SOME RESULTS OF SELF-MAPS IN BCK-ALGEBRAS

Zhaomu Chen* and Yisheng Huang**

Received November 26, 1994

Abstract

In this paper we consider the left and right maps in $B C K$-algebras and obtain certain interesting results.

K. H. Dar, B. Ahmad and M. Kondo noticed the right and left maps in BCK-algebras and got some results. In this paper we shall further discuss these maps and their properties.
Definition 1. Let X be a $B C K$-algebra and a be a given element in X. Then the map L_{a} from X into itself is called a left map on X if $L_{a}(x)=a * x$ for all x in X. The right map, denoted by R_{a}, is defined by a similar way $-R_{a}(x)=x * a$ for all x in X.

Noticing that $x *(x *(x * y))=x * y$ holds for all x, y in X, we can easily verify that the following two propositions are true.

Proposition 2. Let X be a $B C K$-algebra. Then
(1) L_{a}^{2} is idempotent, i.e., $L_{a}^{2} \cdot L_{a}^{2}=L_{a}^{2}$ where $L_{a}^{2}(x)=L_{a}\left(L_{a}(x)\right)=a *(a * x)$;
(2) For every natural number n,

$$
L_{a}^{n}= \begin{cases}L_{a}, & \text { if } n \text { is old } \\ L_{a}^{2}, & \text { if } n \text { is even }\end{cases}
$$

(3) $L_{a}^{2}(x) * L_{a}(y)=L_{a}^{2}(y) * L_{a}(x)$;
(4) $L_{a}^{2}(x) * y=L_{a}(y) * L_{a}(x)=L_{a}^{2}(x) * L_{a}^{2}(y)$;
(5) The set of fixed points of L_{a}^{2}, i.e., $\operatorname{Fix}\left(L_{a}^{2}\right)=\left\{x \in X \mid L_{a}^{2}(x)=x\right\}$, is equal to the image set, $\operatorname{Im}\left(L_{a}\right)=\left\{L_{a}(x) \mid x \in X\right\}$, of L_{a};
(6) L_{a}^{2} is isotonic, i.e., $x \leq y$ implies $L_{a}^{2}(x) \leq L_{a}^{2}(y)$;
(7) $L_{a}^{2}(x)=0$ if and only if $R_{x}(a)=a$.

Proposition 3. Let X be a $B C K$-algebra. Then the following conditions are equivalent: for every x, y in X,
(8) L_{a}^{2} is an endomorphism;
(9) $L_{a}^{2}(x * y)=L_{a}^{2}(x) * y$;
(10) $L_{a}^{2}(x * y)=L_{a}(y) * L_{a}(x)$.

We know that L_{a} is endomorphism iff $a=0$ (see [3]). However the conclusion is false for L_{a}^{2}, for example, if X is involutory (i.e., X contains the greatest element 1 and $1 *(1 * x)=x$ for all x in X) then L_{1}^{2} is an endomorphism. Besides it is also given that L_{a} is surjective iff L_{a} is injective, or iff L_{a}^{2} is the identical map (see [3] and [4]), and from this we also have the following

[^0]Theorem 4. Let a be a fixed element in a $B C K$-algebra X. Then the following conditions are equivalent:
(a) L_{a}^{2} is injective;
(b) L_{a}^{2} is identical;
(c) L_{a}^{2} is surjective.

Proof. (a) $\Longrightarrow(\mathrm{b}) \quad$ By (1), $L_{a}^{2}\left(L_{a}^{2}(x)\right)=L_{a}^{2}(x)$ for all x in X, and then $L_{a}^{2}(x)=x$ by L_{a}^{2} being injective. Hence L_{a}^{2} is identical.
$(b) \Longrightarrow(c) \quad$ It is trivial.
(c) \Longrightarrow (a) Suppose that $L_{a}^{2}(x)=L_{a}^{2}(y)$. Since L_{a}^{2} is surjective, there exists an element z in X such that $L_{a}^{2}(z)=x$ and so by (1) and (4)

$$
x * y=L_{a}^{2}(z) * y=L_{a}^{2}\left(L_{a}^{2}(z)\right) * y=L_{a}^{2}(x) * y=L_{a}^{2}(x) * L_{a}^{2}(y)=0
$$

