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Abstract. We introduce a new family of classes of operators which is derived from the Furuta
inequality. It is closely related to log-hyponormal operators defined by Tanahashi, the classes
A(p) and absolute p-paranormal operators defined by Furuta-Ito-Yamazaki. We discuss some
properties of operators in such classes and relations among them and extend results due to
Furuta-Ito-Yamazaki.

1. Introduction. Throughout this note, an operator means a bounded linear operator
acting on a Hilbert space. An operator A on H is positive, A ≥ 0, if (Ax,x) ≥ 0 for all
x ∈ H . In particular, we denote A > 0 if A ≥ 0 is invertible.

A real valued continuous function f on [0,∞) is called operator monotone if f is order-
preserving, i.e., f(A) ≥ f(B) for A ≥ B ≥ 0. A typical example is the α-power function
x → xα for α ∈ [0, 1], which is the famous Löwner-Heinz inequality;

(1.1) A ≥ B ≥ 0 implies Aα ≥ Bα for α ∈ [0, 1].

Another example is the logarithmic function log x, which induces a weaker order than the
usual order ≥. In [12], the chaotic order A � B for A, B > 0 is defined by log A ≥ log B.

Recall that an operator T is hyponormal if T ∗T −TT ∗ ≥ 0. Based on the Löwner-Heinz
inequality, Aluthge [1] introduced the p-hyponormal operators for p ∈ (0, 1] by

(1.2) (T ∗T )p ≥ (TT ∗)p,

cf. [28] and [13]. Recently Tanahashi [26] introduced the log-hyponormality for invertible
operators by T ∗T � TT ∗, i.e., log T ∗T ≥ log TT ∗, see [27]. Note that log-hyponormality is
regarded as 0-hyponormality sometimes. As a matter of fact, it is essential in the Putnam
inequality [27] and [6], cf. [4]:

If T is a log-hyponormal operator, then

‖ log T ∗T − log TT ∗‖ ≤ 1
π

∫∫
σ(T )

r−1 drdθ,

where σ(T ) is the spectrum of T .
Now we have to state the celebrated order-preserving operator inequality, that is, the

Furuta inequality [15] and [16] for a one-page proof, see also [5] and [22]:
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The Furuta inequality. If A ≥ B ≥ 0, then
for each r ≥ 0,

(BrApBr)1/q ≥ (BrBpBr)1/q(1.3)

holds for p ≥ 0 and q ≥ 1 with

(1 + 2r)q ≥ p + 2r.(*)

The domain representing (*) is drawn in the right
and it is shown in [25] that this domain is the
best possible one for the Furuta inequality.

✲

✻p

q

(0,−2r)
(1, 0)

(1, 1)

q = 1
p = q

(1 + 2r)q = p + 2r

Figure

It is a historical extension of the Löwner-Heinz inequality and gives us the following
characterizations of the chaotic order:

Theorem A. The following statements are mutually equivalent for A,B > 0:

(i) A � B, i.e., log A ≥ log B.

(ii) (BpA2pBp)
1
2 ≥ B2p for all p > 0.

(iii) (BrA2pBr)
r

p+r ≥ B2r for all p, r > 0.

We remark that (ii) is due to Ando [3] and (iii) in [7] and [17], and that (iii) is regarded
as ”the Furuta inequality for chaotic order”. We also refer [8].

Based on such a recent development of operator inequalities, Furuta, Ito and Yamazaki
[19] introduced new families of classes of operators; they are defined by operator inequal-
ities and norm inequalities, and named class A(k) and absolute k-paranormal operators
respectively.

In our preceding note [11], we continued their discussion. For this, we introduced a new
class A(p, p) of operators in order to make clear interrelation among such classes of operators
mentioned above: For p, r > 0, an operator T belongs to the class A(p, r) if it satisfies an
operator inequality

(|T ∗|r|T |2p|T ∗|r) r
p+r ≥ |T ∗|2r.(1.4)

We here note that the definition of A(p, r) is based on Theorem A and that A(k, 1) is
nothing but A(k) due to Furuta-Ito-Yamazaki.

