SOME RESULTS OF SELF-MAPS IN BCK-ALGEBRAS

Zhaomu Chen* and Yisheng Huang**

Received November 26, 1994

ABSTRACT. In this paper we consider the left and right maps in BCK-algebras and obtain certain interesting results.

K. H. Dar, B. Ahmad and M. Kondo noticed the right and left maps in BCK-algebras and got some results. In this paper we shall further discuss these maps and their properties.

Definition 1. Let X be a BCK-algebra and a be a given element in X. Then the map L_a from X into itself is called a left map on X if $L_a(x) = a * x$ for all x in X. The right map, denoted by R_a , is defined by a similar way $-R_a(x) = x * a$ for all x in X.

Noticing that x * (x * (x * y)) = x * y holds for all x, y in X, we can easily verify that the following two propositions are true.

Proposition 2. Let X be a BCK-algebra. Then

- (1) L_a^2 is idempotent, i.e., $L_a^2 \cdot L_a^2 = L_a^2$ where $L_a^2(x) = L_a(L_a(x)) = a * (a * x);$
- (2) For every natural number n,

$$L_a^n = \begin{cases} L_a, & \text{if } n \text{ is old,} \\ L_a^2, & \text{if } n \text{ is even;} \end{cases}$$

- (3) $L_a^2(x) * L_a(y) = L_a^2(y) * L_a(x);$ (4) $L_a^2(x) * y = L_a(y) * L_a(x) = L_a^2(x) * L_a^2(y);$ (5) The set of fixed points of L_a^2 , i.e., $\operatorname{Fix}(L_a^2) = \{x \in X \mid L_a^2(x) = x\}$, is equal to the image set, $\operatorname{Im}(L_a) = \{L_a(x) \mid x \in X\}, \text{ of } L_a;$ (6) L_a^2 is isotonic, i.e., $x \leq y$ implies $L_a^2(x) \leq L_a^2(y);$ (7) $L_a^2(x) = 0$ if and only if $R_x(a) = a.$

Proposition 3. Let X be a BCK-algebra. Then the following conditions are equivalent: for every x, y in X,

- (8) L_a^2 is an endomorphism; (9) $L_a^2(x * y) = L_a^2(x) * y;$ (10) $L_a^2(x * y) = L_a(y) * L_a(x).$

We know that L_a is endomorphism iff a = 0 (see [3]). However the conclusion is false for L_a^2 , for example, if X is involutory (i.e., X contains the greatest element 1 and 1*(1*x) = xfor all x in X) then L_1^2 is an endomorphism. Besides it is also given that L_a is surjective iff L_a is injective, or iff L_a^2 is the identical map (see [3] and [4]), and from this we also have the following

Key words and phrases. BCK-algebra, left map, right map and fixed point.

Theorem 4. Let a be a fixed element in a *BCK*-algebra X. Then the following conditions are equivalent:

- (a) L_a^2 is injective; (b) L_a^2 is identical; (c) L_a^2 is surjective.

Proof. (a) \Longrightarrow (b) By (1), $L^2_a(L^2_a(x)) = L^2_a(x)$ for all x in X, and then $L^2_a(x) = x$ by L^2_a being injective. Hence L_a^2 is identical.

 $(b) \Longrightarrow (c)$ It is trivial.

(c) \implies (a) Suppose that $L^2_a(x) = L^2_a(y)$. Since L^2_a is surjective, there exists an element z in X such that $L^2_a(z) = x$ and so by (1) and (4)

$$x * y = L_a^2(z) * y = L_a^2(L_a^2(z)) * y = L_a^2(x) * y = L_a^2(x) * L_a^2(y) = 0.$$

Similarly we can prove that y * x = 0. Hence x = y and L_a^2 is injective. \Box

Noticing that $L_a^2(x) \leq a$ and $L_a^2(a) = a$, we have $\operatorname{Im}(L_a^2) \subseteq [0, a] \ (= \{x \in X \mid 0 \leq x \leq a\})$ and so if L_a^2 is surjective, thus L_a surjective, then there is $X \subseteq [0, a]$ and this shows that X is bounded and a is the greatest element 1, moreover, by Theorem 4, $L_a^2(x) = x$. We have proved the following

Proposition 5. Let X be a *BCK*-algebra. Then

- (a) There is at most one surjective left map on X;
- (b) X is involutory if and only if there exists a surjective left map on X.

