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Abstract. We point out that the Gramian transformation formula gives us a natural and
simple view to some known results, e.g. the translation-invariance of variance of operators,
Hadamard theorem and inequalities on Gramian. Moreover we pick up a norm equality which
is the essence of a norm inequality closely related to the Bernstein inequality.

1. Introduction. In [2], Björck and Thomee introduced a constant for a (bounded
linear) operator T on a Hilbert space H , see also [4,8,11,13,16,17]:

(1.1) sup{‖Tx‖2 − |(Tx, x)|2; ‖x‖ = 1}.

We denote by MT the square root of the constant for T . They proved that if T is a normal
operator, then MT concides with the smallest radius of disks containing the spectrum of T ,
cf.[11,12]. One of properties on MT is the translation-invariance, i.e., MT−λ = MT for all
λ ∈ C. More precisely, the variance of T at a state (i.e., unit vector) x ∈ H

(1.2) Varx(T ) = ‖Tx‖2 − |(Tx, x)|2

is translation-invariant. Incidentally, it is known that MT = d(T, C), the distance of T to
C.

On the other hand, related to the Bernstein inequality [1], Furuta [10] and Lin [14] gave
the following norm inequality on the difference of the Schwarz inequality

(1.3) ‖x‖2‖y‖2 − |(x, y)|2 ≤ 1
|α − β| ‖x + αy‖2‖x + βy‖2

for all x, y ∈ H and α, β ∈ C with α �= β. It is clear that the left hand side of (1.3) is the
determinant of the Gram matrix

G(x, y) =
(

(x, x) (x, y)
(y, x) (y, y)

)
.

So we recall the Gramian transformation formula, e.g. [3; Lemma 8.7.1]. For a 2 × 2

matrix A =
(

α1 α2

β1 β2

)
,

(1.4) AG(x, y)A∗ = G(α1x + α2y, β1x + β2y)
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and consequently

(1.5) |G(α1x + α2y, β1x + β2y)| = | detA|2|G(x, y)|,

where both |X | and detX are the determinant of X .
As a simple application of (1.5), we can explain the translation-invariance of the variance

(1.2): Since

Varx(T ) = |G(Tx, x)| and Varx(T − λ) = |G(Tx − λx, x)|,

we take α1 = 1, α2 = −λ, β1 = 0 and β2 = 1, i.e., A =
(

1 −λ
0 1

)
. Then we have

AG(Tx, x)A∗ = G(Tx − λx, x)

and so |G(Tx, x)| = |G((T − λ)x, x)| because detA = 1. We here note that

(1.6) ‖x‖2‖y‖2 − |(x, y)|2 = ‖y‖2‖x − λy‖2 − |(y, x − λy)|2

is also showed by the same way as above.
In this note, we give some applications of the Gramian transformation formula

(1.7) AG(x1, · · · , xn)A∗ = G(
∑

j

a1jxj , · · · ,
∑

j

anjxj)

for n×n matrices A = (aij) and x1, · · · , xn ∈ H . In other wards, we give natural proofs to
some known theorems from the viewpoint of the Gramian transformation formula (1.7).

2. Norm inequality. A special case of (1.3) appeared in [15] to show Hua’s determinant
theorem is as follows:

‖x‖2‖y‖2 − |(x, y)|2 ≤ 1
4
‖x + y‖2‖x − y‖2

for all x, y ∈ H . It is the case α = 1 and β = −1 in (1.3) and follows from the norm equality

‖x + y‖2‖x − y‖2 − |(x + y, x − y)|2 = 4(‖x‖2‖y‖2 − |(x, y)|2).

This suggests us the following norm inequality.

Lemma 1. The equality

(2.1) ‖x + αy‖2‖x + βy‖2 − |(x + αy, x + βy)|2 = |α − β|2(‖x‖2‖y‖2 − |(x, y)|2)

holds for all x, y ∈ H and α, β ∈ C.

