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Abstract. It is known that, in the chi-square test of the goodness of fit, the expected
frequency of each cells should be greater than 5 for the large sample theory to hold,
and thus that, if there are cells with small observed frequencies, one should group
them so that the new grouped cell has the observed frequency greater than 5. In the
present paper, we treat the problem of grouping of small cells in the test of goodness
of fit from the viewpoint of a Bayes approach to the decision theoretic framework of
model fitting proposed by Inagaki(1977b). Then we have two errors, one of which is
caused by the estimation of probabilities of cells and the other by the grouping of small
cells, and obtain the exact and asymptotic representations of two errors explicitly. By
using them, we compare a new Bayes grouping rule of this model fitting to the usual
grouping rule of small cells.

1 Introduction Let us consider the test of goodness of fit for an assumed distribution
function where we usually go through the following four steps. (1) We adequately divide
the total space into several disjoint subsets which are called cells, (2) count the observed
frequency and the corresponding expected frequency of each cell under the assumed dis-
tribution, (3) calculate the value of the chi-square test statistic or the log-likelihood ratio
statistic, (4) decide to accept or reject the hypothesis of assumed distribution by comparing
its value to the critical limit value. In this procedure, we notice that the used model is
not the very distribution assumed above but the multinomial distribution, that is, the used
information is not the very observed values but the observed frequencies fallen in cells, and
furthermore, that the critical point is approximately determined by using the fact that the
test statistics asymptotically distribute to the chi-square.

For the large sample theory to hold in the test of goodness of fit, it is necessary that
we group small events into a new big event so as to have the observed frequency greater
than 5 of every event. For example, see Rao(1973, page 396) and Azzalini(1996, page 137).
We could interpret grouping observations of small events as equalizing their probabilities in
the multinomial distribution model, because the observation appears as the exponent of the
probability of event in the probability function. Equalizing probabilities of grouped cells
leads to decreasing the number of parameters to be estimated (the dimension of parameter
space) and thus reducing the error of estimation, while that causes to increase the error of
modeling.
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The main aim of the present paper is to apply the decision theoretic framework of model
fitting proposed by Inagaki(1977b) to grouping small cells in the test of goodness of fit, to
obtain the exact and asymptotic representations of two errors explicitly, and further, to
compare a new Bayes grouping rule of this model fitting to the usual grouping rule of small
cells.

In section 2, we discuss the error of model fitting consists of the sum of the modeling error
and the estimation error. We derive a Bayes grouping rule by using a Dirichlet distribution
as a prior distribution in this decision framework of the model fitting.

In section 3, we show that a criterion by the Bayes grouping rule converges to the
AIC statistic (Akaike(1973)) of the model selection as the sample increases to be large.
Furthermore, we obtain the asymptotic second order term of the difference of these two
statistics, which depends on the hyperparameters of the prior distribution.

In section 4, we carry out a simulation for a simple situation. It is very interesting that
both the criterion by the Bayes grouping rule and the AIC statistic give so similar results as
the usual grouping rule of small cells in large sample cases, while these rules give different
decisions in not so large sample cases.

2 Bayes grouping rule for small events For the large sample theory to hold in the
test of goodness of fit, it is necessary that we group several (two or three or four) small
events located side by side into one new large event so as to have the observed frequency
greater than 5 of every event.

Let a whole event with observed frequency n be divided into k + 1 events : E1, . . . , Er,
Er+1 , . . . , Ek+1, (r ≤ k) with their observed frequencies : n1, . . . , nr, nr+1 , . . . , nk+1,
respectively, where n1 + · · · + nk+1 = n for ni positive integers.

We assume that the first r events are located not to be small but the last k−r to be small
(n1, . . . , nr ≥ 5, nr+1 , . . . , nk+1 ≤ 5 ). The readers may consider that the assumption is
very artificial, but this is a setting in our article and it is often the case with practical data
by sequencing k + 1 events. Thus, we leave the first r events as they are but group the last
k + 1− r events and make the new r + 1-th event with the summation of their frequencies :
nr+1 + · · · + nk+1. We could interpret grouping observations of small events as equalizing
their probabilities in the multinomial distribution model, because the observation appears
as the exponent of the probability of event in the probability function. Our interpretation
is based on the property of the exponential family of the multinomial distribution. See the
table 1.

Original Refinement Grouping of Events
Event E1, . . . , Er, Er+1, . . . , Ek+1 E1, . . . , Er, (Er+1, . . . , Ek+1)

Probability p1, . . . , pr, pr+1, . . . , pk+1 ⇒ q1, . . . , qr, qr+1 = · · · = qk+1

Observation n1, . . . , nr, nr+1, . . . , nk+1 n1, . . . , nr, (nr+1, . . . , nk+1)

Table 1: Grouping of Small Events

Then, the observation n = (n1, . . . , nk+1) has the probability functions of (k + 1)-variate
multinomial distribution for the probability p = (p1, . . . , pk+1) with pi > 0 and p1 + · · · +
pk+1 = 1 :

f(n |p) =
n!

n1! · · ·nk+1!
pn1
1 · · · pnk+1

k+1 ,

and for the grouped probability qr = (q1, . . . , qr, qr+1, . . . , qr+1︸ ︷︷ ︸
k+1−r

) with qi > 0 and q1 + · · ·+
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qr + (k + 1 − r)qr+1 = 1 :

fr(n | qr) =
n!

n1! · · ·nk+1!
qn1
1 · · · qnr

r q
nr+1+···+nk+1
r+1 ,(2.1)

respectively. Equalizing probabilities of grouped cells leads to decreasing the number of
parameters to be estimated (the dimension of parameter space) and thus reducing the error
of estimation, while that causes to increase the error of modeling. Thus we apply the
decision theoretic framework of model fitting proposed by Inagaki to grouping small cells
in the test of goodness of fit.