Theorem 6. Let X be a BCK-algebra. Then, for any a in X, the kernel, denoted by $\operatorname{Ker}(L_a^2)$, of L_a^2 is an ideal of X.

Proof. Because $L_a^2(0) = 0, 0 \in \text{Ker}(L_a^2)$. If $x, y * x \in \text{Ker}(L_a^2)$ then by (4),

$$\begin{split} L^2_a(y) &= L^2_a(y) * L^2_a(y * x) = L^2_a(y) * (y * x) = (L^2_a(y) * L^2_a(x)) * (y * x) \\ &= (L^2_a(y) * x) * (y * x) \le L^2_a(y) * y = L_a(y) * L_a(y) = 0. \end{split}$$

Hence $y \in \text{Ker}(L^2_a)$, as shown.

We remark that the conclusion of Theorem 6 was found due to H. Jiang in [5] in 1988 by another way.

Let us consider the right maps. The power R_a^n of a right map R_a is ordinary composition of maps. We denote the set of all fixed point of R_a^n by $Fix(R_a^n)$. The proof of the following proposition 7 is trivial and omitted.

Proposition 7. Let R_a be a right map on a *BCK*-algebra X and n a natural number. Then for any $x, y \in X$,

(11) $R_a^n(x*y) = R_a^n(x)*y;$ (12) $x \leq y$ implies $R_a^n(x) \leq R_a^n(y)$; (13) $x \ge R_a(x) \ge R_a^2(x) \ge \cdots$; (14) $R_a^n(x) * R_a^n(y) \le x * y;$ (15) $\operatorname{Im}(R_a) \supseteq \operatorname{Im}(R_a^2) \supseteq \cdots;$ (16) $\operatorname{Fix}(R_a) \subseteq \operatorname{Fix}(R_a^2) \subseteq \cdots$; (17) $\operatorname{Ker}(R_a) \subseteq \operatorname{Ker}(R_a^2) \subseteq \cdots$; (18) $\operatorname{Fix}(R_a^n) \subseteq \operatorname{Im}(R_a^n);$ (19) $\operatorname{Fix}(R_a^n) \cap \operatorname{Ker}(R_a^n) = 0.$

Theorem 8. Let R_a be a right map on a *BCK*-algebra *X*. Then R_a^n is an endomorphism if and only if $R_a^n = R_a^{n+1}$.

Proof. If R_a^n is an endomorphism then for any $x \in X$,

$$R_a^{n+1}(x) = R_a^n(R_a(x)) = R_a(x * a) = R_a^n(x) * R_a^n(a) = R_a^n(x) * 0 = R_a^n(x).$$

Hence $R_a^n = R_a^{n+1}$. Conversely if $R_a^n = R_a^{n+1}$ then clearly we have $R_a^n = R_a^{n+m}$ and so for any $x, y \in X$, by (14) and (11),

$$R_a^n(x) * R_a^n(y) = R_a^n(R_a^n(x)) * R_a^n(y) \le R_a^n(x) * y = R_a^n(x * y).$$

Next by (11) and (13),

$$R_{a}^{n}(x * y) = R_{a}^{n}(x) * y \le R_{a}^{n}(x) * R_{a}^{n}(y).$$

Hence $R_a^n(x * y) = R_a^n(x) * R_a^n(y)$ and R_a^n is an endomorphism.

Theorem 9. $\operatorname{Im}(R_a^n)$, $\operatorname{Fix}(R_a^n)$ and $\operatorname{Ker}(R_a^n)$ are subalgebras of X but may not necessarily be ideals of X.

Proof. $\operatorname{Im}(R_a^n)$, $\operatorname{Fix}(R_a^n)$ and $\operatorname{Ker}(R_a^n)$ are nonempty subset of X, for, 0 is in them, respectively. If $x, y \in \operatorname{Im}(R_a^n)$, there exists an element z in X such that $R_a^n(z) = x$ so by (11), $x * y = R_a^n(z) * y = R_a^n(z * y) \in \operatorname{Im}(R_a^n)$.

