APPLICATIONS OF GRAMIAN TRANSFORMATION FORMULA

Masatoshi Fujii*, Takayuki Furuta** and Ritsuo Nakamoto***

Received October 26, 1999
Dedicated to Professor Masahiro Nakamura on his 80th birthday with respect and affection

Abstract

We point out that the Gramian transformation formula gives us a natural and simple view to some known results, e.g. the translation-invariance of variance of operators, Hadamard theorem and inequalities on Gramian. Moreover we pick up a norm equality which is the essence of a norm inequality closely related to the Bernstein inequality.

1. Introduction. In [2], Björck and Thomee introduced a constant for a (bounded linear) operator T on a Hilbert space H, see also [4,8,11,13,16,17]:

$$
\begin{equation*}
\sup \left\{\|T x\|^{2}-|(T x, x)|^{2} ;\|x\|=1\right\} \tag{1.1}
\end{equation*}
$$

We denote by M_{T} the square root of the constant for T. They proved that if T is a normal operator, then M_{T} concides with the smallest radius of disks containing the spectrum of T, cf. $[11,12]$. One of properties on M_{T} is the translation-invariance, i.e., $M_{T-\lambda}=M_{T}$ for all $\lambda \in \mathbb{C}$. More precisely, the variance of T at a state (i.e., unit vector) $x \in H$

$$
\begin{equation*}
\operatorname{Var}_{x}(T)=\|T x\|^{2}-|(T x, x)|^{2} \tag{1.2}
\end{equation*}
$$

is translation-invariant. Incidentally, it is known that $M_{T}=\mathrm{d}(T, \mathbb{C})$, the distance of T to \mathbb{C}.

On the other hand, related to the Bernstein inequality [1], Furuta [10] and Lin [14] gave the following norm inequality on the difference of the Schwarz inequality

$$
\begin{equation*}
\|x\|^{2}\|y\|^{2}-|(x, y)|^{2} \leq \frac{1}{|\alpha-\beta|}\|x+\alpha y\|^{2}\|x+\beta y\|^{2} \tag{1.3}
\end{equation*}
$$

for all $x, y \in H$ and $\alpha, \beta \in \mathbb{C}$ with $\alpha \neq \beta$. It is clear that the left hand side of (1.3) is the determinant of the Gram matrix

$$
G(x, y)=\left(\begin{array}{ll}
(x, x) & (x, y) \\
(y, x) & (y, y)
\end{array}\right)
$$

So we recall the Gramian transformation formula, e.g. [3; Lemma 8.7.1]. For a 2×2 matrix $A=\left(\begin{array}{cc}\alpha_{1} & \alpha_{2} \\ \beta_{1} & \beta_{2}\end{array}\right)$,

$$
\begin{equation*}
A G(x, y) A^{*}=G\left(\alpha_{1} x+\alpha_{2} y, \beta_{1} x+\beta_{2} y\right) \tag{1.4}
\end{equation*}
$$

[^0]and consequently
\[

$$
\begin{equation*}
\left|G\left(\alpha_{1} x+\alpha_{2} y, \beta_{1} x+\beta_{2} y\right)\right|=|\operatorname{det} A|^{2}|G(x, y)|, \tag{1.5}
\end{equation*}
$$

\]

where both $|X|$ and $\operatorname{det} X$ are the determinant of X.
As a simple application of (1.5), we can explain the translation-invariance of the variance (1.2): Since

$$
\operatorname{Var}_{x}(T)=|G(T x, x)| \text { and } \operatorname{Var}_{x}(T-\lambda)=|G(T x-\lambda x, x)|,
$$

we take $\alpha_{1}=1, \alpha_{2}=-\lambda, \beta_{1}=0$ and $\beta_{2}=1$, i.e., $A=\left(\begin{array}{cc}1 & -\lambda \\ 0 & 1\end{array}\right)$. Then we have

$$
A G(T x, x) A^{*}=G(T x-\lambda x, x)
$$

and so $|G(T x, x)|=|G((T-\lambda) x, x)|$ because $\operatorname{det} A=1$. We here note that

$$
\begin{equation*}
\|x\|^{2}\|y\|^{2}-|(x, y)|^{2}=\|y\|^{2}\|x-\lambda y\|^{2}-|(y, x-\lambda y)|^{2} \tag{1.6}
\end{equation*}
$$

is also showed by the same way as above.
In this note, we give some applications of the Gramian transformation formula