First, we consider the modeling error of accepting the grouped model qr against the
original model p, which is denoted by KM (r |p) and is defined by the infimum of the
Kullback-Leibler information of fr(n | qr) under f(n | p) :

KM (r |p) ≡ inf
qr

{∑
n

log
f(n | p)

fr(n | qr)
· f(n | p)

}
.(2.2)

It is easy to see that the infimum is achieved at qr = qr(p) :

qr(p) =

p1, . . . , pr,
pr+1 + · · · + pk+1

k + 1 − r
, . . . ,

pr+1 + · · · + pk+1

k + 1 − r︸ ︷︷ ︸
k+1−r

 ,

and thus, that the modeling error (2.2) is represented as follows :

KM (r |p) =
∑
n

log
f(n | p)

fr(n | qr(p))
· f(n | p)(2.3)

= n


k+1∑

j=r+1

pj log pj −
 k+1∑

j=r+1

pj

 log

∑k+1
j=r+1 pj

k + 1 − r

 .

For the observation n, let p̂ = p̂(n) and q̂r = q̂r(n) be maximum likelihood estimators
of p and qr in the original probability function f(n | p) and the grouped one fr(n | qr),
respectively. Then, we obtain

p̂ =
(n1

n
, . . . ,

nr

n
,
nr+1

n
, . . . ,

nk+1

n

)
,(2.4)

q̂r =

n1

n
, . . . ,

nr

n
,
nr+1 + · · · + nk+1

n(k + 1 − r)
, . . . ,

nr+1 + · · · + nk+1

n(k + 1 − r)︸ ︷︷ ︸
k+1−r

 .(2.5)

This shows the invariance of maximum likelihood estimators for the dimension of parameter
space : q̂r = qr(p̂).

Second, we consider the estimation error KE(T r, p | r) which is defined by the Kullback-
Leibler information between an estimator T r = T r(n) for the original observation n =
(n1, . . . , nk+1) and a parameter qr(p) under the selected model fr(n | qr(p)) :

KE(T r, p | r) ≡
∑
n

[∑
n′

log
fr(n′ | qr(p))
fr(n′ | T r)

· fr(n′ | qr(p))

]
f(n | p) ,(2.6)
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where n′ = (n′
1, . . . , n′

k+1) with n =
∑k+1

j=1 n′
j is independent of the original observation n.

Inagaki(1977b) defined the risk function R(r, T r | p) of statistical model fitting by the
sum of the modeling error (2.3) and the estimation error (2.6) :

R(r, T r | p) ≡ KM (r |p) + KE(T r, p | r) .

Similarly, the loss function W (r, T r | p) is defined by the sum of the modeling loss WM (r |p)
and the estimation loss WE(T r, p | r) :

W (r, T r | p) ≡ WM (r |p) + WE(T r, p | r) ,(2.7)

which are represented in the following lemma :

Lemma 2.1

WM (r |p) = log
f(n | p)

fr(n | qr(p))
,

=
k+1∑

j=r+1

nj log
pj

(
∑k+1

i=r+1 pi)/(k + 1 − r)
,

WE(T r, p | r) =
∑
n′

log
fr(n′ | qr(p))
fr(n′ | T r)

· fr(n′ | qr(p))

= n

 r∑
j=1

pj log
pj

Tj
+

 k+1∑
j=r+1

pj

 log
(
∑k+1

j=r+1 pj)/(k + 1 − r)
Tr+1

 ,

where the estimator T r = (T1, . . . , Tr+1).

PROOF. We have easily the result by the direct calculations. 2

Let us consider a Bayes grouping rule by using a Dirichlet distribution as a prior dis-
tribution in this decision framework of the model fitting. We assume that parameters
(p1, . . . , pk+1) are distributed with k-variate Dirichlet distribution D(ν1, . . . , νk ; νk+1) as
a prior distribution. Then the prior density is

π(p) =
Γ(ν1 + · · · + νk+1)
Γ(ν1) · · ·Γ(νk+1)

k+1∏
j=1

p
νj−1
j ,(2.8)

where {νj} are positive real numbers and Γ(·) is the gamma function. About the Dirichlet
distribution, for instance, see Wilks(1962, page 179). Then, the joint probability function
f(n, p) is

f(n , p) = π(p) f(n |p) =
n!

n1! · · ·nk+1!
· Γ(ν1 + · · · + νk+1)

Γ(ν1) · · ·Γ(νk+1)

k+1∏
j=1

p
nj+νj−1
j .

