IDEAL OPERATOR COMPACTIFICATION OF TOPOLOGICAL SPACES

$JORGE\ VIELMA^1\ ENNIS\ ROSAS^2$

Received February 5, 1998

ABSTRACT. We shall introduce the concepts of ideal α -locally compact spaces and ideal α -compactification and prove that every α - T_2 ideal α -locally compact space has an ideal- α -compactification.

In [1] Kasahara introduced the concepts of operator α associated to a topology, in [4] Rosas E.and Vielma Jorge defined α -locally compact spaces and α - T_2 spaces . Rose David A. and Hamlelt T.R in [3] introduced the concepts of ideal-compactification of (X, Γ, I) . Rosas E and Vielma J. in [2] showed that every α - T_2 , α -locally compact space has an α -compactification.

In this paper, we try to generalize the results given in [3] and [4]. In order to do this, we need the following definitions.

Definition 1. [1] Let (X,Γ) be a topological space and α be an operator from $\Gamma \to P(X)$. We say that α is an operator on Γ if $U \subseteq \alpha(U)$ for all $U \in \Gamma$.

Definition 2. [4]. Let (X,Γ) be a topological space and α an operator on Γ . The space (X,Γ) is said to be α -locally compact at the point x, if there exists an α -compact subset C of X and an α -open neighborhood U of x, such that $\alpha(U) \subset C$. The space (X,Γ) is said to be α -locally compact if it is α -locally compact at each of its points.

Definition 3. Given a nonempty set X, an ideal I is defined to be a nonempty collection of subsets of X such that.

- (1) $B \in I$ and $A \subset B$, then $A \in I$, and
- (2) $A \in I$ and $B \in I$, then $A \cup B \in I$.

If, in addition, I satisfies the following condition:

If $\{A_n : n = 1, 2...\} \subset I$, then $\bigcup_n A_n \in I$. Then I is said to be a σ -ideal.

Definition 4. [4]. Let (X, Γ) and (Y, Ψ) be two topological spaces, α and β operators on Γ and Ψ , respectively. We say that (Y, Ψ) is a β -compactification of X if:

(1) (Y, Ψ) is β -compact

¹⁹⁹¹ Mathematics Subject Classification. Primary 54D35, 54D30, 54D45.

- (2) (X, Γ) is a subspace of (Y, Ψ) .
- (3) The operator β/X is equal to α .
- (4) The Ψ -closure of X is Y.

Definition 5. [3]. A space (Y, Ψ, J) is said to be a I-compactification of (X, Γ, I) if:

- (1) $X \subset Y$.
- $(2) \Gamma = \Psi/X = \{V \cap X : V \in \Psi\}$
- (3) $J/X = \{J_1 \cap X : J_1 \in J\} = I$, and
- (4) (Y, Ψ, J) is J-compact.
- (5) $cl_{\Psi}(X) = Y$,

Furthermore if $Y \setminus X = \{r\}$, then (Y, Ψ, J) is said to be a one- point J-compactification of (X, Γ, I) .

We are going to consider a space (X, Γ, I, α) where (X, Γ) is a topological space, I an ideal on X and α an operator associated to Γ .

Definition 6. Let (X, Γ, I, α) and (Y, Ψ, J, β) be two spaces. We say that (Y, Ψ, J, β) is a J- β -compactification of X if:

- (1) (X, Γ) is a subspace of (Y, Ψ) .
- (2) (Y, Ψ, J, β) is, J- β -compact
- (3) The operator β/X is equal to α .
- (4) The Ψ -closure of X is Y.
- (5) J/X = I.

Definition 7. The space (X, Γ, I, α) is said to be I- α -locally compact at the point x if there exists an I- α -compact subset C of X and an α -open neighborhood U of x such that $\alpha(U) \subset C$. The space (X, Γ, I, α) is said to be I- α -locally compact if it is I- α -locally compact at each of its points.

Definition 8. [1]. Let (X, Γ) be a topological space and α be an operator on Γ . We say that (X, Γ) is an α - T_2 space if for every pair x, y of distinct points of X, there exists Γ -open sets U, V such that $x \in U, y \in V$ and $\alpha(U) \cap \alpha(V) = \phi$.

Definition 9. [1]. Let (X,Γ) be a topological space and α be an operator on Γ . We say that α is a regular operator if for every $x \in X$ and every pair U, V of Γ -open neighborhood of x, there exists a Γ -open neighborhood W of x such that $\alpha(W) \subseteq \alpha(U) \cap \alpha(V)$.

Theorem 1. Let (X,Γ) be a topological space, α be a regular operator on Γ , and I an ideal on X. If X is α - T_2 and $K \subset X$ is I- α -compact, then K is α -closed.

