t-norm.

2. Preliminaries

By a BCK-algebra we mean an algebra (G, ∗, 0) of type (2,0) satisfying the following
conditions:
(I) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,
(II) (x ∗ (x ∗ y)) ∗ y = 0,
(III) x ∗ x = 0,
(IV) 0 ∗ x = 0,
(V) x ∗ y = 0 and y ∗ x = 0 imply x = y,

for all x, y, z ∈ G. We can define a partial ordering “≤” on G by x ≤ y if and only if
x ∗ y = 0.
In any BCK-algebra G, the following hold:
(P1) x ∗ 0 = x,
(P2) x ∗ y ≤ x,
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(P3) (x ∗ y) ∗ z = (x ∗ z) ∗ y,

(P4) (x ∗ z) ∗ (y ∗ z) ≤ x ∗ y,

(P5) x ≤ y implies x ∗ z ≤ y ∗ z and z ∗ y ≤ z ∗ x.

By a BCC-algebra we mean a non-empty set G with a constant 0 and a binary operation
∗ satisfying the following conditions:
(VI) ((x ∗ y) ∗ (z ∗ y)) ∗ (x ∗ z) = 0,
(III) x ∗ x = 0,
(IV) 0 ∗ x = 0,
(P1) x ∗ 0 = x,
(V) x ∗ y = 0 and y ∗ x = 0 imply x = y.

for all x, y, z ∈ G. Any BCK-algebra is a BCC-algebra, but there are BCC-algebras which
are not BCK-algebras. Note that a BCC-algebra is a BCK-algebra if and only if it satisfies:
(P3) (x ∗ y) ∗ z = (x ∗ z) ∗ y.
On any BCC-algebra (similarly as in the case of BCK-algebras) one can define the natural

ordering “≤” by putting
(1) x ≤ y ⇐⇒ x ∗ y = 0.
It is not difficult to verify that this order is partial and 0 is its smallest element. Moreover,

in any BCC-algebra G, the following are true:
(2) (x ∗ y) ∗ (z ∗ y) ≤ x ∗ z,

(P5) x ≤ y implies x ∗ z ≤ y ∗ z and z ∗ y ≤ z ∗ x.
A non-empty subset S of a BCC-algebra G is called a BCC-subalgebra of G if x ∗ y ∈ S

for all x, y ∈ S.
A fuzzy set in a set G is a function µ : G → [0, 1]. Let µ be a fuzzy set in a set G. For

α ∈ [0, 1], the set U(µ;α) := {x ∈ G | µ(x) ≥ α} is called a level subset of µ. A fuzzy set µ
in a BCC-algebra G is called a fuzzy BCC-subalgebra of G if it satisfies the inequality:

µ(x ∗ y) ≥ min{µ(x), µ(y)}

for all x, y ∈ G.

3. T -fuzzy BCC-subalgebras

Definition 3.1 ([1]). By a t-norm T , we mean a function T : [0, 1]×[0, 1]→ [0, 1] satisfying
the following conditions:
(T1) T (x, 1) = x,

(T2) T (x, y) ≤ T (x, z) if y ≤ z,
(T3) T (x, y) = T (y, x),
(T4) T (x, T (y, z)) = T (T (x, y), z),

for all x, y, z ∈ [0, 1].
Every t-norm T has a useful property:

T (α, β) ≤ min{α, β}

for all α, β ∈ [0, 1].
Definition 3.2. A function µ : G → [0, 1] is called a fuzzy BCC-subalgebra of a BCC-
algebra G with respect to a t-norm T (briefly, a T -fuzzy BCC-subalgebra of G) if µ(x ∗ y) ≥
T (µ(x), µ(y)) for all x, y ∈ G.
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Example 3.3. Consider a proper BCC-algebra G = {0, 1, 2, 3, 4} with the Cayley table as
follows:

∗ 0 1 2 3 4

0 0 0 0 0 0
1 1 0 1 0 0
2 2 2 0 0 0
3 3 3 1 0 0
4 4 3 4 3 0

Define a fuzzy set µ in G by

µ(x) :=
{
1 if x ∈ {0, 1, 2},
0 otherwise,

and let Tm : [0, 1]× [0, 1]→ [0, 1] be a function defined by

Tm(α, β) = max{α+ β − 1, 0}
for all α, β ∈ [0, 1]. Then Tm is a t-norm ([22]). It is easy to check that µ satisfies the
inequality:

µ(x ∗ y) ≥ Tm(µ(x), µ(y))

for all x, y ∈ G. Hence µ is a Tm-fuzzy BCC-subalgebra of G.

Theorem 3.4. Let µ be a T -fuzzy BCC-subalgebra of a BCC-algebra G and let α ∈ [0, 1].
Then
(i) if α = 1 then U(µ;α) is either empty or a BCC-subalgebra of G.
(ii) if T = min, then U(µ;α) is either empty or a BCC-subalgebra of G, and moreover

µ(0) ≥ µ(x) for all x ∈ G.