Since the marginal probability function f(n) of n is one of Dirichlet Multinomial, that is,

f(n) =
∫

f(n, p) dp =
n!

n1! · · ·nk+1!
· Γ(

∑k+1
j=1 νj)∏k+1

j=1 Γ(νj)
·
∏k+1

j=1 Γ(nj + νj)

Γ(
∑k+1

j=1 (nj + νj))
,
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the posterior density function π(p | n) is

π(p | n) =
f(n, p)

f(n)
=

Γ(
∑k+1

j=1 (nj + νj))∏k+1
j=1 Γ(nj + νj)

k+1∏
j=1

p
nj+νj−1
j ,(2.9)

which is of the k-variate Dirichlet distribution D(n1 + ν1, . . . , nk + νk ; nk+1 + νk+1).
By the loss function (2.7) and the posterior distribution (2.9), the Bayes risk RB(T r) is

represented by

RB(T r) =
∑
n

{∫
W (r, T r | p) π(p | n) dp

}
f(n)

=
∑
n

{∫
WM (r | p) π(p | n) dp

}
f(n)

+
∑
n

{∫
WE(r, T r | p) π(p | n) dp

}
f(n)

= RM
B (r) + RE

B(T r) (say) .(2.10)

The integrated part of the right-hand side of the last equation is the posterior risk which is
denoted by ρ(r, T r) and into two parts ρM , ρE corresponding to two loss function (2.7) :

ρ(r, T r) ≡
∫

W (r, T r | p) π(p | n) dp

=
∫

WM (r | p) π(p | n) dp +
∫

WE(T r, p | r) π(p | n) dp

= ρM (r) + ρE(r, T r) (say).(2.11)

Let us denote a partial sum of harmonic series by L(n) for a positive integer n :

L(n) ≡ 1 +
1
2

+
1
3

+ · · · + 1
n

,

and furthermore, the difference function of it and log n by γ(n) :

γ(n) = L(n) − log n = 1 +
1
2

+
1
3

+ · · · + 1
n
− log n,(2.12)

which we call Euler’s sequence. Then, the following two lemmas are known (see Courant
and John(1965, page 526)) :

Lemma 2.2 The sequence γ(n) is monotone decreasing and converges to the Euler’s con-
stant γ :

lim
n→∞ γ(n) = γ, γ = 0.577215 · · · .

Lemma 2.3 The Euler’s sequence γ(n) has an asymptotic expansion for all large numbers
n :

γ(n) = γ +
1
2n

− 1
12n2

+ O(n−4) .(2.13)

Lemma 2.4 For any positive large integer n, L(n) has the asymptotic representation :

L(n) = log(n) + γ +
1

2 n
− 1

12 n2
+ O(n−4).
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PROOF. The result is obtained by using the two representations (2.12) and (2.13) in Euler’s
sequence. 2

We assume that {νj} in π(p) are all positive integers in the sequel of this paper.
When the (k + 1)-dimensional random vector P = (P1, · · · , Pk+1) is distributed to

Dirichlet Distribution D(n1 + ν1, · · · , nk + νk; nk+1 + νk+1), let the notation EP [·] denote
the expectation due to the posterior density π(p | n) (2.9).

Theorem 2.1 The posterior risk (2.11) is explicitly represented by

ρ(r, T r) = EP [ WM (r | P ) ] + EP [ WE(T r, P | r) ] = ρM (r) + ρE(r, T r),

where

ρM (r) =
k+1∑

j=r+1

nj L(nj + νj − 1)

−
 k+1∑

j=r+1

nj

L(
k+1∑

j=r+1

(nj + νj) − 1) − log(k + 1 − r)

 ,

ρE(r, T r) = −n L(
k+1∑
j=1

(nj + νj)) + n
r∑

j=1

nj + νj∑k+1
i=1 (ni + νi)

{L(nj + νj) − log Tj}

+ n

∑k+1
j=r+1(nj + νj)∑k+1

j=1 (nj + νj)

L(
k+1∑

j=r+1

(nj + νj)) − log((k + 1 − r)Tr+1)

 .

PROOF. We have the following moments of Dirichlet distribution :

EP [ Pj ] =
nj + νj∑k+1

i=1 (ni + νi)
,

EP [ log Pj ] = L(nj + νj − 1) − L(
k+1∑
i=1

(ni + νi) − 1),

EP

log(
k+1∑

j=r+1

Pj)

 = L(
k+1∑

j=r+1

(nj + νj) − 1) − L(
k+1∑
j=1

(nj + νj) − 1),

EP [ Pj log Pj ] =
nj + νj∑k+1

i=1 (ni + νi)

{
L(nj + νj) − L(

k+1∑
i=1

(ni + νi))

}
,

EP

(
k+1∑

j=r+1

Pj) log(
k+1∑

j=r+1

Pj)


=

∑k+1
j=r+1(nj + νj)∑k+1

j=1 (nj + νj)

L(
k+1∑

j=r+1

(nj + νj)) − L(
k+1∑
j=1

(nj + νj))

 ,

where j = 1, . . . , k + 1 in the above first, second, and fourth equations. Thus, for two
loss functions in Lemma 2.1, ρM (r) is obtained by applying the above second and third
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equations to the expectation of the modeling loss WM (r | p), similarly ρE(r, T r) is obtained
by applying the above first, fourth, and fifth equations to the expectation of the estimation
loss WE(T r, p | r). Hence the proof is completed. 2

Theorem 2.2 The elements of the Bayes solution q∗
r for the Bayes risk (2.10) are ob-

tained as

q∗j =


(nj + νj)/(

∑k+1
i=1 (ni + νi)) (j ≤ r),

(
∑k+1

i=r+1(ni + νi))/((k + 1 − r)(
∑k+1

i=1 (ni + νi))) (j = r + 1).