If $x, y \in \text{Fix}(R_a^n)$ then $R_a^n(x * y) = R_a^n(x) * y = x * y$ and so $x * y \in \text{Fix}(R_a^n)$. If $x, y \in \text{Ker}(R_a^n)$ then $R_a^n(x * y) = R_a^n(x) * y = 0 * y = 0$, that is, $x * y \in \text{Ker}(R_a^n)$. Summarizing the above facts, we have proved the first part of this theorem. The set $X = \{0, 1, 2, \dots\}$ with the operation * defined by

$$x * y = \begin{cases} 0, & \text{if } x \le y, \\ x, & \text{if } x > y \end{cases}$$

forms a positive implicative *BCK*-algebra. It is easy to verify that the sets, $\text{Im}(R_a)$ and $\text{Fix}(R_a)$, are equal to the set $\{0\} \cup \{a + 1, a + 2, \dots\}$ for all $a \in X$, and clearly these are not ideals of X whenever $a \neq 0$.

Moreover the same set $X = \{0, 1, 2, \dots\}$ with another operation * defined by

$$x * y = \max\{0, x - y\}$$

forms a commutative *BCK*-algebra. Put a = 1 then $\text{Ker}(R_a^n) = \{0, 1, 2, \dots, n\}$ and this is not an ideal of X. \Box

A *BCK*-algebra X is called *n*-fold positive implicative if $x * y^n = x * y^{n+1}$ for any x, $y \in X$, where $x * y^n = (\cdots ((x * y) * y) * \cdots) * y$, (y occurs n times). An n-fold positive implicative *BCK*-algebra can be characterized by its right maps and this fact is stated in the following theorem. The proof is trivial and omitted.

Theorem 10. Let X be a *BCK*-algebra. Then the following are equivalent: for any $a \in X$,

- (a) X is n-fold positive implicative;
- (b) $\operatorname{Im}(R_a^n) = \operatorname{Fix}(R_a^n);$
- (c) $R_a^n = R_a^{n+1};$
- (d) R_a^n is an endomorphism on X.

Let us consider the right maps on a BCK-algebra X with the condition (S). Using simple calculation, we see that the product of arbitrary two right maps on a BCK-algebra X is a right map if and only if X satisfies the condition (S), and at the same time we also have, for all $x, y \in X$,

$$(20) \quad R_{x \circ y} = R_x R_y = R_y R_x$$

where X satisfies the condition (S).

Proposition 11. Let X be a BCK-algebra with the condition (S) and

$$X_m = \{x \in X \mid R_r^m \text{ is an endomorphism on } X\}.$$

Then X_m is a commutative semigroup with respect to \circ .

Proof. As it is well known, (X, \circ) is a commutative semigroup and so it suffices to prove that (X_m, \circ) is a sub-semigroup of (X, \circ) . In fact, X_m is a nonempty subset of X, for, 0 is in X_m . Next if $x, y \in X_m$ then by (20) and Theorem 8,

$$R_{x \circ y}^{m+1} = (R_x R_y)^{m+1} = R_x^{m+1} R_y^{m+1} = R_x^m R_y^m = (R_x R_y)^m = R_{x \circ y}^m.$$

Now Theorem 8 implies that $R_{x\circ y}^m$ is an endomorphism on X so $x \circ y \in X_m$, as shown.

Finally let us investigate the relationships between $\operatorname{Ker}(L_a^2)$ and $\operatorname{Fix}(R_a)$. For convenience we give a lemma and omit the proof.

Lemma 12. Let A, B be two ideals of a BCK-algebra X. Then $A \cap B = \{0\}$ if and only if for any $a \in A$ and $b \in B$, $L^2_a(b) = L^2_b(a) = 0$.

Theorem 13. Let *a* be an element in a *BCK*-algebra *X*. If $Fix(R_a)$ is an ideal of *X* then $Fix(R_a) \subseteq Ker(L_a^2)$ but the inverse containing relation may not necessarily hold.