$$
\begin{equation*}
A G\left(x_{1}, \cdots, x_{n}\right) A^{*}=G\left(\sum_{j} a_{1 j} x_{j}, \cdots, \sum_{j} a_{n j} x_{j}\right) \tag{1.7}
\end{equation*}
$$

for $n \times n$ matrices $A=\left(a_{i j}\right)$ and $x_{1}, \cdots, x_{n} \in H$. In other wards, we give natural proofs to some known theorems from the viewpoint of the Gramian transformation formula (1.7).
2. Norm inequality. A special case of (1.3) appeared in [15] to show Hua's determinant theorem is as follows:

$$
\|x\|^{2}\|y\|^{2}-|(x, y)|^{2} \leq \frac{1}{4}\|x+y\|^{2}\|x-y\|^{2}
$$

for all $x, y \in H$. It is the case $\alpha=1$ and $\beta=-1$ in (1.3) and follows from the norm equality

$$
\|x+y\|^{2}\|x-y\|^{2}-|(x+y, x-y)|^{2}=4\left(\|x\|^{2}\|y\|^{2}-|(x, y)|^{2}\right) .
$$

This suggests us the following norm inequality.
Lemma 1. The equality

$$
\begin{equation*}
\|x+\alpha y\|^{2}\|x+\beta y\|^{2}-|(x+\alpha y, x+\beta y)|^{2}=|\alpha-\beta|^{2}\left(\|x\|^{2}\|y\|^{2}-|(x, y)|^{2}\right) \tag{2.1}
\end{equation*}
$$

holds for all $x, y \in H$ and $\alpha, \beta \in \mathbb{C}$.
We note that Lemma 1 implies (1.3) obviously and moreover (2.1) is rephrased by

$$
\begin{equation*}
|G(x+\alpha y, x+\beta y)|=|\alpha-\beta|^{2}|G(x, y)| . \tag{2.2}
\end{equation*}
$$

Namely, by taking $A=\left(\begin{array}{ll}1 & \alpha \\ 1 & \beta\end{array}\right)$, we have (2.2) from (1.5) easily.

Incidentally, we can give an alternative proof to (2.1), based on (1.6): Put $u=x+\alpha y$ and $v=x+\beta y$. Then it follows from (1.6) that

$$
\begin{aligned}
& \|x+\alpha y\|^{2}\|x+\beta y\|^{2}-|(x+\alpha y, x+\beta y)|^{2} \\
& =\|v\|^{2}\|u-v\|^{2}-|(v, u-v)|^{2} \\
& =|\alpha-\beta|^{2}\left(\|v\|^{2}\|y\|^{2}-|(v, y)|^{2}\right) \\
& =|\alpha-\beta|^{2}\left(\|x\|^{2}\|y\|^{2}-|(x, y)|^{2}\right) .
\end{aligned}
$$

Remark. (1) The inequality (1.3) is closely related to the Bernstein inequality. Extensions of the Bernstein inequality are discussed in [6] and [7].
(2) The variance of operators is generalized to the covariance of operators, see [5]. It is defined by

$$
\operatorname{Cov}_{x}(A, B)=(A x, B x)-(A x, x)(x, B x)
$$

for operators A and B on a Hilbert space H, where x is a unit vector in H. (It is the case of vector states.) The covariance is translation-invariant as well as the variance. We now define the covariance for vectors in H as follows:

$$
\operatorname{Cov}_{x}(y, z)=(y, z)-(y, x)(x, z) .
$$

Clearly $\operatorname{Cov}_{x}(A, B)=\operatorname{Cov}_{x}(A x, B x)$ for a unit vector x in H. The translation-invariance of it can be explained from the determinantal view, that is,

$$
\operatorname{Cov}_{x}(y, z)=\left|\begin{array}{cc}
(x, x) & (y, x) \\
(x, z) & (y, z)
\end{array}\right|=\left|\begin{array}{cc}
1 & (y, x) \\
(x, z) & (y, z)
\end{array}\right| .
$$

3. Gram-Schmidt orthogonalization process. In this section, we pay our attention to Gram-Schmidt (orthogonalization) process in order to apply the Gramian transformation formula (1.7).