Thus the minimized posterior risk ρ(r, q∗
r) by the Bayes solution is represented by the sum

of the modeling risk ρM (r) and the estimation risk ρE(r, q∗
r) :

ρ(r, q∗
r) = ρM (r) + ρE(r, q∗

r) = ρM (r) + ρE(r) (say),

where the modeling risk is

ρM (r) =
k+1∑

j=r+1

nj L(nj + νj − 1)(2.14)

−
 k+1∑

j=r+1

nj

L(
k+1∑

j=r+1

(nj + νj) − 1) − log(k + 1 − r)

 ,

and the estimation risk is

ρE(r) =
n∑k+1

j=1 (nj + νj)

r∑
j=1

(nj + νj) γ(nj + νj)(2.15)

+
n∑k+1

j=1 (nj + νj)

 k+1∑
j=r+1

(nj + νj)

 γ(
k+1∑

j=r+1

(nj + νj))

−n γ(
k+1∑
j=1

(nj + νj)).

PROOF. Since to minimize the Bayes risk (2.10) with respect to T r equals to minimize
ρE(r, T r) in the posterior risk of Theorem 2.1, the differentiations of ρE(r, T r) by the
elements of T r imply the Bayes solution q∗

r . By substituting q∗
r for T r in the posterior

risk (2.11), Theorem 2.1 and (2.12) imply that the minimized posterior risk ρ(r, q∗
r) is

represented by the sum of the modeling risk ρM (r) and the estimation risk ρE(r) explicitly.
The proof is completed. 2

Set p∗ = q∗
k , that is,

p∗j =
nj + νj∑k+1

i=1 (ni + νi)
j = 1, · · · , k + 1.

Then, we also obtain the invariance of Bayes solutions : q∗
r = qr(p

∗) .
We shall propose the minimized posterior risk ρ(r, q∗

r) in Theorem 2.2 as a criterion
for the grouping of small events in the multinomial distribution, and let us give the name
“Bayes grouping rule” to our application of the decision theoretic framework for the model
fitting. If every νj = 1 in the Dirichlet prior density (2.8), then the prior is the uniform
distribution. Thus, we have the following corollary :
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Corollary 2.1 Let ρ
U
(r) be the minimized posterior risk when the prior is uniform. Then

ρU (r) = ρM
U

(r) + ρE
U

(r),

where the modeling risk and the estimation risk are

ρM
U

(r) =
k+1∑

j=r+1

nj L(nj) −
 k+1∑

j=r+1

nj

L(
k+1∑

j=r+1

nj + k − r) − log(k + 1 − r)

 ,

ρE
U

(r) =
n

n + k + 1

r∑
j=1

(nj + 1) γ(nj + 1)

+
n

n + k + 1

 k+1∑
j=r+1

(nj + 1)

 γ(
k+1∑

j=r+1

(nj + 1)) − n γ(n + k + 1),

respectively.

Theorem 2.3 The minimized posterior risk ρ(r, q∗
r) has the asymptotic representations

for the modeling risk (2.14) and the estimation risk (2.15) as follows : the modeling risk is

ρM (r) = BRM (r) + O(n−3) (say),(2.16)

where the term BRM (r) is

BRM (r)

=
k+1∑

j=r+1

nj log(nj + νj − 1)

−
(

k+1∑
i=r+1

ni

){
log(

k+1∑
i=r+1

(ni + νj) − 1) − log(k + 1 − r)

}

+


k+1∑

j=r+1

nj

2 (nj + νj − 1)
−

∑k+1
j=r+1 nj

2 (
∑k+1

j=r+1(nj + νj) − 1)


+


∑k+1

j=r+1 nj

12 (
∑k+1

j=r+1(nj + νj) − 1)2
−

k+1∑
j=r+1

nj

12 (nj + νj − 1)2

 .

And the estimation risk is

ρE(r) = BRE(r) + O(n−3) (say),(2.17)

where the term BRE(r) is

BRE(r) =
r

2
n∑k+1

j=1 (nj + νj)

− n∑k+1
j=1 (nj + νj)


r∑

j=1

1
12 (nj + νj)

+
1

12
∑k+1

j=r+1(nj + νj)
− 1

12
∑k+1

j=1 (nj + νj)

 .
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PROOF. By applying Lemma 2.4 to the terms L(·) in the modeling risk (2.14), ρM (r)
becomes

ρM (r)

=
k+1∑

j=r+1

nj L(nj + νj − 1) −
 k+1∑

j=r+1

nj

L(
k+1∑

j=r+1

(nj + νj) − 1) − log(k + 1 − r)


=

k+1∑
j=r+1

nj

{
log(nj + νj − 1) + γ +

1
2(nj + νj − 1)

− 1
12(nj + νj − 1)2

+ O(n−4)
}

−
 k+1∑

j=r+1

nj

log(
k+1∑

j=r+1

(nj + νj) − 1) + γ

+
1

2(
∑k+1

j=r+1(nj + νj) − 1)
− 1

12(
∑k+1

j=r+1(nj + νj) − 1)2
+ O(n−4)

}

+

 k+1∑
j=r+1

nj

 log(k + 1 − r),

so that the modeling risk has the asymptotic representation (2.16). By applying the asymp-
totic expansion (2.13) to the terms γ(·) in the estimation risk (2.15), ρE(r) becomes

ρE(r) =
n∑k+1

j=1 (nj + νj)

r∑
j=1

(nj + νj) γ(nj + νj)

+
n∑k+1

j=1 (nj + νj)

 k+1∑
j=r+1

(nj + νj)

 γ(
k+1∑

j=r+1

(nj + νj)) − n γ(
k+1∑
j=1

(nj + νj))

=
n∑k+1

j=1 (nj + νj)

r∑
j=1

(nj + νj)
{

γ +
1

2(nj + νj)
− 1

12(nj + νj)2
+ O(n−4)