The purpose of this note is to develop such discussion; we introduce a new family of
classes of operators derived from the Furuta inequality. For p > 0, r ≥ 0 and q ≥ 1, an
operator T belongs to F (p, r, q) if it satisfies an operator inequality

(|T ∗|r|T |2p|T ∗|r) 1
q ≥ |T ∗| 2(p+r)

q .(1.5)

Thus we consider some properties of operators belonging to F (p, r, q) and relations among
these classes. Clearly our new family includes the class of p-hyponormal operators and
A(p, r) in (1.4). Precisely, A(p, r) = F (p, r, p+r

r ) for p, r > 0.

2. Preliminaries. An operator T on H is paranormal if it satisfies a norm inequality

‖T 2x‖‖x‖ ≥ ‖Tx‖2 for all x ∈ H,(2.1)

see [14],[18] and [21]. Ando [2] showed that every log-hyponormal is paranormal. To explain
it, Furuta-Ito-Yamazaki [19] introduced new families of classes of operators as follows:
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Definition B. Let k > 0. (i) An operator T belongs to the class A(k) if it satisfies

(2.2) (T ∗|T |2kT )
1

k+1 ≥ |T |2.

(ii) An operator T on H is absolute k-paranormal if it satisfies

(2.3) ‖|T |kTx‖‖x‖k ≥ ‖Tx‖k+1

for all x ∈ H.

It is clear that the absolute 1-paranormality is nothing but the paranormality. It is
proved in [19] that these two families have monotonicity on k, e.g., A(k) ⊆ A(l) if k < l,
and that every operator in A(k) is absolute k-paranormal. Namely one is determined by
operator inequalities and the other norm inequalities; they constitute clearly parallel and
increasing lines.

On the other hand, we introduced p-paranormal operators for p > 0 by a norm inequality

(1.6) ‖|T |pU |T |px‖‖x‖ ≥ ‖|T |px‖2

for all x ∈ H , where U is the partial isometry appeared in the polar decomposition T = U |T |
of T . We proved that every p-paranormal operator is paranormal for 0 < p < 1, [10;
Theorem 4]. The background of p-paranormal operators is the following Hölder-McCarthy
inequality [23], see [11]. It will be used in the below.

Hölder-McCarthy inequality. For A ≥ 0 on H, the following inequalities hold for all
x ∈ H;

(2.4) (Ax,x)r ≥ ‖x‖2(r−1)(Arx, x) if 0 ≤ r ≤ 1

and

(2.5) (Ax,x)r ≤ ‖x‖2(r−1)(Arx, x) if r ≥ 1.

Consequently, if 0 < t ≤ s and ‖x‖ = 1, then

(2.6) ‖Atx‖s ≤ ‖Asx‖t.

In addition, the p-paranormality is based on the fact that T = U |T | is p-hyponormal if
and only if S = U |T |p is hyponormal, [9; Lemma 1]. Actually, T = U |T | is p-paranormal if
and only if S = U |T |p is paranormal.

In our preceding note [11], we discussed some relations among A(k), A(p, p), absolute
k-paranormal and p-paranormal operators. We showed another parallelism between A(p, p)
and p-paranormal operators which is similar to parallelism between A(k) and absolute
k-paranormal operators obtained by Furuta-Ito-Yamazaki [19]. Among others, we gave
an approach to log-hyponormal operators from A(p, p) as p → 0, and proved that every
absolute k-paranormal operator is k-paranormal for k > 1, and that every k-paranormal
operator is normaloid.

3. Operators in F (p, r, q). In [11; Theorem 3.1], we considered the monotonicity of
A(p, r). So we first discuss that of F (p, r, q).
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Theorem 3.1. If 0 < r < r′ and 1 ≤ q < q′, then F (p, r, q) ⊆ F (p, r′, q) and F (p, r, q) ⊆
F (p, r, q′) for all p > 0.