For the sake of convenience, we cite the following fact in [9], which is easily obtained by (1.7):

Lemma 2. Let $\left\{x_{1}, \cdots, x_{n}\right\}$ be a given linearly independent set in H, and $\left\{e_{1}, \cdots, e_{n}\right\}$ the orthonormal set obtained from $\left\{x_{1}, \cdots, x_{n}\right\}$ by the Gram-Schmidt process. If A is the matrix correponding to the Gram-Schmidt process, that is, A is triangular and satisfies

$$
\left(\begin{array}{c}
e_{1} \\
e_{2} \\
\vdots \\
e_{n}
\end{array}\right)=A\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right)
$$

then

$$
A G\left(x_{1}, \cdots, x_{n}\right) A^{*}=G\left(e_{1}, \cdots, e_{n}\right)=E_{n}
$$

and

$$
|\operatorname{det} A|^{2}\left|G\left(x_{1}, \cdots, x_{n}\right)\right|=1
$$

The Hadamard theorem says that

$$
\begin{equation*}
\left|G\left(x_{1}, \cdots, x_{n}\right)\right| \leq\left\|x_{1}\right\|^{2} \cdots\left\|x_{n}\right\|^{2} \tag{3.1}
\end{equation*}
$$

for $x_{1}, \cdots, x_{n} \in H$. As well-known, it is implied by Lemma 2. Actually

$$
\left|G\left(x_{1}, \cdots, x_{n}\right)\right|=\frac{1}{|\operatorname{det} A|^{2}}=\frac{1}{\left|a_{11}\right|^{2} \cdots\left|a_{n n}\right|^{2}}
$$

Noting that $\left\|x_{k}\right\|^{2} \geq \frac{1}{\left|a_{k k}\right|^{2}}$ for $1 \leq k \leq n$, we have (3.1).
Following the above argument, we give an elementary proof to the following folk result:

Theorem 3. Let M be the subspace generated by a linearly independent set $\left\{x_{1}, \cdots, x_{n}\right\}$. Then $d(x, M)$, the distance of x from M, is expressed as

$$
\begin{equation*}
d^{2}(x, M)=\frac{\left|G\left(x, x_{1}, \cdots, x_{n}\right)\right|}{\left|G\left(x_{1}, \cdots, x_{n}\right)\right|} \tag{3.2}
\end{equation*}
$$

Proof. Let A be as in Lemma 2. Put $A_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & A\end{array}\right)$. Then it follows from Lemma 2 that

$$
A_{1} G\left(x, x_{1}, \cdots, x_{n}\right) A_{1}^{*}=G\left(x, e_{1}, \cdots, e_{n}\right)
$$

and so

$$
\left|\operatorname{det} A_{1}\right|^{2}\left|G\left(x, x_{1}, \cdots, x_{n}\right)\right|=\left|G\left(x, e_{1}, \cdots, e_{n}\right)\right| .
$$

Moreover, noting that $\left\{e_{1}, \cdots, e_{n}\right\}$ is an orthonormal basis of M, we have

$$
\left|G\left(x, e_{1}, \cdots, e_{n}\right)\right|=\|x\|^{2}-\sum_{j=1}^{n}\left|\left(x, e_{j}\right)\right|^{2}=\left\|x-\sum_{j=1}^{n}\left(x, e_{j}\right) e_{j}\right\|^{2}=d^{2}(x, M) .
$$

On the other hand, since

$$
\left|\operatorname{det} A_{1}\right|^{2}=|\operatorname{det} A|^{2}=\frac{1}{\left|G\left(x_{1}, \cdots, x_{n}\right)\right|}
$$

by Lemma 2, we have the required equality.
As a corollary, we show the following inequality on Gramian:
Corollary 4. For given vectors x_{1}, \cdots, x_{n}, put $y_{i}=P x_{i}(i=1, \ldots, n)$ for a contraction P. If y_{1}, \cdots, y_{n} are linearly independent, then

$$
\begin{equation*}
\frac{\left|G\left(y_{1}, \cdots, y_{n-1}\right)\right|}{\left|G\left(y_{1}, \cdots, y_{n}\right)\right|} \geq \frac{\left|G\left(x_{1}, \cdots, x_{n-1}\right)\right|}{\left|G\left(x_{1}, \cdots, x_{n}\right)\right|} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|G\left(x_{1}, \cdots, x_{n}\right)\right| \geq\left|G\left(y_{1}, \cdots, y_{n}\right)\right| \tag{3.4}
\end{equation*}
$$