We note that Lemma 1 implies (1.3) obviously and moreover (2.1) is rephrased by

(2.2) |G(x + αy, x + βy)| = |α − β|2|G(x, y)|.

Namely, by taking A =
(

1 α
1 β

)
, we have (2.2) from (1.5) easily.
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Incidentally, we can give an alternative proof to (2.1), based on (1.6): Put u = x + αy
and v = x + βy. Then it follows from (1.6) that

‖x + αy‖2‖x + βy‖2 − |(x + αy, x + βy)|2
= ‖v‖2‖u − v‖2 − |(v, u − v)|2
= |α − β|2(‖v‖2‖y‖2 − |(v, y)|2)
= |α − β|2(‖x‖2‖y‖2 − |(x, y)|2).

Remark. (1) The inequality (1.3) is closely related to the Bernstein inequality. Exten-
sions of the Bernstein inequality are discussed in [6] and [7].

(2) The variance of operators is generalized to the covariance of operators, see [5]. It is
defined by

Covx(A,B) = (Ax,Bx) − (Ax,x)(x,Bx)

for operators A and B on a Hilbert space H , where x is a unit vector in H . (It is the case
of vector states.) The covariance is translation-invariant as well as the variance. We now
define the covariance for vectors in H as follows:

Covx(y, z) = (y, z)− (y, x)(x, z).

Clearly Covx(A,B) = Covx(Ax,Bx) for a unit vector x in H . The translation-invariance
of it can be explained from the determinantal view, that is,

Covx(y, z) =
∣∣∣∣ (x, x) (y, x)
(x, z) (y, z)

∣∣∣∣ =
∣∣∣∣ 1 (y, x)
(x, z) (y, z)

∣∣∣∣ .

3. Gram-Schmidt orthogonalization process. In this section, we pay our attention
to Gram-Schmidt (orthogonalization) process in order to apply the Gramian transformation
formula (1.7).

For the sake of convenience, we cite the following fact in [9], which is easily obtained by
(1.7):

Lemma 2. Let {x1, · · · , xn} be a given linearly independent set in H , and {e1, · · · , en}
the orthonormal set obtained from {x1, · · · , xn} by the Gram-Schmidt process. If A is the
matrix correponding to the Gram-Schmidt process, that is, A is triangular and satisfies


e1

e2
...

en


 = A




x1

x2
...

xn


 ,

then
AG(x1, · · · , xn)A∗ = G(e1, · · · , en) = En

and
| detA|2|G(x1, · · · , xn)| = 1.

The Hadamard theorem says that

(3.1) |G(x1, · · · , xn)| ≤ ‖x1‖2 · · · ‖xn‖2

for x1, · · · , xn ∈ H . As well-known, it is implied by Lemma 2. Actually

|G(x1, · · · , xn)| = 1
| detA|2 =

1
|a11|2 · · · |ann|2 .

Noting that ‖xk‖2 ≥ 1
|akk|2 for 1 ≤ k ≤ n, we have (3.1).

Following the above argument, we give an elementary proof to the following folk result:
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Theorem 3. Let M be the subspace generated by a linearly independent set {x1, · · · , xn}.
Then d(x,M), the distance of x from M , is expressed as

(3.2) d2(x,M) =
|G(x, x1, · · · , xn)|
|G(x1, · · · , xn)| .

Proof. Let A be as in Lemma 2. Put A1 =
(

1 0
0 A

)
. Then it follows from Lemma 2 that

A1G(x, x1, · · · , xn)A∗
1 = G(x, e1, · · · , en)

and so
| detA1|2|G(x, x1, · · · , xn)| = |G(x, e1, · · · , en)|.

Moreover, noting that {e1, · · · , en} is an orthonormal basis of M , we have

|G(x, e1, · · · , en)| = ‖x‖2 −
n∑

j=1

|(x, ej)|2 = ‖x −
n∑

j=1

(x, ej)ej‖2 = d2(x,M).

On the other hand, since

| detA1|2 = | detA|2 =
1

|G(x1, · · · , xn)|
by Lemma 2, we have the required equality.

