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ABSTRACT. We introduce a new family of classes of operators which is derived from the Furuta
inequality. It is closely related to log-hyponormal operators defined by Tanahashi, the classes
A(p) and absolute p-paranormal operators defined by Furuta-Ito-Yamazaki. We discuss some
properties of operators in such classes and relations among them and extend results due to
Furuta-Ito-Yamazaki.

1. Introduction. Throughout this note, an operator means a bounded linear operator
acting on a Hilbert space. An operator A on H is positive, A > 0, if (Az,z) > 0 for all
x € H. In particular, we denote A > 0 if A > 0 is invertible.

A real valued continuous function f on [0,00) is called operator monotone if f is order-
preserving, i.e., f(4) > f(B) for A > B > 0. A typical example is the a-power function
x — z for o € [0, 1], which is the famous Lowner-Heinz inequality;

(1.1) A>B>0 implies A®>B® for «oe€]l0,1].

Another example is the logarithmic function log x, which induces a weaker order than the
usual order >. In [12], the chaotic order A > B for A, B > 0 is defined by log A > log B.

Recall that an operator T is hyponormal if 7*T — TT* > 0. Based on the Lowner-Heinz
inequality, Aluthge [1] introduced the p-hyponormal operators for p € (0, 1] by

(1.2) (T*TY > (TT*),

cf. [28] and [13]. Recently Tanahashi [26] introduced the log-hyponormality for invertible
operators by T*T > TT*, i.e., logT*T > log TT*, see [27]. Note that log-hyponormality is
regarded as 0-hyponormality sometimes. As a matter of fact, it is essential in the Putnam
inequality [27] and [6], cf. [4]:

If T is a log-hyponormal operator, then

1
[ log T*T —logTT*|| < — // r~t drdd,
™ o(T)

where o(T') is the spectrum of T'.
Now we have to state the celebrated order-preserving operator inequality, that is, the
Furuta inequality [15] and [16] for a one-page proof, see also [5] and [22]:
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The Furuta inequality. If A > B > 0, then P (A +2r)g=p+2r

for each r > 0, g=1 _
\\\\ P=gq

(1.3)  (B"APB")Y7 > (B"BPB")'/4

%
2

holds for p > 0 and ¢ > 1 with @
S
(*) (14+2r)g > p+2r @ ,&‘\
The domain representing (*) is drawn in the right
and it is shown in [25] that this domain is the —
best possible one for the Furuta inequality. (0, —2r) (1,0)
Figure

It is a historical extension of the Lowner-Heinz inequality and gives us the following
characterizations of the chaotic order:

Theorem A. The following statements are mutually equivalent for A, B > 0:
(i) A> B, i.e,log A > logB.
(ii) (BPA2PBP)z > B2 for all p > 0.
(iii) (B"A* B")#7 > B?" for all p,r > 0.

We remark that (ii) is due to Ando [3] and (iii) in [7] and [17], and that (iii) is regarded
as "the Furuta inequality for chaotic order”. We also refer [8].

Based on such a recent development of operator inequalities, Furuta, Ito and Yamazaki
[19] introduced new families of classes of operators; they are defined by operator inequal-
ities and norm inequalities, and named class A(k) and absolute k-paranormal operators
respectively.

In our preceding note [11], we continued their discussion. For this, we introduced a new
class A(p, p) of operators in order to make clear interrelation among such classes of operators
mentioned above: For p,r > 0, an operator T belongs to the class A(p,r) if it satisfies an
operator inequality

T

(1.4) (T[T 7e > T

We here note that the definition of A(p,r) is based on Theorem A and that A(k,1) is
nothing but A(k) due to Furuta-Ito-Yamazaki.

The purpose of this note is to develop such discussion; we introduce a new family of
classes of operators derived from the Furuta inequality. For p > 0, » > 0 and ¢ > 1, an
operator T belongs to F(p,r,q) if it satisfies an operator inequality

*|T *r £ o 2ot
(1.5) (IT*["|TPP|T=|)e > T
Thus we consider some properties of operators belonging to F(p,r,q) and relations among
these classes. Clearly our new family includes the class of p-hyponormal operators and
A(p,r) in (1.4). Precisely, A(p,r) = F(p,r, 2 for p,r > 0.

s

2. Preliminaries. An operator T on H is paranormal if it satisfies a norm inequality
(2.1) |T2z|| ||z > || T=||> for all 2 € H,

see [14],[18] and [21]. Ando [2] showed that every log-hyponormal is paranormal. To explain
it, Furuta-Ito-Yamazaki [19] introduced new families of classes of operators as follows:
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Definition B. Let k > 0. (i) An operator T belongs to the class A(k) if it satisfies
(2.2) (T TPAT)" > [T,

(ii) An operator T on H is absolute k-paranormal if it satisfies

(2.3) T T [l]|* > | Ta|**

forallx € H.

It is clear that the absolute 1-paranormality is nothing but the paranormality. It is
proved in [19] that these two families have monotonicity on k, e.g., A(k) C A(l) if k < I,
and that every operator in A(k) is absolute k-paranormal. Namely one is determined by
operator inequalities and the other norm inequalities; they constitute clearly parallel and
increasing lines.