Similarily we can prove that $y * x=0$. Hence $x=y$ and L_{a}^{2} is injective.
Noticing that $L_{a}^{2}(x) \leq a$ and $L_{a}^{2}(a)=a$, we have $\operatorname{Im}\left(L_{a}^{2}\right) \subseteq[0, a](=\{x \in X \mid 0 \leq x \leq a\})$ and so if L_{a}^{2} is surjective, thus L_{a} surjective, then there is $X \subseteq[0, a]$ and this shows that X is bounded and a is the greatest element 1 , moreover, by Theorem $4, L_{a}^{2}(x)=x$. We have proved the following
Proposition 5. Let X be a $B C K$-algebra. Then
(a) There is at most one surjective left map on X;
(b) X is involutory if and only if there exists a surjective left map on X.

Theorem 6. Let X be a $B C K$-algebra. Then, for any a in X, the kernel, denoted by $\operatorname{Ker}\left(L_{a}^{2}\right)$, of L_{a}^{2} is an ideal of X.

Proof. Because $L_{a}^{2}(0)=0,0 \in \operatorname{Ker}\left(L_{a}^{2}\right)$. If $x, y * x \in \operatorname{Ker}\left(L_{a}^{2}\right)$ then by (4),

$$
\begin{aligned}
L_{a}^{2}(y) & =L_{a}^{2}(y) * L_{a}^{2}(y * x)=L_{a}^{2}(y) *(y * x)=\left(L_{a}^{2}(y) * L_{a}^{2}(x)\right) *(y * x) \\
& =\left(L_{a}^{2}(y) * x\right) *(y * x) \leq L_{a}^{2}(y) * y=L_{a}(y) * L_{a}(y)=0
\end{aligned}
$$

Hence $y \in \operatorname{Ker}\left(L_{a}^{2}\right)$, as shown.
We remark that the conclusion of Theorem 6 was found due to H. Jiang in [5] in 1988 by another way.

Let us consider the right maps. The power R_{a}^{n} of a right map R_{a} is ordinary composition of maps. We denote the set of all fixed point of R_{a}^{n} by $\operatorname{Fix}\left(R_{a}^{n}\right)$. The proof of the following proposition 7 is trivial and omitted.

Proposition 7. Let R_{a} be a right map on a $B C K$-algebra X and n a natural number. Then for any $x, y \in X$,
(11) $R_{a}^{n}(x * y)=R_{a}^{n}(x) * y$;
(12) $x \leq y$ implies $R_{a}^{n}(x) \leq R_{a}^{n}(y)$;
(13) $x \geq R_{a}(x) \geq R_{a}^{2}(x) \geq \cdots$;
(14) $R_{a}^{n}(x) * R_{a}^{n}(y) \leq x * y$;
(15) $\operatorname{Im}\left(R_{a}\right) \supseteq \operatorname{Im}\left(R_{a}^{2}\right) \supseteq \cdots ;$
(16) $\operatorname{Fix}\left(R_{a}\right) \subseteq \operatorname{Fix}\left(R_{a}^{2}\right) \subseteq \cdots$;
(17) $\operatorname{Ker}\left(R_{a}\right) \subseteq \operatorname{Ker}\left(R_{a}^{2}\right) \subseteq \cdots$;
(18) $\operatorname{Fix}\left(R_{a}^{n}\right) \subseteq \operatorname{Im}\left(R_{a}^{n}\right)$;
(19) $\operatorname{Fix}\left(R_{a}^{n}\right) \cap \operatorname{Ker}\left(R_{a}^{n}\right)=0$.