As a corollary, we show the following inequality on Gramian:

Corollary 4. For given vectors x1, · · · , xn, put yi = Pxi (i = 1, . . . , n) for a contraction
P . If y1, · · · , yn are linearly independent, then

(3.3)
|G(y1, · · · , yn−1)|
|G(y1, · · · , yn)| ≥ |G(x1, · · · , xn−1)|

|G(x1, · · · , xn)|
and

(3.4) |G(x1, · · · , xn)| ≥ |G(y1, · · · , yn)|

Proof. Since P is a contraction, we have

d(xn, [x1, · · · , xn−1]) ≥ d(Pxn, [Px1, · · · , Pxn−1]) = d(yn, [y1, · · · , yn−1]),

which implies (3.3) by Theorem 3.
The latter is shown by the use of the former (3.3). As a matter of fact, we have

|G(x1, · · · , xn)|
|G(x1, · · · , xn−1)|

|G(x1, · · · , xn−1)|
G(x1, · · · , xn−2)| · · ·

|G(x1, x2)|
|G(x1)|

≥ |G(y1, · · · , yn)|
|G(y1, · · · , yn−1)|

|G(y1, · · · , yn−1)|
|G(y1, · · · , yn−2)| · · ·

|G(y1, y2)|
|G(y1)|

and so

|G(x1, · · · , xn)| ≥ |G(y1, · · · , yn)|‖x1‖2

‖y1‖2
≥ |G(y1, · · · , yn)|.

Finally we give a simple proof to the following inequality, which is similar to that of
Theorem 3.
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Theorem 5. If x1, · · · , xn are linearly indepedent vectors, then for 1 < k < n

(3.5)
|G(x1, · · · , xn)|
|G(x1, · · · , xk)| ≤

|G(x2, · · · , xn)|
|G(x2, · · · , xk)| ≤ · · · ≤ |G(xk+1, · · · , xn)|

and in particular

(3.6) |G(x1, · · · , xn)| ≤ |G(x1, · · · , xk)||G(xk+1, · · · , xn)|.

Proof. Let An be A in Lemma 2. Then we have

AkG(x1, · · · , xk)A∗
k = G(e1, · · · , ek) = Ek

and
| detAk|2|G(x1, · · · , xk)| = 1.

Therefore, if we put A1 =
(

Ak 0
0 En−k

)
, then

A1G(x1, · · · , xn)A1
∗ = G(e1, · · · , ek, xk+1, · · · , xn)

and
| detA1|2 = | detA|2 =

1
|G(x1, · · · , xk)| .

Hence it follows that

|G(x1, ..., xn)|
|G(x1, ..., xk)| = |G(e1, ..., ek, xk+1, ..., xn)| =

∣∣∣∣ Ek B1

B∗
1 Dk

∣∣∣∣
and similarly

|G(xm, ..., xn)|
|G(xm, ..., xk)| = |G(em, ..., ek, xk+1, ..., xn)| =

∣∣∣∣Ek−m+1 Bm

B∗
m Dk

∣∣∣∣
for 1 < m ≤ k, where Ej is the j × j identity matrix, Dk = G(xk+1, · · · , xn) and

Bm =




(em, xk+1) · · · (em, xn)
...

...
(ek, xk+1) · · · (ek, xn)


 .

We here recall Fisher’s inequality: If
(

A B
B∗ D

)
is positive definite, then

∣∣∣∣ A B
B∗ D

∣∣∣∣ ≤
|A||D|. So we have

∣∣∣∣ Ek B1

B∗
1 Dk

∣∣∣∣ ≤
∣∣∣∣ Ek−1 B2

B∗
2 Dk

∣∣∣∣ ≤ · · · ≤
∣∣∣∣ E1 Bk

B∗
k Dk

∣∣∣∣ ≤ |Dk| = G(xk+1, · · · , xn),

which is equivalent to the conclusion (3.5).
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