Proof. We need to prove that $X \setminus K$ is α -open. So let $x_0 \in X \setminus K$. For each $y \in K$, there exists Γ -open neighborhoods U_y and V_y such that $x_0 \in U_y$, $y \in V_y$ and $\alpha(U_y) \cap \alpha(V_y) = \phi$. In this way we construct an open cover $\{V_y : y \in K\}$ of K. Since K is I- α -compact, there exists a finite set $\{y_1, \ldots, y_n\}$ of K such that $K \setminus U_{i=1}^n \alpha(V_{i}) \in I$. Since V_{i+1}, \ldots, V_{i+1} are Γ -open neighborhood of $x_0 \cap_{J=1}^n V_{JJ} \subseteq X \setminus K$ is a Γ -open neighborhood of x_0 . Then using the regularity of α , there exists a Γ -open neighborhood W of x_0 such that $W \subset \alpha(W) \subset X \setminus K$. This implies that $X \setminus K$ is α open and hence K is α -closed

Theorem 2. Let (X, Γ, I, α) be a space, where α is a regular, subadditive, stable operator with respect to all α -closed subset of (X, Γ) and $\alpha(\emptyset) = \emptyset$. If (X, Γ, I, α) is I- α -locally compact not I- α -compact and α - T_2 , then there exists a space (Y, Ψ) and an operator β on Ψ such that (Y, Ψ, I, β) is an I- β -compactification of (X, Γ, I, α) , $|Y \setminus X| = 1$ and (Y, Ψ) is β - T_2 .

Proof. Define $Y = X \cup \{\infty\}$, where ∞ is an object not in X. On Y, we define a topology as follows:

- (1) If $U \in \Gamma$, then $U \in \Psi$
- (2) If C is an I- α -compact subset of X, then $X \setminus C \cup \{\infty\} \in \Psi$.

To prove that Ψ is a topology on Y. look at the proof of the theorem 4 in [4] and the fact that finite union and arbitrary intersection of I- α -compact sets are I- α -compact sets. Define an operator $\beta: \Psi \longrightarrow P(Y)$ as follows:

$$(1) \qquad \beta(V) = \left\{ \begin{array}{ll} \alpha(V) & \text{if V} \in \Gamma \\ \alpha(X \setminus C) \cup \{\infty\} & \text{if } V = X \setminus C \cup \{\infty\} \text{where C is I-α-compact.} \end{array} \right.$$

Let us show that (Y,Ψ) is I- β -compact. Let $\{U_i:i\in\Lambda\}$ be a Ψ -open cover of Y. This collection must have at least one element of type $X\setminus C\cup\{\infty\}$ where C is I- α -compact., say $U_{i_0}=X\setminus C\cup\{\infty\}$. Let $V_i=U_i\cap X$ for $i\neq i_0$. Then $\{V_i:i\in\Lambda\}$ is a Γ -open cover of C. Since C is I- α -compact, there exists a finite subcollection $\{i_1,\ldots,i_n\}$ of Λ , such that $C\setminus U_{j=1}^n\alpha(V_{i_j})\in I$. Now $Y\setminus (U_{j=1}^n\alpha(V_{i_j})\cup\beta(Y/C))\subset C\setminus U_{j=1}^k\alpha(V_{i_j})$.

In consequence $Y \setminus (U_{j=1}^k \alpha(V_{i_j}) \cup \beta(Y/C)) \in I$. Therefore (Y, Ψ, J, β) is I- β -compact. To show that (Y, Ψ) is β - T_2 use the theorem 4 in [4] and the fact that α is additive. The other propieties follows easily.

REFERENCES

- [1] Kasahara, S., Operation-Compact spaces, Math Japonica, 24(1979), 97-105.
- [2] Rosas E & Vielma J., Operator-Compact and Operator-Connected Spaces. Scientiae Mathematicae, Vol 1-No 2 (1998) 203-208. To appear in Math Japonica (1997).
- [3] Rose D. A & Hamlett T. R., On one point *I*-compactification and local *I*-compatness, Math. Slovaca, 42 (1992) N^0 3, 359-369.
 - [4] Rosas E & Vielma J., Operator-Compactification of topological spaces. Submitted.
- [5] Rosas E & Vielma J., Alpha-Compactness with respect to an ideal. to appear in Scientiae Mathematicae (1999).
- 1. Universidad de Andes, Departamento de Matemáticas, Facultad Ciencias, Mérida-Venezuela.

email:vielma@ciens.ula.ve

2. Universidad de Oriente, Departamento de Matemáticas, Cumaná, Venezuela. email:erosas@cumana.sucre.udo.edu.ve