}

+
n∑k+1

j=1 (nj + νj)

 k+1∑
j=r+1

(nj + νj)

{γ +
1

2
∑k+1

j=r+1(nj + νj)

− 1

12(
∑k+1

j=r+1(nj + νj))2
+ O(n−4)

}

−n

{
γ +

1

2
∑k+1

j=1 (nj + νj)
− 1

12(
∑k+1

j=1 (nj + νj))2
+ O(n−4)

}
,
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and

ρE(r) =
n∑k+1

j=1 (nj + νj)


r∑

j=1

(nj + νj) +
k+1∑

j=r+1

(nj + νj)

 γ − n γ

+
n∑k+1

j=1 (nj + νj)


r∑

j=1

1
2

+
1
2

− n

2(
∑k+1

j=1 (nj + νj))

− n∑k+1
j=1 (nj + νj)


r∑

j=1

1
12(nj + νj)

+
1

12
∑k+1

j=r+1(nj + νj)


+

n

12(
∑k+1

j=1 (nj + νj))2
+ O(n−3),

so that the estimation risk has the asymptotic representation (2.17). Therefore the proof is
completed. 2

Corollary 2.2 The modeling risk ρM
U

(r) has the asymptotic representation :

ρM
U

(r) = UBRM (r) + O(n−3) (say),

where the term UBRM (r) is

UBRM (r) =
k+1∑

j=r+1

nj log nj −
(

k+1∑
i=r+1

ni

){
log(

k+1∑
i=r+1

ni + k − r) − log(k + 1 − r)

}

+

{
k + 1 − r

2
−

∑k+1
j=r+1 nj

2(
∑k+1

j=r+1 nj + k − r)

}

+


∑k+1

j=r+1 nj

12(
∑k+1

j=r+1 nj + k − r)2
−

k+1∑
j=r+1

1
12 nj

 .

And the estimation risk ρE
U

(r) has the asymptotic representation :

ρE
U

(r) = UBRE(r) + O(n−3) (say),

where the term UBRE(r) is

UBRE(r) =
r

2
n

n + k + 1

− n

n + k + 1


r∑

j=1

1
12 (nj + 1)

+
1

12
∑k+1

j=r+1(nj + 1)
− 1

12 (n + k + 1)

 .

3 Comparison between the Bayes grouping rule and the AIC rule We shall
compare the Bayes grouping rule of model fitting to the AIC rule for small cells. It is
enough that we actually compare the minimized posterior risk in Theorem 2.3 to 1/2 times
the AIC statistic. For our grouped probability (2.1), the AIC statistic is denoted by

AIC(r) = 2 log
f(n | p̂)

fr(n | q̂r)
+ 2r − k ,
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where p̂, q̂r are maximum likelihood estimators (2.4), (2.5) respectively. The half of AIC(r)
has an explicit representation by calculating it directly :

1
2
AIC(r)

=

 k+1∑
j=r+1

nj log nj +

(
k+1∑

i=r+1

ni

){
log(k + 1 − r) − log(

k+1∑
i=r+1

ni)

}
+

r − k

2

+
r

2

=
1
2
AICM (r) +

1
2
AICE(r) (say).(3.1)

For r ≤ k, the exact difference between the minimized posterior risk ρ(r, q∗
r) and AIC(r)/2

is easy to obtain by Theorem 2.2. Note that, in the case r = k, it holds that AICM (k)/2 = 0
and AICE(k)/2 = k/2.

Thus, we have the following asymptotic difference and its limit as n goes to infinity :

Theorem 3.1 The asymptotic difference between ρ(r, q∗
r) and AIC(r)/2 is represented

by

1
2
AIC(r) − ρ(r, q∗

r) =
DM

n (r) + DE
n (r)

n
+ O(n−2),(3.2)

where the terms DM
n (r),DE

n (r) are described by

DM
n (r) =

n

2


k+1∑

j=r+1

(νj − 1)2

nj
− (
∑k+1

j=r+1 νj − 1)2∑k+1
j=r+1 nj


+

n

2

{
k+1∑

i=r+1

νj − 1
nj + νj − 1

−
∑k+1

j=r+1 νj − 1∑k+1
i=r+1(nj + νj) − 1

}

− n

12


∑k+1

j=r+1 nj

(
∑k+1

j=r+1(nj + νj) − 1)2
−

k+1∑
j=r+1

nj

(nj + νj − 1)2

 ,

DE
n (r) = n

 r∑
j=1

1
12(nj + νj)

+
1

12
∑k+1

j=r+1(nj + νj)

− 1

12
∑k+1

j=1 (nj + νj)
+
(r

2

) ∑k+1
j=1 νj∑k+1

j=1 (nj + νj)

]
.

And the limit of the difference (3.2) is zero as n goes to infinity.

PROOF. By the asymptotic description (2.16) of the modeling risk ρM (r) in Theorem 2.3,
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the asymptotic difference between AICM (r)/2 and ρM (r) is

1
2
AICM (r) − ρM (r) =

1
2
AICM (r) − BRM (r) + O(n−3)

= −
k+1∑

j=r+1

nj log
nj + νj − 1

nj
+

 k+1∑
j=r+1

nj

 log

∑k+1
j=r+1(nj + νj) − 1∑k+1

j=r+1 nj

+
r − k

2
−


k+1∑
j=r+1

nj

2(nj + νj − 1)
−

∑k+1
j=r+1 nj

2(
∑k+1

j=r+1(nj + νj) − 1)


−


∑k+1
j=r+1 nj

12(
∑k+1

j=r+1(nj + νj) − 1)2
−

k+1∑
j=r+1

nj

12(nj + νj − 1)2

+ O(n−3).