Proof. (i) Assume that α = 1 and let x, y ∈ U(µ;α). Then µ(x) ≥ α = 1 and µ(y) ≥ α = 1.
It follows from Definitions 3.1 and 3.2 that

µ(x ∗ y) ≥ T (µ(x), µ(y)) ≥ T (1, 1) = 1

so that x ∗ y ∈ U(µ; 1). Hence U(µ;α) is a BCC-subalgebra of G.
(ii) Assume that T = min and let x, y ∈ U(µ;α). Then

µ(x ∗ y) ≥ T (µ(x), µ(y)) = min(µ(x), µ(y)) ≥ min(α,α) = α

for all α ∈ [0, 1], and so x∗y ∈ U(µ;α). Thus U(µ;α) is a BCC-subalgebra of G. Moreover,
since x ∗ x = 0 for all x ∈ G, we have

µ(0) = µ(x ∗ x) ≥ T (µ(x), µ(x)) = min(µ(x), µ(x)) = µ(x).

This completes the proof. �
Theorem 3.5. Let µ be a T -fuzzy BCC-subalgebra of a BCC-algebra G. If there is a
sequence {xn} in G such that lim

n→∞T (µ(xn), µ(xn)) = 1, then µ(0) = 1.

Proof. Let x ∈ G. Then µ(0) = µ(x∗x) ≥ T (µ(x), µ(x)). Therefore µ(0) ≥ T (µ(xn), µ(xn))
for each n ∈ N. Since 1 ≥ µ(0) ≥ lim

n→∞T (µ(xn), µ(xn)) = 1, it follows that µ(0) = 1, ending
the proof. �
If µ is a fuzzy set in a BCC-algebra G and θ is a mapping from G into itself, we define

a mapping µ[θ] : G → [0, 1] by µ[θ](x) = µ(θ(x)) for all x ∈ G.
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Proposition 3.6. If µ is a T -fuzzy BCC-subalgebra of a BCC-algebra G and θ is an en-
domorphism of G, then µ[θ] is a T -fuzzy BCC-subalgebra of G.

Proof. For any x, y ∈ G, we have

µ[θ](x ∗ y) = µ(θ(x ∗ y)) = µ(θ(x) ∗ θ(y))

≥ T (µ(θ(x)), µ(θ(y))) = T (µ[θ](x), µ[θ](y)).

Hence µ[θ] is a T -fuzzy BCC-subalgebra of G. �
Let f be a mapping defined on a BCC-algebra G. If ν is a fuzzy set in f(G) then the

fuzzy set µ = ν ◦f in G (i.e., the fuzzy set defined by µ(x) = ν(f(x)) for all x ∈ G) is called
the preimage of ν under f .

Theorem 3.7. An onto homomorphic preimage of a T -fuzzy BCC-subalgebra is a T -fuzzy
BCC-subalgebra.

Proof. Let f : G → G′ be an onto homomorphism of BCC-algebras, ν a T -fuzzy BCC-
subalgebra of G′, and µ the preimage of ν under f . Then

µ(x ∗ y) = ν(f(x ∗ y)) = ν(f(x) ∗ f(y))

≥ T (ν(f(x)), ν(f(y))) = T (µ(x), µ(y))

for all x, y ∈ G. Hence µ is a T -fuzzy BCC-subalgebra of G. �
If µ is a fuzzy set in a BCC-algebra G and f is a mapping defined on G. The fuzzy set

µf in f(G) defined by µf (y) = sup
x∈f−1(y)

µ(x) for all y ∈ f(G) is called the image of µ under

f . A fuzzy set µ in G is said to have sup property if, for every subset T ⊆ G, there exists
t0 ∈ T such that µ(t0) = sup

t∈T
µ(t).

Proposition 3.8. An onto homomorphic image of a fuzzy BCC-subalgebra with sup prop-
erty is a fuzzy BCC-subalgebra.

Proof. Let f : G → G′ be an onto homomorphism of BCC-algebras and let µ be a fuzzy
BCC-subalgebra of G with sup property. Given x′, y′ ∈ G′, let x0 ∈ f−1(x′) and y0 ∈
f−1(y′) such that µ(x0) = sup

t∈f−1(x′)
µ(t) and µ(y0) = sup

t∈f−1(y′)
µ(t), respectively. Then

µf (x′ ∗ y′) = sup
z∈f−1(x′∗y′)

µ(z)

≥ min{µ(x0), µ(y0)}
= min{ sup

t∈f−1(x′)
µ(t), sup

t∈f−1(y′)
µ(t)}

= min{µf(x′), µf (y′)}.