Proof. Since P is a contraction, we have

$$
d\left(x_{n},\left[x_{1}, \cdots, x_{n-1}\right]\right) \geq d\left(P x_{n},\left[P x_{1}, \cdots, P x_{n-1}\right]\right)=d\left(y_{n},\left[y_{1}, \cdots, y_{n-1}\right]\right)
$$

which implies (3.3) by Theorem 3.
The latter is shown by the use of the former (3.3). As a matter of fact, we have

$$
\begin{aligned}
& \frac{\left|G\left(x_{1}, \cdots, x_{n}\right)\right|}{\left|G\left(x_{1}, \cdots, x_{n-1}\right)\right|} \frac{\left|G\left(x_{1}, \cdots, x_{n-1}\right)\right|}{G\left(x_{1}, \cdots, x_{n-2}\right) \mid} \cdots \frac{\left|G\left(x_{1}, x_{2}\right)\right|}{\left|G\left(x_{1}\right)\right|} \\
& \geq \frac{\left|G\left(y_{1}, \cdots, y_{n}\right)\right|}{\left|G\left(y_{1}, \cdots, y_{n-1}\right)\right|} \frac{\left|G\left(y_{1}, \cdots, y_{n-1}\right)\right|}{\left|G\left(y_{1}, \cdots, y_{n-2}\right)\right|} \cdots \frac{\left|G\left(y_{1}, y_{2}\right)\right|}{\left|G\left(y_{1}\right)\right|}
\end{aligned}
$$

and so

$$
\left|G\left(x_{1}, \cdots, x_{n}\right)\right| \geq\left|G\left(y_{1}, \cdots, y_{n}\right)\right| \frac{\left\|x_{1}\right\|^{2}}{\left\|y_{1}\right\|^{2}} \geq\left|G\left(y_{1}, \cdots, y_{n}\right)\right|
$$

Finally we give a simple proof to the following inequality, which is similar to that of Theorem 3.

Theorem 5. If x_{1}, \cdots, x_{n} are linearly indepedent vectors, then for $1<k<n$

$$
\begin{equation*}
\frac{\left|G\left(x_{1}, \cdots, x_{n}\right)\right|}{\left|G\left(x_{1}, \cdots, x_{k}\right)\right|} \leq \frac{\left|G\left(x_{2}, \cdots, x_{n}\right)\right|}{\left|G\left(x_{2}, \cdots, x_{k}\right)\right|} \leq \cdots \leq\left|G\left(x_{k+1}, \cdots, x_{n}\right)\right| \tag{3.5}
\end{equation*}
$$

and in particular

$$
\begin{equation*}
\left|G\left(x_{1}, \cdots, x_{n}\right)\right| \leq\left|G\left(x_{1}, \cdots, x_{k}\right)\right|\left|G\left(x_{k+1}, \cdots, x_{n}\right)\right| \tag{3.6}
\end{equation*}
$$

Proof. Let A_{n} be A in Lemma 2. Then we have

$$
A_{k} G\left(x_{1}, \cdots, x_{k}\right) A_{k}^{*}=G\left(e_{1}, \cdots, e_{k}\right)=E_{k}
$$

and

$$
\left|\operatorname{det} A_{k}\right|^{2}\left|G\left(x_{1}, \cdots, x_{k}\right)\right|=1
$$

Therefore, if we put $A_{1}=\left(\begin{array}{cc}A_{k} & 0 \\ 0 & E_{n-k}\end{array}\right)$, then

$$
A_{1} G\left(x_{1}, \cdots, x_{n}\right) A_{1}^{*}=G\left(e_{1}, \cdots, e_{k}, x_{k+1}, \cdots, x_{n}\right)
$$

and

$$
\left|\operatorname{det} A_{1}\right|^{2}=|\operatorname{det} A|^{2}=\frac{1}{\left|G\left(x_{1}, \cdots, x_{k}\right)\right|}
$$

Hence it follows that

$$
\frac{\left|G\left(x_{1}, \ldots, x_{n}\right)\right|}{\left|G\left(x_{1}, \ldots, x_{k}\right)\right|}=\left|G\left(e_{1}, \ldots, e_{k}, x_{k+1}, \ldots, x_{n}\right)\right|=\left|\begin{array}{cc}
E_{k} & B_{1} \\
B_{1}^{*} & D_{k}
\end{array}\right|
$$

and similarly

$$
\frac{\left|G\left(x_{m}, \ldots, x_{n}\right)\right|}{\left|G\left(x_{m}, \ldots, x_{k}\right)\right|}=\left|G\left(e_{m}, \ldots, e_{k}, x_{k+1}, \ldots, x_{n}\right)\right|=\left|\begin{array}{cc}
E_{k-m+1} & B_{m} \\
B_{m}^{*} & D_{k}
\end{array}\right|
$$

for $1<m \leq k$, where E_{j} is the $j \times j$ identity matrix, $D_{k}=G\left(x_{k+1}, \cdots, x_{n}\right)$ and

$$
B_{m}=\left(\begin{array}{ccc}
\left(e_{m}, x_{k+1}\right) & \cdots & \left(e_{m}, x_{n}\right) \\
\vdots & & \vdots \\
\left(e_{k}, x_{k+1}\right) & \cdots & \left(e_{k}, x_{n}\right)
\end{array}\right)
$$