By the Taylor expansion

log(1 + x) = x − x2

2
+ O(x3),

it holds that

log
nj + νj − 1

nj
=

νj − 1
nj

− 1
2

(
νj − 1

nj

)2

+ O(n−3),

log

∑k+1
j=r+1(nj + νj) − 1∑k+1

j=r+1 nj

=

∑k+1
j=r+1 νj − 1∑k+1

j=r+1 nj

− 1
2

(∑k+1
j=r+1 νj − 1∑k+1

j=r+1 nj

)2

+ O(n−3),

and the transformations

nj

nj + νj − 1
= 1 − νj − 1

nj + νj − 1
,

∑k+1
j=r+1 nj∑k+1

j=r+1(nj + νj) − 1
= 1 −

∑k+1
j=r+1 νj − 1∑k+1

j=r+1(nj + νj) − 1

hold, so that

1
2
AICM (r) − ρM (r)

=
1
2


k+1∑

j=r+1

(νj − 1)2

nj
− (
∑k+1

j=r+1 νj − 1)2∑k+1
j=r+1 nj


+

1
2

{
k+1∑

i=r+1

νj − 1
nj + νj − 1

−
∑k+1

j=r+1 νj − 1∑k+1
i=r+1(nj + νj) − 1

}

− 1
12


∑k+1

j=r+1 nj

(
∑k+1

j=r+1(nj + νj) − 1)2
−

k+1∑
j=r+1

nj

(nj + νj − 1)2

+ O(n−2).

Then the term DM
n (r) with respect to AICM (r)/2 − ρM (r) is obtained. Similarly, by

the asymptotic description (2.17) of the estimation risk ρE(r) in Theorem 2.3 and by the
transformation

n∑k+1
j=1 (nj + νj)

= 1 −
∑k+1

j=1 νj∑k+1
j=1 (nj + νj)

,
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the asymptotic difference between AICE(r)/2 and ρE(r) is

1
2
AICE(r) − ρE(r) =

1
2
AICE(r) − BRE(r) + O(n−3)

=
r

2
− r

2

{
1 −

∑k+1
j=1 νj∑k+1

j=1 (nj + νj)

}

+


r∑

j=1

1
12 (nj + νj)

+
1

12
∑k+1

j=r+1(nj + νj)
− 1

12
∑k+1

j=1 (nj + νj)


−

∑k+1
j=1 νj∑k+1

j=1 (nj + νj)


r∑

j=1

1
12 (nj + νj)

+
1

12
∑k+1

j=r+1(nj + νj)
− 1

12
∑k+1

j=1 (nj + νj)


+O(n−3).

Then the term DE
n (r) with respect to AICE(r)/2 − ρE(r) is obtained. Since it is easy to

check that DM
n (r) = O(1) and DE

n (r) = O(1), the limit of the difference (3.2) is zero as n
goes to infinity. Thus the proof is completed. 2

Corollary 3.1

1
2
AIC(r) − ρ

U
(r) =

UDM
n (r) + UDE

n (r)
n

+ O(n−2),

where the terms UDM
n (r), UDE

n (r) are described by

UDM
n (r)

= −n

2

[
(k − r)2∑k+1
j=r+1 nj

+
k − r∑k+1

j=r+1 nj + k − r

]
− n

12

 ∑k+1
j=r+1 nj

(
∑k+1

j=r+1 nj + k − r)2
−

k+1∑
j=r+1

1
nj

 ,

UDE
n (r)

= n

 r∑
j=1

1
12(nj + 1)

+
1

12
∑k+1

j=r+1(nj + 1)
− 1

12
∑k+1

j=1 (nj + 1)
+
(r

2

) k + 1
n + k + 1

 .

And its limit is same as one in Theorem 3.1.

Inagaki(1977a) demonstrated the above corollary in the comparison between AIC and Bayes
risk function whose the prior is the uniform distribution.

The following theorem is easily derived from Theorem 3.1, where we remark

p̂j =
nj

n
−→ pj as n → ∞,

for j = 1, . . . , k + 1 :

Theorem 3.2 The second order term of the difference of AIC(r)/2 − ρ(r, q∗
r) is

n

[
1
2
AIC(r) − ρ(r, q∗

r)
]

= {DM
n (r) + DE

n (r)} + O(n−1),
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and

DM
n (r) →

k+1∑
j=r+1

6 νj(νj − 1) + 1
12 pj

− 6(
∑k+1

j=r+1 νj)(
∑k+1

j=r+1 νj − 1) + 1

12
∑k+1

i=r+1 pi

,

DE
n (r) →

r∑
j=1

1
12 pj

+
1

12
∑k+1

j=r+1 pj

− 1
12

+
r

2
(
k+1∑
i=1

νi),

as n → ∞.

Corollary 3.2

n

[
1
2
AIC(r) − ρU (r)

]
= {UDM

n (r) + UDE
n (r)} + O(n−1),

and

UDM
n (r) →

k+1∑
j=r+1

1
12pj

− 6(k + 1 − r)(k − r) + 1

12
∑k+1

i=r+1 pi

,

UDE
n (r) →

r∑
j=1

1
12 pj

+
1

12
∑k+1

j=r+1 pj

− 1
12

+
r(k + 1)

2

as n → ∞.