Hence µf is a fuzzy BCC-subalgebra of G′. �
Proposition 3.8 can be strengthened in the following way. To do this we need the following

definition.

Definition 3.9 ([22]). A t-norm T on [0, 1] is called a continuous t-norm if T is a continuous
function from [0, 1]× [0, 1] to [0, 1] with respect to the usual topology.
Note that the function “min” is a continuous t-norm.
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Theorem 3.10. Let T be a continuous t-norm and let f be a homomorphism on a BCC-
algebra G. If µ is a T -fuzzy BCC-subalgebra of G, then µf is a T -fuzzy BCC-subalgebra of
f(G).

Proof. Let A1 = f−1(y1), A2 = f−1(y2) and A12 = f−1(y1 ∗ y2), where y1, y2 ∈ f(G).
Consider the set

A1 ∗ A2 := {x ∈ G | x = a1 ∗ a2 for some a1 ∈ A1 and a2 ∈ A2}.

If x ∈ A1 ∗ A2, then x = x1 ∗ x2 for some x1 ∈ A1 and x2 ∈ A2 and so

f(x) = f(x1 ∗ x2) = f(x1) ∗ f(x2) = y1 ∗ y2,

i.e., x ∈ f−1(y1 ∗ y2) = A12. Thus A1 ∗ A2 ⊆ A12. It follows that

µf (y1 ∗ y2) = sup
x∈f−1(y1∗y2)

µ(x) = sup
x∈A12

µ(x)

≥ sup
x∈A1∗A2

µ(x) ≥ sup
x1∈A1,x2∈A2

µ(x1 ∗ x2)

≥ sup
x1∈A1,x2∈A2

T (µ(x1), µ(x2)).

Since T is continuous, for every ε > 0 there exists a number δ > 0 such that if sup
x1∈A1

µ(x1)−
x∗

1 ≤ δ and sup
x2∈A2

µ(x2)− x∗
2 ≤ δ then

T ( sup
x1∈A1

µ(x1), sup
x2∈A2

µ(x2))− T (x∗
1, x

∗
2) ≤ ε.

Choose a1 ∈ A1 and a2 ∈ A2 such that sup
x1∈A1

µ(x1)−µ(a1) ≤ δ and sup
x2∈A2

µ(x2)−µ(a2) ≤ δ.

Then
T ( sup

x1∈A1

µ(x1), sup
x2∈A2

µ(x2))− T (µ(a1), µ(a2)) ≤ ε.

Consequently

µf (y1 ∗ y2) ≥ sup
x1∈A1,x2∈A2

T (µ(x1), µ(x2))

≥ T ( sup
x1∈A1

µ(x1), sup
x2∈A2

µ(x2))

= T (µf (y1), µf (y2)),

which shows that µf is a T -fuzzy BCC-subalgebra of f(G). �

Lemma 3.11 ([1]). Let T be a t-norm. Then

T (T (α, β), T (γ, δ)) = T (T (α, γ), T (β, δ))

for all α, β, γ, δ ∈ [0, 1].
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Theorem 3.12. Let T be a t-norm and let G = G1×G2 be the direct product BCC-algebra
of BCC-algebras G1 and G2. If µ1 (resp. µ2) is a T -fuzzy BCC-subalgebra of G1 (resp.
G2), then µ = µ1 × µ2 is a T -fuzzy BCC-subalgebra of G defined by

µ(x1, x2) = (µ1 × µ2)(x1, x2) = T (µ1(x1), µ2(x2))

for all (x1, x2) ∈ G1 × G2.

Proof. Let x = (x1, x2) and y = (y1, y2) be any elements of G = G1 × G2. Then

µ(x ∗ y) = µ((x1, x2) ∗ (y1, y2)) = µ(x1 ∗ y1, x2 ∗ y2)

= T (µ1(x1 ∗ y1), µ2(x2 ∗ y2))

≥ T (T (µ1(x1), µ1(y1)), T (µ2(x2), µ2(y2)))

= T (T (µ1(x1), µ2(x2)), T (µ1(y1), µ2(y2)))

= T (µ(x1, x2), µ(x2, y2))

= T (µ(x), µ(y)).

Hence µ is a T -fuzzy BCC-subalgebra of G. �

We will generalize the idea to the product of n T -fuzzy BCC-subalgebras. We first need

to generalize the domain of t-norm T to
n∏

i=1

[0, 1] as follows:

Definition 3.13 ([1]). The function Tn :
n∏

i=1

[0, 1]→ [0, 1] is defined by

Tn(α1, α2, · · · , αn) = T (αi, Tn−1(α1, · · · , αi−1, αi+1, · · · , αn))

for all 1 ≤ i ≤ n, where n ≥ 2, T2 = T and T1 = id (identity).