On the other hand, we introduced p-paranormal operators for p > 0 by a norm inequality

(1.6) NTPoIT Pl > |17

for all z € H, where U is the partial isometry appeared in the polar decomposition T' = U|T|
of T. We proved that every p-paranormal operator is paranormal for 0 < p < 1, [10;
Theorem 4]. The background of p-paranormal operators is the following Holder-McCarthy
inequality [23], see [11]. It will be used in the below.

Ho6lder-McCarthy inequality. For A > 0 on H, the following inequalities hold for all
reH;

(2.4) (Az,z)" > ||lz|]PC~V(Arz,2) f0<r<1
and
(2.5) (Az,z)" < ||lz]?"=V(ATz,2) if r > 1.

Consequently, if 0 <t < s and ||z|| =1, then
(2.6) [A ] < A%

In addition, the p-paranormality is based on the fact that 7' = U|T| is p-hyponormal if
and only if S = U|T|? is hyponormal, [9; Lemma 1]. Actually, T = U|T| is p-paranormal if
and only if S = U|T|? is paranormal.

In our preceding note [11], we discussed some relations among A(k), A(p,p), absolute
k-paranormal and p-paranormal operators. We showed another parallelism between A(p, p)
and p-paranormal operators which is similar to parallelism between A(k) and absolute
k-paranormal operators obtained by Furuta-Ito-Yamazaki [19]. Among others, we gave
an approach to log-hyponormal operators from A(p,p) as p — 0, and proved that every
absolute k-paranormal operator is k-paranormal for & > 1, and that every k-paranormal
operator is normaloid.

3. Operators in F(p,r,q). In [11; Theorem 3.1], we considered the monotonicity of
A(p,r). So we first discuss that of F'(p,r,q).
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Theorem 3.1. If0<r <7’ and 1< q < ¢, then F(p,r,q) C F(p,r’,q) and F(p,r,q) C
F(p,r,q") for all p > 0.

Proof. Suppose that T' € F(p,r,q) and € > 0 is given. Putting A = |T'| and B = |T*|, we

have
2(p+r)

Ay = (B"A®B")i > B & =B

by the assumption, so that the Furuta inequality ensures that
L 2(p1+71)
(3.1) (B' AP Bi")i > B, *
for all p1,71 > 0 with (14 2r1)g > 2(p1 +71). Take py = £ and 71 =
(14 2r1)g > 2(p1 + 1) clearly, (3.1) is arranged as

% in (3.1). Since

(Br+6A2pBT+€)% > B 2(P+q7'+6) 7
that is, T € F(p,r + €,q).
In addition, the latter follows from the Lowner-Heinz inequality.

The following characterization of k-hyponormal operators is a simple application of the
Furuta inequality, cf. [11; Theorem 3.2]:

Theorem 3.2. For a fized k > 0, an operator T is k-hyponormal if and only if T €
F(2kp, 2kr,q) for all p,r >0 and ¢ > 1 with (1+ 2r)q > 2(p+r).

We now define a new family of classes of operators corresponding to the family of F'(p, r, q)
which is determined by norm inequalities: For p,r,q > 0, an operator T on H is (p,r,q)-
paranormal if

ptr I
(3.2) T el < [ITPUIT| x|

for all unit vectors x € H, where T' = U|T| is the polar decomposition of T. It is easily
seen that the p-paranormality is the (p, p, 2)-paranaormality. That is, it is a generalization
of the p-paranormality. Thus we have the following extension of [11; Theorem 3.4].

Theorem 3.3. If T € F(p,r,q) for p,r > 0 and ¢ > 1, then T is (p,r,q)-paranormal. In
particular, if T € F(p,p,2), then T is p-paranormal.

Proof. For a given unit vector x € H and T = U|T|, we have

2(p+r) 2(p+r)

|7 = v T U
<U*(|T*"|T1P|T*[")7U by T € Flp,r,q)
= U*(U|T|"U*|T|>?U|T|"U*) s U
= (IT/"U|TPPU T

Hence it follows from the Holder-McCarthy inequality (2.4) that
ptr TTT* ry L
T |* < (171U T*UT]") s 2, 2)
< ([TI"U°|TPPUIT ) r)'

= ||TPPUIT| 2|5,

so that T is (p,r, ¢)-paranormal.

4. (p,r,q)-paranormal operators. In this section, we first discuss the monotonicity
of the (p,r, ¢)-paranormality.
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Theorem 4.1. The (p,r,q)-paranormality is monotone increasing on g > 0. In addition,
the (p,r,1)-paranormality is monotone increasing on r.

Proof. Suppose that T is (p,r,q)-paranormal and ¢’ > ¢ > 0. For a given unit vector
x € H, it follows from (2.4) that

ptr ptr 9

ptr . pET a L. .q 1
NT] 2| = 1T | < [|T]" o z|« < [[|TPUIT| |+ = [|[T]PU[T| x|+,

so that T is (p,r, ¢')-paranormal.
Next suppose that T is (p,r, 1)-paranormal and € > 0. Then we have

NTPUIT™ || = [|TPUIT"T| ] > 1T T ]| = [T,

so that T is (p,r + €, 1)-paranormal.
Next we consider relations between (p, r, 1)-paranormality and p-paranormality.
Theorem 4.2. If T is (p,r,1)-paranormal, then T is max{p, r}-paranormal.