Theorem 8. Let R_{a} be a right map on a $B C K$-algebra X. Then R_{a}^{n} is an endomorphism if and only if $R_{a}^{n}=R_{a}^{n+1}$.
Proof. If R_{a}^{n} is an endomorphism then for any $x \in X$,

$$
R_{a}^{n+1}(x)=R_{a}^{n}\left(R_{a}(x)\right)=R_{a}(x * a)=R_{a}^{n}(x) * R_{a}^{n}(a)=R_{a}^{n}(x) * 0=R_{a}^{n}(x)
$$

Hence $R_{a}^{n}=R_{a}^{n+1}$. Conversely if $R_{a}^{n}=R_{a}^{n+1}$ then clearly we have $R_{a}^{n}=R_{a}^{n+m}$ and so for any $x, y \in X$, by (14) and (11),

$$
R_{a}^{n}(x) * R_{a}^{n}(y)=R_{a}^{n}\left(R_{a}^{n}(x)\right) * R_{a}^{n}(y) \leq R_{a}^{n}(x) * y=R_{a}^{n}(x * y)
$$

Next by (11) and (13),

$$
R_{a}^{n}(x * y)=R_{a}^{n}(x) * y \leq R_{a}^{n}(x) * R_{a}^{n}(y)
$$

Hence $R_{a}^{n}(x * y)=R_{a}^{n}(x) * R_{a}^{n}(y)$ and R_{a}^{n} is an endomorphism.
Theorem 9. $\operatorname{Im}\left(R_{a}^{n}\right), \operatorname{Fix}\left(R_{a}^{n}\right)$ and $\operatorname{Ker}\left(R_{a}^{n}\right)$ are subalgebras of X but may not necessarily be ideals of X.
Proof. $\operatorname{Im}\left(R_{a}^{n}\right), \operatorname{Fix}\left(R_{a}^{n}\right)$ and $\operatorname{Ker}\left(R_{a}^{n}\right)$ are nonempty subset of X, for, 0 is in them, respectively. If $x, y \in \operatorname{Im}\left(R_{a}^{n}\right)$, there exists an element z in X such that $R_{a}^{n}(z)=x$ so by (11), $x * y=R_{a}^{n}(z) * y=R_{a}^{n}(z * y) \in \operatorname{Im}\left(R_{a}^{n}\right)$.

If $x, y \in \operatorname{Fix}\left(R_{a}^{n}\right)$ then $R_{a}^{n}(x * y)=R_{a}^{n}(x) * y=x * y$ and so $x * y \in \operatorname{Fix}\left(R_{a}^{n}\right)$.
If $x, y \in \operatorname{Ker}\left(R_{a}^{n}\right)$ then $R_{a}^{n}(x * y)=R_{a}^{n}(x) * y=0 * y=0$, that is, $x * y \in \operatorname{Ker}\left(R_{a}^{n}\right)$.
Summarizing the above facts, we have proved the first part of this theorem.
The set $X=\{0,1,2, \cdots\}$ with the operation $*$ defined by

$$
x * y= \begin{cases}0, & \text { if } x \leq y \\ x, & \text { if } x>y\end{cases}
$$

forms a positive implicative $B C K$-algebra. It is easy to verify that the sets, $\operatorname{Im}\left(R_{a}\right)$ and $\operatorname{Fix}\left(R_{a}\right)$, are equal to the set $\{0\} \cup\{a+1, a+2, \cdots\}$ for all $a \in X$, and clearly these are not ideals of X whenever $a \neq 0$.

Moreover the same set $X=\{0,1,2, \cdots\}$ with another operation $*$ defined by

$$
x * y=\max \{0, x-y\}
$$

forms a commutative $B C K$-algebra. Put $a=1$ then $\operatorname{Ker}\left(R_{a}^{n}\right)=\{0,1,2, \cdots, n\}$ and this is not an ideal of X.

A $B C K$-algebra X is called n-fold positive implicative if $x * y^{n}=x * y^{n+1}$ for any x, $y \in X$, where $x * y^{n}=(\cdots((x * y) * y) * \cdots) * y$, (y occurs n times $)$. An n-fold positive implicative $B C K$-algebra can be characterized by its right maps and this fact is stated in the following theorem. The proof is trivial and omitted.
Theorem 10. Let X be a $B C K$-algebra. Then the following are equivalent: for any $a \in X$,
(a) X is n-fold positive implicative;
(b) $\operatorname{Im}\left(R_{a}^{n}\right)=\operatorname{Fix}\left(R_{a}^{n}\right)$;
(c) $R_{a}^{n}=R_{a}^{n+1}$;
(d) R_{a}^{n} is an endomorphism on X.