Proof. Suppose that T ∈ F (p, r, q) and ε > 0 is given. Putting A = |T | and B = |T ∗|, we
have

A1 = (BrA2pBr)
1
q ≥ B

2(p+r)
q = B1

by the assumption, so that the Furuta inequality ensures that

(3.1) (Br1
1 A2p1

1 Br1
1 )

1
q ≥ B

2(p1+r1)
q

1

for all p1, r1 ≥ 0 with (1 + 2r1)q ≥ 2(p1 + r1). Take p1 = q
2 and r1 = qε

2(p+r) in (3.1). Since
(1 + 2r1)q ≥ 2(p1 + r1) clearly, (3.1) is arranged as

(Br+εA2pBr+ε)
1
q ≥ B

2(p+r+ε)
q ,

that is, T ∈ F (p, r + ε, q).
In addition, the latter follows from the Löwner-Heinz inequality.

The following characterization of k-hyponormal operators is a simple application of the
Furuta inequality, cf. [11; Theorem 3.2]:

Theorem 3.2. For a fixed k > 0, an operator T is k-hyponormal if and only if T ∈
F (2kp, 2kr, q) for all p, r ≥ 0 and q ≥ 1 with (1 + 2r)q ≥ 2(p + r).

We now define a new family of classes of operators corresponding to the family of F (p, r, q)
which is determined by norm inequalities: For p, r, q ≥ 0, an operator T on H is (p, r, q)-
paranormal if

(3.2) ‖|T | p+r
q x‖ ≤ ‖|T |pU |T |rx‖ 1

q

for all unit vectors x ∈ H , where T = U |T | is the polar decomposition of T . It is easily
seen that the p-paranormality is the (p, p, 2)-paranaormality. That is, it is a generalization
of the p-paranormality. Thus we have the following extension of [11; Theorem 3.4].

Theorem 3.3. If T ∈ F (p, r, q) for p, r > 0 and q ≥ 1, then T is (p, r, q)-paranormal. In
particular, if T ∈ F (p, p, 2), then T is p-paranormal.

Proof. For a given unit vector x ∈ H and T = U |T |, we have

|T | 2(p+r)
q = U∗|T ∗| 2(p+r)

q U

≤ U∗(|T ∗|r|T |2p|T ∗|r) 1
q U by T ∈ F (p, r, q)

= U∗(U |T |rU∗|T |2pU |T |rU∗)
1
q U

= (|T |rU∗|T |2pU |T |r) 1
q .

Hence it follows from the Hölder-McCarthy inequality (2.4) that

‖|T | p+r
q x‖2 ≤ ((|T |rU∗|T |2pU |T |r) 1

q x, x)

≤ (|T |rU∗|T |2pU |T |rx.x)
1
q

= ‖|T |pU |T |rx‖ 2
q ,

so that T is (p, r, q)-paranormal.

4. (p, r, q)-paranormal operators. In this section, we first discuss the monotonicity
of the (p, r, q)-paranormality.
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Theorem 4.1. The (p, r, q)-paranormality is monotone increasing on q > 0. In addition,
the (p, r, 1)-paranormality is monotone increasing on r.

Proof. Suppose that T is (p, r, q)-paranormal and q′ ≥ q > 0. For a given unit vector
x ∈ H , it follows from (2.4) that

‖|T | p+r
q′ x‖ = ‖|T | p+r

q · q
q′ x‖ ≤ ‖|T | p+r

q x‖ q
q′ ≤ ‖|T |pU |T |rx‖ 1

q · q
q′ = ‖|T |pU |T |rx‖ 1

q′ ,

so that T is (p, r, q′)-paranormal.
Next suppose that T is (p, r, 1)-paranormal and ε > 0. Then we have

‖|T |pU |T |r+εx‖ = ‖|T |pU |T |r|T |εx‖ ≥ ‖|T |p+r|T |εx‖ = ‖|T |p+r+εx‖,

so that T is (p, r + ε, 1)-paranormal.

Next we consider relations between (p, r, 1)-paranormality and p-paranormality.

Theorem 4.2. If T is (p, r, 1)-paranormal, then T is max{p, r}-paranormal.