Proof. Let x be a given unit vector. If p > r, then
NTPUITPz|| = ||ITPUIT" TP | > TP\ TP" 2l = (| T1%]| > |||,

so that T is p-paranormal.
On the other hand, if p < r, then we note that

T || < TP+l 7
because |||T|"z||P™" < |||TP*"z||" by (2.6). Hence it follows that

T UIT"z) = ||(1TP)» UT| |
> ||TPUIT| || # |[|T|"2|' "> by (2.4)
> || TP+ || 7 |||T|"2||* "7 by the assumption
> |7 ]| A5 +=5) by the above remark

= [I|T[ ||,

so that T is r-paranormal.

From the viewpoint of the (p, r, ¢)-paranormality, we see the absolute p-paranormality in
[19]. Namely we generalize it as follows: An operator 7' on H is absolute (p, r)-paranormal
if it is (p,r, p + r)-paranormal, i.e., it satisfies

(4.1) NTPUIT| ]| > [T ||

for all unit vectors € H. Clearly the absolute (p,1)-paranormality is the absolute p-
paranormality.

In [19], it is shown that every T € A(p) is absolute p-paranormal. We now have the
following variant:



92 M. FUJII AND R. NAKAMOTO

Theorem 4.3. IfT € F(p,r,1) and p+r > 1, then T is absolute (p,r)-paranormal.
Proof. Since |T*|" =U|T|"U*, T € F(p,r,1) if and only if

PO TR > (TR,
Therefore it follows from (2.6) that for each unit vector x € H

TP ]| > (TP > ([T

Next we show that the absolute (p,r)-paranormality has the monotone property as well
as the absolute p-paranormality.

Theorem 4.4. Suppose that T is absolute (p,r)-paranormal. If 0 < r < 1, then T is
absolute (p',r)-paranormal for p’ > p. If p+1r > 1, then T is absolute (p,r’)-paranormal
forr' >r.

Proof. Let x be a given unit vector. If % > 1, then (2.5) implies that

TP UIT ) = T PUIT || U]
> ||| ®+ [|| T ]|
= [T+,

that is, T is absolute (p’, r)-paranormal.
To prove the latter, we may assume that 0 < e = ' —r < 1. Then it follows from (2.6)
that

NTPUITI" |l = | TPUITI|T| ]| 2 |IT||T || ||T| )~
> 1Tl OEH T | D) = T ] P

because 1 — (p 4+ r) < 0. That is, T is absolute (p, r')-paranormal.

Following our preceding note [11], we investigated the relation between p-paranormality
and absolute p-paranormality; we showed that every p-paranormal operator is absolute p-
paranormal for 0 < p < 1 and every absolute p-paranormal operator is p-paranormal for
p > 1. So we discuss relations between the (p,r)-paranormality and the absolute (p,r)-
paranormality.

Theorem 4.5. (1) If T is (p,r,q)-paranormal, then T is absolute (p,s)-paranormal for
s>0withr<s<l+4+randp+r>q(l—s+r).

(2) If T is absolute (p, s)-paranormal and p + s > 1, then T is (p,r,q)-paranormal for
r>sandqg>1 withql+r—3s)>p+r>q(r—s).

Corollary 4.6. (1) If T is (p,r,2)-paranormal, then T is absolute (p, s)-paranormal for
s>rwiths—r<landp+2s—r>2.

(2) If T is absolute (p, s)-paranormal and p + s > 1, then T is (p,r,2)-paranormal for
r>swith)<p+4+2s—1r <2,

Remark. Corollary 4.6 is a direct generalization of our preceding result [11 ; Theorem
4.2]. As a matter of fact, we obtain it by taking »r = p and s = 1 in above.
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Proof of Theorem 4.5. (1) Since T is (p,r, q)-paranormal and 1 — ¢ < 0, it follows from the
Holder-McCarthy inequality that for a given unit vector x

ITFPUITPe| = IITPUIT TP 2|

> (|| 7|5 Tl | T
ptr

> [Tl 59 T -0

= [T |=]"*,

so that T is absolute (p, s)-paranormal.
(2) Since T is absolute (p, s)-paranormal and p + s > 1, it follows that for a given unit
vector x

ITPUIT 2| = [IITPUITP T |
> (|TNT S|P ||| T ]|t~ )

pir, atr—s) pir =) 1
= (T ) o z|Pre| (T ) e )

2 TV )
pt+r
=T« =||%,

so that T is (p,r, ¢)-paranormal.

Remark. As in the proof of (2) in Theorem 4.5, we have a complementary result to it: If
T is absolute (p, s)-paranormal and p + s < 1, then T is (p, r, q)-paranormal for r > s and
g>1withg(r—s)>p+r.
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