Let us consider the right maps on a $B C K$-algebra X with the condition (S). Using simple calculation, we see that the product of arbitrary two right maps on a $B C K$-algebra X is a right map if and only if X satisties the condition (S), and at the same time we also have, for all $x, y \in X$,
(20) $R_{x \circ y}=R_{x} R_{y}=R_{y} R_{x}$
where X satisfies the condition (S).
Proposition 11. Let X be a $B C K$-algebra with the condition (S) and

$$
X_{m}=\left\{x \in X \mid R_{x}^{m} \text { is an endomorphism on } X\right\}
$$

Then X_{m} is a commutative semigroup with respect to o.
Proof. As it is well known, $(X, 0)$ is a commutative semigroup and so it suffices to prove that $\left(X_{m}, \circ\right)$ is a sub-semigroup of $(X, 0)$. In fact, X_{m} is a nonempty subset of X, for, 0 is in X_{m}. Next if $x, y \in X_{m}$ then by (20) and Theorem 8,

$$
R_{x \circ y}^{m+1}=\left(R_{x} R_{y}\right)^{m+1}=R_{x}^{m+1} R_{y}^{m+1}=R_{x}^{m} R_{y}^{m}=\left(R_{x} R_{y}\right)^{m}=R_{x \circ y}^{m} .
$$

Now Theorem 8 implies that $R_{x \circ y}^{m}$ is an endomorphism on X so $x \circ y \in X_{m}$, as shown.
Finally let us investigate the relationships between $\operatorname{Ker}\left(L_{a}^{2}\right)$ and $\operatorname{Fix}\left(R_{a}\right)$. For convenience we give a lemma and omit the proof.

Lemma 12. Let A, B be two ideals of a $B C K$-algebra X. Then $A \cap B=\{0\}$ if and only if for any $a \in A$ and $b \in B, L_{a}^{2}(b)=L_{b}^{2}(a)=0$.

Theorem 13. Let a be an element in a $B C K$-algebra X. If $\operatorname{Fix}\left(R_{a}\right)$ is an ideal of X then $\operatorname{Fix}\left(R_{a}\right) \subseteq \operatorname{Ker}\left(L_{a}^{2}\right)$ but the inverse containing relation may not necessarily hold.
Proof. We denote I_{a} to be the ideal of X generated by $\{a\}$. It is easy to verify that $I_{a} \cap \operatorname{Fix}\left(R_{a}\right)=\{0\}$ and then for any $x \in \operatorname{Fix}\left(R_{a}\right)$ since $\operatorname{Fix}\left(R_{a}\right)$ is an ideal of X and $a \in I_{a}$, we have $L_{a}^{2}(x)=0$ by Lemma 12 , that is, $x \in \operatorname{Ker}\left(L_{a}^{2}\right)$. This shows that $\operatorname{Fix}\left(R_{a}\right) \subseteq \operatorname{Ker}\left(L_{a}^{2}\right)$. Next put $X=\{0, a, b, c\}$ and define the operation $*$ as follows:

$*$	0	a	b	c
0	0	0	0	0
a	a	0	0	a
b	b	b	0	b
c	c	c	c	0

Then X is a $B C K$-algebra (H. Jiang calls this to be B_{4-1-6}) and $\operatorname{Ker}\left(L_{b}^{2}\right)=\{0, a, c\}$, $\operatorname{Fix}\left(R_{b}\right)=\{0, c\}$. It is easy to see that $\operatorname{Fix}\left(R_{b}\right)$ is an ideal of X but $\operatorname{Ker}\left(L_{b}^{2}\right) \nsubseteq \operatorname{Fix}\left(R_{b}\right)$.