We here recall Fisher's inequality: If $\left(\begin{array}{cc}A & B \\ B^{*} & D\end{array}\right)$ is positive definite, then $\left|\begin{array}{cc}A & B \\ B^{*} & D\end{array}\right| \leq$ $|A||D|$. So we have

$$
\left|\begin{array}{cc}
E_{k} & B_{1} \\
B_{1}^{*} & D_{k}
\end{array}\right| \leq\left|\begin{array}{cc}
E_{k-1} & B_{2} \\
B_{2}^{*} & D_{k}
\end{array}\right| \leq \cdots \leq\left|\begin{array}{cc}
E_{1} & B_{k} \\
B_{k}^{*} & D_{k}
\end{array}\right| \leq\left|D_{k}\right|=G\left(x_{k+1}, \cdots, x_{n}\right)
$$

which is equivalent to the conclusion (3.5).

Acknowledgement. The authors would like to express their thanks to Prof. S.Izumino for his valuable comment.

References

1. H.J.Bernstein, An inequality for selfadjoint operators on a Hilbert space, Proc. Amer. Math. Soc., 100 (1987), 319-321.
2. G.Björck and V.Thomee, A property of bounded normal operators in Hilbert space, Ark. Mat., 4 (1963), 551-555.
3. P.J.Davis, Interpolation and Approximation, Dover, New York, 1963.
4. J.I.Fujii and M.Fujii, Theorems of Williams and Prasanna, Math. Japon., 38 (1993), 35-37.
5. M.Fujii, T.Furuta, R.Nakamoto and S.-E.Takahasi, Operator inequalities and covariance in noncommutative probability, Math. Japon., 46 (1997), 317-320.
6. M.Fujii, T.Furuta and Y.Seo, An inequality for some nonnormal operators - Extension to normal approximate eigenvalues, Proc. Amer. Math. Soc., 118 (1993), 899-902.
7. M.Fujii, R.Nakamoto and Y.Seo, Covariance in Bernstein's inequality for operators, Nihonkai Math. J., 8 (1997), 1-6.
8. M.Fujii and S.Prasanna, Translatable radii for operators, Math. Japon., 26 (1981), 653-657.
9. T.Furuta, An elementary proof of Hadamard's theorem, Math. Vesnik, 23 (1971), 267-269.
10. T.Furuta, An inequality for some nonnormal operators, Proc. Amer. Math. Soc., 104 (1988), 1216-1217.
11. T.Furuta, S.Izumino and S.Prasanna, A characterization of centroid operators, Math. Japon., 27 (1982), 105-106.
12. G.Garske, An inequality concerning the smallest disc that contains the spectrum of an operator, Proc. Amer. Math. Soc., 78 (1980), 529-532.
13. S.Prasanna, The norm of a derivation and the Björck-Thomee-Istratescu theorem, Math. Japon., 26 (1981), 585-588.
14. C.-S.Lin, Operator versions of inequalities and equalities on a Hilbert space, Linear Algebra and its Appl., 268 (1998), 365-374.
15. M.Marcus, On a determinantal inequality, Amer. Math. Monthly, 65 (1958), 266-268.
16. J.G.Stampfli, The norm of a derivation, Pacific J. Math., 33 (1970), 737-747.
17. J.P.Williams, Finite operators, Proc. Amer. Math. Soc., 26 (1970), 129-136.

* Department of Mathematics, Osaka Kyoiku University, Kashiwara, Osaka 582, Japan
** Department of Applied Mathematics, Faculty of Science, Science University of Tokyo, Kagurazaka, Shinjuku, Tokyo 162, Japan
*** Faculty of Engineering, Ibaraki University, Hitachi, Ibaraki 316, Japan.

[^0]: 1991 Mathematics Subject Classification. 47A30 and 15A15.
 Key words and phrases. Gramian, Gramian transformation formula, variance of operators, Bernstein inequality, Hadamard theorem and norm inequalities..