Proof. We denote I_a to be the ideal of X generated by $\{a\}$. It is easy to verify that $I_a \cap \operatorname{Fix}(R_a) = \{0\}$ and then for any $x \in \operatorname{Fix}(R_a)$ since $\operatorname{Fix}(R_a)$ is an ideal of X and $a \in I_a$, we have $L_a^2(x) = 0$ by Lemma 12, that is, $x \in \operatorname{Ker}(L_a^2)$. This shows that $\operatorname{Fix}(R_a) \subseteq \operatorname{Ker}(L_a^2)$. Next put $X = \{0, a, b, c\}$ and define the operation * as follows:

*	0	a	b	c
0	0	0	0	0
a	a	0	0	a
b	b	b	0	b
c	c	c	c	0

Then X is a *BCK*-algebra (H. Jiang calls this to be B_{4-1-6}) and $\operatorname{Ker}(L_b^2) = \{0, a, c\}$, $\operatorname{Fix}(R_b) = \{0, c\}$. It is easy to see that $\operatorname{Fix}(R_b)$ is an ideal of X but $\operatorname{Ker}(L_b^2) \not\subseteq \operatorname{Fix}(R_b)$.

Theorem 14. Let X be a *BCK*-algebra. Then the following are equivalent: for all $a, b \in X$,

- (a) $Fix(R_a)$ is an ideal of X;
- (b) $\operatorname{Fix}(R_a) = \operatorname{Ker}(L_a^2);$
- (c) $R_a(b) = b$ implies $R_b(a) = a$.

Proof. (a) \Longrightarrow (b) Since $\operatorname{Fix}(R_a)$ is an ideal of X, by Theorem 13, $\operatorname{Fix}(R_a) \subseteq \operatorname{Ker}(L_a^2)$. Next we assert that $I_a \cap \operatorname{Ker}(L_a^2) = \{0\}$. If it is false then there exists a nonzero element b in $I_a \cap \operatorname{Ker}(L_a^2)$. Then by b in $\operatorname{Ker}(L_a^2)$, we have $L_a^2(b) = 0$ and so $R_b(a) = a$ by (7), that is, $a \in \operatorname{Fix}(R_b)$ and consequently $I_a \subseteq \operatorname{Fix}(R_b)$ by $\operatorname{Fix}(R_b)$ an ideal of X. Now by $b \in I_a$, we get $b \in \operatorname{Fix}(R_b)$ and $b = R_b(b) = 0$, a contradiction with $b \neq 0$, as asserted. Hence for all x in $\operatorname{Ker}(L_a^2)$, by Theorem 6 and Lemma 12, we get $L_x^2(a) = 0$, that is, $R_a(x) = x$ by (7), proving $\operatorname{Ker}(L_a^2) \subseteq \operatorname{Fix}(R_a)$. Hence (b) holds.

(b) \implies (c) $R_x(y) = y$ implies $y \in \text{Fix}(R_x) = \text{Ker}(L_x^2)$ and so $L_x^2(y) = 0$. Hence by (7), $R_y(x) = x$.

(c) \implies (a) If $x \in \text{Fix}(R_a)$, i.e, $R_a(x) = x$ then by (c), $R_x(a) = a$, i.e., $L_a^2(x) = 0$, which means $x \in \text{Ker}(L_a^2)$. Conversely if $L_a^2(x) = 0$ then $R_x(a) = a$ and so $R_a(x) = x$ by (c). Hence $x \in \text{Fix}(R_a)$. This proves that $\text{Fix}(R_a) = \text{Ker}(L_a^2)$ and $\text{Fix}(R_a)$ is an ideal of X by Theorem 6.

References

- K. H. Dar, A Characterization of Positive Implicative BCK-Algebras by Self-Maps, Math. Japon. 31 (1986), 197-199.
- 2. K. H. Dar and B. Ahmad, Endomorphisms of BCK-Algebras, Math. Japon. 31 (1986), 855-857.
- 3. M. Kondo, Positive Implicative BCK-Algebra and Its Dual Algebra, Math. Japon. 35 (1990), 289-291.
- 4. M. Kondo, Some Properties of Left Maps in BCK-Algebras, Math. Japon. 36 (1991), 173-174.
- H. Jiang, On the Structure of Finite Simple BCK-Algebras, Chinese Ann. Math., Ser. A, 9 (1988), 229-233.

*) Department of Mathematics, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China

LONGYAN, FUJIAN 364000, P.R. CHINA