Proof. Let x be a given unit vector. If p ≥ r, then

‖|T |pU |T |px‖ = ‖|T |pU |T |r|T |p−rx‖ ≥ ‖|T |p+r|T |p−rx‖ = ‖|T |2px‖ ≥ ‖|T |px‖2,

so that T is p-paranormal.
On the other hand, if p < r, then we note that

‖|T |rx‖1+ r
p ≤ ‖|T |p+rx‖ r

p

because ‖|T |rx‖p+r ≤ ‖|T |p+rx‖r by (2.6). Hence it follows that

‖|T |rU |T |rx‖ = ‖(|T |p) r
p U |T |rx‖

≥ ‖|T |pU |T |rx‖ r
p ‖|T |rx‖1− r

p by (2.4)

≥ ‖|T |p+rx‖ r
p ‖|T |rx‖1− r

p by the assumption

≥ ‖|T |rx‖(1+ r
p )+(1− r

p ) by the above remark

= ‖|T |rx‖2,

so that T is r-paranormal.

From the viewpoint of the (p, r, q)-paranormality, we see the absolute p-paranormality in
[19]. Namely we generalize it as follows: An operator T on H is absolute (p, r)-paranormal
if it is (p, r, p + r)-paranormal, i.e., it satisfies

(4.1) ‖|T |pU |T |rx‖ ≥ ‖|T |x‖p+r

for all unit vectors x ∈ H . Clearly the absolute (p, 1)-paranormality is the absolute p-
paranormality.

In [19], it is shown that every T ∈ A(p) is absolute p-paranormal. We now have the
following variant:
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Theorem 4.3. If T ∈ F (p, r, 1) and p + r ≥ 1, then T is absolute (p, r)-paranormal.

Proof. Since |T ∗|r = U |T |rU∗, T ∈ F (p, r, 1) if and only if

|T |rU∗|T |2pU |T |r ≥ |T |2(p+r).

Therefore it follows from (2.6) that for each unit vector x ∈ H

‖|T |pU |T |rx‖ ≥ ‖|T |p+rx‖ ≥ ‖|T |x‖p+r.

Next we show that the absolute (p, r)-paranormality has the monotone property as well
as the absolute p-paranormality.

Theorem 4.4. Suppose that T is absolute (p, r)-paranormal. If 0 < r ≤ 1, then T is
absolute (p′, r)-paranormal for p′ > p. If p + r ≥ 1, then T is absolute (p, r′)-paranormal
for r′ > r.

Proof. Let x be a given unit vector. If p′

p > 1, then (2.5) implies that

‖|T |p′
U |T |rx‖ ≥ ‖|T |pU |T |rx‖ p′

p ‖U |T |rx‖1− p′
p

≥ ‖|T |x‖(p+r)·p′
p ‖|T |x‖r(1−p′

p )

= ‖|T |x‖(p′+r),

that is, T is absolute (p′, r)-paranormal.
To prove the latter, we may assume that 0 < ε = r′ − r ≤ 1. Then it follows from (2.6)

that

‖|T |pU |T |r′
x‖ = ‖|T |pU |T |r|T |εx‖ ≥ ‖|T ||T |εx‖p+r‖|T |εx‖1−(p+r)

≥ ‖|T |x‖(1+ε)(p+r)‖|T |x‖ε(1−(p+r)) = ‖|T |x‖p+r+ε

because 1 − (p + r) ≤ 0. That is, T is absolute (p, r′)-paranormal.

Following our preceding note [11], we investigated the relation between p-paranormality
and absolute p-paranormality; we showed that every p-paranormal operator is absolute p-
paranormal for 0 < p < 1 and every absolute p-paranormal operator is p-paranormal for
p > 1. So we discuss relations between the (p, r)-paranormality and the absolute (p, r)-
paranormality.

Theorem 4.5. (1) If T is (p, r, q)-paranormal, then T is absolute (p, s)-paranormal for
s ≥ 0 with r ≤ s ≤ 1 + r and p + r ≥ q(1 − s + r).