Lemma 3.14 ([1]). For a t-norm T and every αi, βi ∈ [0, 1] where 1 ≤ i ≤ n and n ≥ 2,
we have

Tn(T (α1, β1), T (α2, β2), · · · , T (αn, βn))

= T (Tn(α1, α2, · · · , αn), Tn(β1, β2, · · · , βn)).

Theorem 3.15. Let T be a t-norm and let {Gi}n
i=1 be the finite collection of BCC-algebras

and G =
n∏

i=1

Gi the direct product BCC-algebra of {Gi}. Let µi be a T -fuzzy BCC-subalgebra

of Gi, where 1 ≤ i ≤ n. Then µ =
n∏

i=1

µi defined by

µ(x1, x2, · · · , xn) = (
n∏

i=1

µi)(x1, x2, · · · , xn)

= Tn(µ1(x1), µ2(x2), · · · , µn(xn))

is a T -fuzzy BCC-subalgebra of the BCC-algebra G.
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Proof. Let x = (x1, x2, · · · , xn) and y = (y1, y2, · · · , yn) be any elements of G =
n∏

i=1

Gi.

Then

µ(x ∗ y)

= µ(x1 ∗ y1, x2 ∗ y2, · · · , xn ∗ yn)

= Tn(µ1(x1 ∗ y1), µ2(x2 ∗ y2), · · · , µn(xn ∗ yn))

≥ Tn(T (µ1(x1), µ1(y1)), T (µ2(x2), µ2(y2)), · · · , T (µn(xn), µn(yn)))

= T (Tn(µ1(x1), µ2(x2), · · · , µn(xn)), Tn(µ1(y1), µ2(y2), · · · , µn(yn)))

= T (µ(x1, x2, · · · , xn), µ(y1, y2, · · · , yn))

= T (µ(x), µ(y)).

Hence µ is a T -fuzzy BCC-subalgebra of G. �

Definition 3.16. Let T be a t-norm and let µ and ν be fuzzy sets in a BCC-algebra G.
Then the T -product of µ and ν, written [µ · ν]T , is defined by [µ · ν]T (x) = T (µ(x), ν(x)) for
all x ∈ G.

Theorem 3.17. Let T be a t-norm and let µ and ν be T -fuzzy BCC-subalgebras of a BCC-
algebra G. If T ∗ is a t-norm which dominates T , i.e.,

T ∗(T (α, β), T (γ, δ)) ≥ T (T ∗(α, γ), T ∗(β, δ))

for all α, β, γ, δ ∈ [0, 1], then the T ∗-product of µ and ν, [µ·ν]T∗ , is a T -fuzzy BCC-subalgebra
of G.

Proof. For any x, y ∈ G we have

[µ · ν]T∗(x ∗ y) = T ∗(µ(x ∗ y), ν(x ∗ y))

≥ T ∗(T (µ(x), µ(y)), T (ν(x), ν(y)))

≥ T (T ∗(µ(x), ν(x)), T ∗(µ(y), ν(y)))

= T ([µ · ν]T∗(x), [µ · ν]T∗(y)).

Hence [µ · ν]T∗ is a T -fuzzy BCC-subalgebra of G. �

Let f : G → G′ be an onto homomorphism of BCC-algebras. Let T and T ∗ be t-
norms such that T ∗ dominates T . If µ and ν are T -fuzzy BCC-subalgebras of G′, then
the T ∗-product of µ and ν, [µ · ν]T∗ , is a T -fuzzy BCC-subalgebra of G′. Since every onto
homomorphic preimage of a T -fuzzy BCC-subalgebra is a T -fuzzy BCC-subalgebra, the
preimages f−1(µ), f−1(ν) and f−1([µ · ν]T∗) are T -fuzzy BCC-subalgebras of G. The next
theorem provides that the relation between f−1([µ · ν]T∗) and the T ∗-product [f−1(µ) ·
f−1(ν)]T∗ of f−1(µ) and f−1(ν).

Theorem 3.18. Let f : G → G′ be an onto homomorphism of BCC-algebras. Let T and
T ∗ be t-norms such that T ∗ dominates T . Let µ and ν be T -fuzzy BCC-subalgebras of G′.
If [µ ·ν]T∗ is the T ∗-product of µ and ν and [f−1(µ) ·f−1(ν)]T∗ is the T ∗-product of f−1(µ)
and f−1(ν), then

f−1([µ · ν]T∗) = [f−1(µ) · f−1(ν)]T∗ .
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Proof. For any x ∈ G we get

[f−1([µ · ν]T∗)](x) = [µ · ν]T∗(f(x))

= T ∗(µ(f(x)), ν(f(x)))

= T ∗([f−1(µ)](x), [f−1(ν)](x))

= [f−1(µ) · f−1(ν)]T∗(x),

ending the proof. �
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