Note that the asymptotic descriptions BRM (r) and BRE(r) in Theorem 2.3 are similar to
AICM (r)/2 and AICE(r) in (3.1), respectively, but the former retains the information by
the prior density. It is interesting that the influence of prior does not appear in the first
order term of the difference between ρ(r, q∗

r) and AIC(r)/2 in Theorem 3.1, but it does
appear in the second order term of its difference in Theorem 3.2.

4 Simulation Our simulation is carried out by the software Mathematica ( c©Wolfram
Research, Inc.) for Corollary 2.1 and equation (3.1). In Mathematica, we set that the value
of random seed is 1997, that the cases of (n, k) are (50, 5), (100, 10), (150, 15), (200, 20),
and that the patterns of (nk−1, nk, nk+1) are in the table 2. Remark that n means a
number of sample and k a maximum number of parameter and that, with respect to a
random number, we generates uniformly random numbers for the terms from 1 to k − 2.
Additionally, since an important point in these criteria should use not the values themselves
but the relative values, when r < k, both AIC/2 and ρ

U
in Table 2 are assumed to be

relative differences of AIC/2(r) and ρ
U
(r) from AIC/2(k) and ρ

U
(k) respectively, that is,

AIC/2 = AIC/2(r) − AIC/2(k), ρU = ρU (r) − ρU (k), and, when r = k, both AIC/2 and
ρ

U
are assumed to be zero, that is, AIC/2 = ρ

U
= 0. Also let Diff in Table 2 mean the

exact difference of AIC/2(r) − ρ
U
(r). Note that the values of simulation are rounded.

ni n k AIC/2 ρ
U

Diff
k-1 k k+1 k-2 k-1 k-2 k-1 k-2 k-1 k

2 2 1 50 5 -1.782 -0.830 -1.288 -0.571 -0.128 0.107 0.366
100 10 -1.782 -0.830 -1.295 -0.575 0.145 0.376 0.631
150 15 -1.782 -0.830 -1.298 -0.576 0.409 0.638 0.893
200 20 -1.782 -0.830 -1.299 -0.576 0.679 0.908 1.161

3 2 1 50 5 -1.477 -0.830 -1.037 -0.571 -0.079 0.101 0.361
100 10 -1.477 -0.830 -1.045 -0.575 0.195 0.372 0.627
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ni n k AIC/2 ρ
U

Diff
k-1 k k+1 k-2 k-1 k-2 k-1 k-2 k-1 k

150 15 -1.477 -0.830 -1.047 -0.576 0.461 0.636 0.891
200 20 -1.477 -0.830 -1.048 -0.576 0.724 0.898 1.152

4 2 1 50 5 -1.000 -0.830 -0.604 -0.571 -0.038 0.097 0.358
100 10 -1.000 -0.830 -0.611 -0.575 0.234 0.367 0.623
150 15 -1.000 -0.830 -0.614 -0.576 0.502 0.634 0.888
200 20 -1.000 -0.830 -0.615 -0.576 0.764 0.895 1.149

5 2 1 50 5 -0.413 -0.830 -0.053 -0.571 -0.006 0.096 0.355
100 10 -0.413 -0.830 -0.060 -0.575 0.266 0.363 0.619
150 15 -0.413 -0.830 -0.062 -0.576 0.535 0.631 0.886
200 20 -0.413 -0.830 -0.064 -0.576 0.796 0.892 1.146

6 2 1 50 5 0.249 -0.830 0.581 -0.571 0.023 0.096 0.355
100 10 0.249 -0.830 0.574 -0.575 0.293 0.361 0.617
150 15 0.249 -0.830 0.571 -0.576 0.564 0.631 0.885
200 20 0.249 -0.830 0.570 -0.576 0.822 0.889 1.142

7 2 1 50 5 0.968 -0.830 1.276 -0.571 0.045 0.093 0.352
100 10 0.968 -0.830 1.268 -0.575 0.320 0.364 0.620
150 15 0.968 -0.830 1.266 -0.576 0.583 0.626 0.881
200 20 0.968 -0.830 1.264 -0.576 0.848 0.890 1.144

3 3 1 50 5 -1.339 -0.477 -0.939 -0.265 -0.045 0.143 0.355
100 10 -1.339 -0.477 -0.947 -0.268 0.227 0.411 0.619
150 15 -1.339 -0.477 -0.949 -0.270 0.502 0.684 0.892
200 20 -1.339 -0.477 -0.951 -0.270 0.761 0.943 1.150

4 3 1 50 5 -1.006 -0.477 -0.639 -0.265 -0.014 0.140 0.353
100 10 -1.006 -0.477 -0.647 -0.268 0.256 0.406 0.615
150 15 -1.006 -0.477 -0.649 -0.270 0.527 0.676 0.883
200 20 -1.006 -0.477 -0.651 -0.270 0.791 0.940 1.146

5 3 1 50 5 -0.544 -0.477 -0.207 -0.265 0.011 0.137 0.349 *
100 10 -0.544 -0.477 -0.214 -0.268 0.287 0.409 0.618 *
150 15 -0.544 -0.477 -0.217 -0.270 0.551 0.672 0.879 *
200 20 -0.544 -0.477 -0.218 -0.270 0.818 0.938 1.144 *

6 3 1 50 5 0.007 -0.477 0.321 -0.265 0.036 0.138 0.350
100 10 0.007 -0.477 0.313 -0.268 0.311 0.409 0.617
150 15 0.007 -0.477 0.311 -0.270 0.571 0.668 0.876
200 20 0.007 -0.477 0.310 -0.270 0.843 0.939 1.145