(2) If T is absolute (p, s)-paranormal and p + s ≥ 1, then T is (p, r, q)-paranormal for
r ≥ s and q ≥ 1 with q(1 + r − s) ≥ p + r ≥ q(r − s).

Corollary 4.6. (1) If T is (p, r, 2)-paranormal, then T is absolute (p, s)-paranormal for
s ≥ r with s − r ≤ 1 and p + 2s − r ≥ 2.

(2) If T is absolute (p, s)-paranormal and p + s ≥ 1, then T is (p, r, 2)-paranormal for
r ≥ s with 0 ≤ p + 2s − r ≤ 2.

Remark. Corollary 4.6 is a direct generalization of our preceding result [11 ; Theorem
4.2]. As a matter of fact, we obtain it by taking r = p and s = 1 in above.
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Proof of Theorem 4.5. (1) Since T is (p, r, q)-paranormal and 1− q ≤ 0, it follows from the
Hölder-McCarthy inequality that for a given unit vector x

‖|T |pU |T |sx‖ = ‖|T |pU |T |r|T |s−rx‖
≥ ‖|T | p+r

q |T |s−rx‖q‖|T |s−rx‖1−q

≥ ‖|T |x‖( p+r
q +s−r)q‖|T |x‖(s−r)(1−q)

= ‖|T |x‖p+s,

so that T is absolute (p, s)-paranormal.
(2) Since T is absolute (p, s)-paranormal and p + s ≥ 1, it follows that for a given unit

vector x

‖|T |pU |T |rx‖ = ‖|T |pU |T |s|T |r−sx‖
≥ ‖|T ||T |r−sx‖p+s‖|T |r−sx‖1−(p+s)

= ‖(|T | p+r
q )

q(1+r−s)
p+r x‖p+s‖(|T | p+r

q )
q(r−s)

p+r x‖1−(p+s)

≥ ‖|T | p+r
q x‖ q(1+r−s)(p+s)

p+r ‖|T | p+r
q x‖ q(r−s)(p+s)

p+r

= ‖|T | p+r
q x‖q,

so that T is (p, r, q)-paranormal.

Remark. As in the proof of (2) in Theorem 4.5, we have a complementary result to it: If
T is absolute (p, s)-paranormal and p + s ≤ 1, then T is (p, r, q)-paranormal for r ≥ s and
q ≥ 1 with q(r − s) ≥ p + r.

Acknowlegdement. The authors would like to express their thanks to Professor Furuta,
Mr.Ito and Mr.Yamazaki for giving an opportunity to read their paper [19] before publica-
tion.

References

1. A.Aluthge, On p-hyponormal operators for 0 < p < 1, Integral Equation Operator Theory, 13 (
1990), 307-315.

2. T.Ando, Operators with a norm condition, Acta Sci. Math. Szeged, 33 (1972), 169-178.
3. T.Ando, On some operator inequalities, Math. Ann., 279 (1987), 157-159.
4. M.Cho and M.Itoh, Putnam’s inequality for p-hyponormal operators, Proc. Amer. Math. Soc., 123

(1995), 2435-2440.
5. M.Fujii, Furuta’s inequality and its mean theoretic approach, J. Operator Theory, 23 (1990), 67-72.
6. M.Fujii, An application of Aluthge transform to Putnam inequality for log-hyponormal operators,

preprint.
7. M.Fujii, T.Furuta and E.Kamei, Furuta’s inequality and its application to Ando’s theorem, Linear

Algebra Appl., 179 (1993), 161-169.
8. M.Fujii, T.Furuta and D.Wang, An application of the Furuta inequality to operator inequalities on

chaotic orders, Math. Japon., 40 (1994), 317-321.
9. M.Fujii, C.Himeji and A.Matsumoto, Theorems of Ando and Saito for p-hyponormal operators, Math.

Japon., 39 (1994), 595-598.
10. M.Fujii, S.Izumino and R.Nakamoto, Classes of operators determined by the Heinz-Kato-Furuta in-
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