Theorem 14. Let X be a $B C K$-algebra. Then the following are equivalent: for all a, $b \in X$,
(a) $\operatorname{Fix}\left(R_{a}\right)$ is an ideal of X;
(b) $\operatorname{Fix}\left(R_{a}\right)=\operatorname{Ker}\left(L_{a}^{2}\right)$;
(c) $R_{a}(b)=b$ implies $R_{b}(a)=a$.

Proof. (a) $\Longrightarrow(\mathrm{b}) \quad$ Since $\operatorname{Fix}\left(R_{a}\right)$ is an ideal of X, by Theorem $13, \operatorname{Fix}\left(R_{a}\right) \subseteq \operatorname{Ker}\left(L_{a}^{2}\right)$. Next we assert that $I_{a} \cap \operatorname{Ker}\left(L_{a}^{2}\right)=\{0\}$. If it is false then there exists a nonzero element b in $I_{a} \cap \operatorname{Ker}\left(L_{a}^{2}\right)$. Then by b in $\operatorname{Ker}\left(L_{a}^{2}\right)$, we have $L_{a}^{2}(b)=0$ and so $R_{b}(a)=a$ by (7), that is, $a \in \operatorname{Fix}\left(R_{b}\right)$ and consequently $I_{a} \subseteq \operatorname{Fix}\left(R_{b}\right)$ by $\operatorname{Fix}\left(R_{b}\right)$ an ideal of X. Now by $b \in I_{a}$, we
get $b \in \operatorname{Fix}\left(R_{b}\right)$ and $b=R_{b}(b)=0$, a contradiction with $b \neq 0$, as asserted. Hence for all x in $\operatorname{Ker}\left(L_{a}^{2}\right)$, by Theorem 6 and Lemma 12, we get $L_{x}^{2}(a)=0$, that is, $R_{a}(x)=x$ by (7), proving $\operatorname{Ker}\left(L_{a}^{2}\right) \subseteq \operatorname{Fix}\left(R_{a}\right)$. Hence (b) holds.
(b) \Longrightarrow (c) $\quad R_{x}(y)=y$ implies $y \in \operatorname{Fix}\left(R_{x}\right)=\operatorname{Ker}\left(L_{x}^{2}\right)$ and so $L_{x}^{2}(y)=0$. Hence by (7), $R_{y}(x)=x$.
(c) \Longrightarrow (a) If $x \in \operatorname{Fix}\left(R_{a}\right)$, i.e, $R_{a}(x)=x$ then by $(\mathrm{c}), R_{x}(a)=a$, i.e., $L_{a}^{2}(x)=0$, which means $x \in \operatorname{Ker}\left(L_{a}^{2}\right)$. Conversely if $L_{a}^{2}(x)=0$ then $R_{x}(a)=a$ and so $R_{a}(x)=x$ by (c). Hence $x \in \operatorname{Fix}\left(R_{a}\right)$. This proves that $\operatorname{Fix}\left(R_{a}\right)=\operatorname{Ker}\left(L_{a}^{2}\right)$ and $\operatorname{Fix}\left(R_{a}\right)$ is an ideal of X by Theorem 6.

References

1. K. H. Dar, A Characterization of Positive Implicative BCK-Algebras by Self-Maps, Math. Japon. $\mathbf{3 1}$ (1986), 197-199.
2. K. H. Dar and B. Ahmad, Endomorphisms of BC K-Algebras, Math. Japon. 31 (1986), 855-857.
3. M. Kondo, Positive Implicative BC K-Algebra and Its Dual Algebra, Math. Japon. 35 (1990), 289-291.
4. M. Kondo, Some Properties of Left Maps in BC K-Algebras, Math. Japon. 36 (1991), 173-174.
5. H. Jiang, On the Structure of Finite Simple BCK-Algebras, Chinese Ann. Math., Ser. A, 9 (1988), 229-233.
*) Department of Mathematics, Fujlan Normal University, Fuzhou, Fujian 350007, P.R. China

[^0]: Key words and phrases. BCK-algebra, left map, right map and fixed point.
 AMS(1991) Subject Classification. 06F35, 08A35.