7 3 1 50 5 0.625 -0.477 0.919 -0.265 0.054 0.136 0.348
100 10 0.625 -0.477 0.912 -0.268 0.327 0.405 0.613
150 15 0.625 -0.477 0.909 -0.270 0.591 0.668 0.876
200 20 0.625 -0.477 0.908 -0.270 0.858 0.934 1.141

4 4 1 50 5 -0.797 -0.036 -0.458 0.143 0.009 0.169 0.348
100 10 -0.797 -0.036 -0.465 0.140 0.284 0.440 0.616
150 15 -0.797 -0.036 -0.468 0.138 0.550 0.705 0.879
200 20 -0.797 -0.036 -0.469 0.138 0.815 0.969 1.143

5 4 1 50 5 -0.447 -0.036 -0.131 0.143 0.029 0.166 0.346
100 10 -0.447 -0.036 -0.139 0.140 0.301 0.434 0.609
150 15 -0.447 -0.036 -0.141 0.138 0.570 0.701 0.876
200 20 -0.447 -0.036 -0.142 0.138 0.832 0.963 1.137

6 4 1 50 5 0.004 -0.036 0.300 0.143 0.049 0.166 0.345 *
100 10 0.004 -0.036 0.293 0.140 0.326 0.439 0.615 *
150 15 0.004 -0.036 0.290 0.138 0.597 0.709 0.884 *
200 20 0.004 -0.036 0.289 0.138 0.852 0.963 1.137 *

7 4 1 50 5 0.531 -0.036 0.811 0.143 0.064 0.164 0.343 *
100 10 0.531 -0.037 0.803 0.140 0.336 0.432 0.608 *
150 15 0.531 -0.036 0.801 0.138 0.608 0.703 0.878 *
200 20 0.531 -0.036 0.799 0.138 0.870 0.964 1.138 *

8 4 1 50 5 1.118 -0.036 1.383 0.143 0.079 0.165 0.344 *
100 10 1.118 -0.036 1.376 0.140 0.350 0.432 0.607 *
150 15 1.118 -0.036 1.373 0.138 0.620 0.700 0.875 *
200 20 1.118 -0.036 1.372 0.138 0.884 0.963 1.137 *

5 5 1 50 5 -0.198 0.456 0.100 0.611 0.047 0.189 0.344 *
100 10 -0.198 0.456 0.092 0.608 0.324 0.461 0.613 *
150 15 -0.198 0.456 0.089 0.607 0.589 0.723 0.874 *
200 20 -0.198 0.456 0.088 0.606 0.854 0.990 1.140 *

6 5 1 50 5 0.162 0.456 0.443 0.611 0.062 0.187 0.343
100 10 0.162 0.456 0.435 0.608 0.335 0.456 0.608
150 15 0.162 0.456 0.433 0.607 0.602 0.722 0.873
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ni n k AIC/2 ρ
U

Diff
k-1 k k+1 k-2 k-1 k-2 k-1 k-2 k-1 k

200 20 0.162 0.456 0.431 0.606 0.876 0.994 1.145
7 5 1 50 5 0.606 0.456 0.872 0.611 0.077 0.187 0.343

100 10 0.606 0.456 0.865 0.608 0.351 0.457 0.609
150 15 0.606 0.456 0.862 0.607 0.616 0.721 0.872
200 20 0.606 0.456 0.861 0.606 0.884 0.988 1.138

7 6 1 50 5 0.806 0.981 1.059 1.119 0.086 0.202 0.340
100 10 0.806 0.981 1.052 1.116 0.361 0.472 0.607
150 15 0.806 0.981 1.049 1.114 0.626 0.736 0.869
200 20 0.806 0.981 1.048 1.114 0.897 1.006 1.139

8 7 1 50 5 1.473 1.531 1.706 1.655 0.111 0.219 0.343
100 10 1.473 1.531 1.698 1.652 0.379 0.483 0.604
150 15 1.473 1.531 1.696 1.650 0.645 0.748 0.868
200 20 1.473 1.531 1.695 1.650 0.913 1.016 1.134

9 8 1 50 5 2.159 2.099 2.375 2.212 0.127 0.230 0.343
100 10 2.159 2.099 2.367 2.208 0.396 0.496 0.605
150 15 2.159 2.099 2.365 2.207 0.671 0.768 0.877
200 20 2.159 2.099 2.363 2.206 0.934 1.031 1.138

Table 2: Result of Simulation

Each AIC/2 in the same cell pattern (nk−1, nk, nk+1) is constant in spite of changes of
sample number n and cell number k, because only the cell pattern determines the value of
AIC/2 by the formulation (3.1) of the AIC statistic. On the other hand, all ρ

U
is affected

by all of the elements nj (j = 1, . . . , k + 1), because of the representations in Corollary
2.1. In the cell patterns (4, 4, 1), (5, 4, 1), (8, 7, 1), ρU shows not the same behavior but the
same smallest value with AIC/2. In the following patterns

(5, 3, 1), (6, 4, 1), (7, 4, 1), (8, 4, 1), (5, 5, 1),

which are marked by ∗ in the rightmost column of table 2, ρ
U

has the smallest value which
is different from AIC/2, and we find that these patterns have a kind of difficulty when the
grouping of cells would be decided. In other cell patterns, ρ

U
shows the same behavior and

smallest value with AIC/2.
Thus we could mention that both the Bayes grouping rule and the AIC rule give so

similar results as the usual grouping rule of small cells in large sample cases (see Theorem
3.1), while these rules give different decisions in not so large sample cases.
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