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Abstract. This paper introduces several weak continuity forms and graph conditions and

provides some applications of these forms and conditions. The main tools which are utilized

for their de�nitions are the �-closure and u-closure operators. Applications include (1) a char-

acterization of quasi Urysohn-closed (QUC) topological spaces analogous to that of the original

de�nition of Urysohn-closed spaces, i. e. that Urysohn-closed spaces are those spaces which

are closed subspaces of the Urysohn spaces in which they are embedded, and (2) a weakening

of the continuity condition to improve the result that a continuous image of a Urysohn-closed

space is Urysohn-closed. Certain subsets of a space are de�ned as quasi Urysohn-closed (QUC)

relative to the space and investigated. Among the discoveries about these subsets is the fact

that for a Urysohn space there is a class of functions such that each closed subset of the space

is QUC if and only if each member of the class which maps the space into a Urysohn space is a

closed function. Parallels for Urysohn-closed spaces of theorems for functionally compact and

C-compact spaces are provided. In the �nal section of the paper the u-closure operator is uti-

lized to isolate a "second category type" property of topological spaces. It is proved that QUC

spaces have this property, and the property is employed to establish several generalizations of

the Uniform Boundedness Principle from analysis.

Introduction. Applications of notions which generalize continuity of mappings and map-

pings with closed graphs between topological spaces have received widespread and continual

attention over a span of many years (see [1], [6], [7], [11], [12], [13], [14], [17] , [18], [19], [24],

[25]). The purpose of this paper is to introduce several weak continuity and graph notions

and to provide applications of these notions. The main tools which are utilized to de�ne

these notions are the ��closure operator, [ ]�; introduced along with the ��adherence of a
�lterbase by Veli�cko [26] and used by him and other researchers to study generalizations of

compact spaces such as H-closed, and minimal Hausdor� spaces (see [5], [6], [13], [14]), and

the u-closure operator, [ ]u, which was introduced by Joseph [19] and comes naturally from

the notion of u-adherence of a �lterbase, introduced by Herrington [12], and employed by

him and others to study Urysohn-closed and minimal Urysohn spaces in terms of arbitrary

�lterbases, nets, weak continuity forms and graph conditions (see [8], [12], [20]). If X is a

space and A � X these operators are selfmaps of 2X (where 2X is the power set of X),

[A]� ([A]u) represents the value of [ ]� ([ ]u) at A and is called the ��closure (u-closure) of
A. Unexpected connections between set-valued functions, compactness and these operators,
such as the following, have been discovered [5], [8].

1991 Mathematics Subject Classi�cation. Primary 54C99; Secondary 54D25,54E52.

Key words and phrases. Weak continuity, graph forms, ��continuity, u-continuity, (�; u)-continuity,

H-closed spaces, Urysohn-closed spaces, second category, Baire spaces, uniform boundedness.



66 JAMES E. JOSEPH, MYUNG H. KWACK, BHAMINI M. P. NAYAR

(1�) The following statements are equivalent for a space X :

(1) The space X is compact.

(2) For each upper semi-continuous (u.s.c.) set-valued function � on X the set-valued

function de�ned on X by [�(x)]� assumes a maximal value with respect to set inclusion.

(3) For each u.s.c. set-valued function � on X the set-valued function de�ned on X by

[�(x)]u assumes a maximal value with respect to set inclusion.

The results of this paper are organized into four sections. In x1 the new weak continu-

ity forms and some characterization theorems are presented. Relationships between these

forms, and these forms and several forms which have been studied by earlier researchers are

investigated and a collection of pertinent examples is provided. For instance, it is shown

that while continuity implies the property referred to in this paper as u-continuity, Fomin's

��continuity does not. It is also shown that continuity at a point does not force u-continuity
at that point.

It is known that [ ]u is not a Kuratowski operator. Another feature of this section is an

investigation of when this operation is Kuratowski. Necessary and su�cient conditions for

[ ]u to be Kuratowski and some consequences of [ ]u being such an operator are established.

In x2 the graph conditions are introduced and results to be applied in x3 and x4 are

established. In x3 the results in x1 and x2 are applied to produce several characterizatons

of QUC spaces analogous to the original de�nition and well-known characterizations of

Urysohn-closed spaces. These include

(2�) The following statements are equivalent for a space X :

(1) The space X is QUC.

(2) If X is a dense (dense open) subspace of a space Y; the equality Y =
S
X [x]u holds.

(3) Each u-continuous (continuous) function g on X satis�es the inclusion

g(A) �
[

[A]u

[g(x)]u

for each A � X:

(4) Each �lterbase on X with at most one u-adherent point is u-convergent.

A number of by-products of (2�) such as new characterizations of Urysohn-closed spaces,

and a generalization of the well-known fact that a continuous image of a Urysohn-closed

space is Urysohn-closed, are obtained in x3. Analogues for Urysohn spaces of theorems for

functionally compact and C-compact spaces are also provided in that section. These are

analogues of the results for functionally compact spaces stated in (3�); [21]. The results

in (4�); analogues of known results for C-compact spaces [2], [24] are also proved. If 
 is

a family of sets the intersection of the members of 
 will be denoted by I(
): If 
 is a

�lterbase on a space, [
]� ([
]u) denotes the ��adherence (u-adherence) of 
:

(3�) The following statements are equivalent for a space X :

(1) The space X is functionally compact.

(2) Each �lterbase 
 on X satisfying [
]� = I(
) converges to I(
):

(3) For each space Y , each strongly-closed set-valued function � � Y �X is u.s.c.
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(4) Functions on X with strongly-closed inverses are closed functions.

It should be noted that A. Bella proved the equivalence of (1) and (3) of Theorem 2.4 in [1],

and that the equivalence was independently proved by the authors prior to its publication

by Bella.

Analogues of theorems for C-compact spaces are proved in the form of

(4�) The following statements are equivalent for a Urysohn space X :

(1) Each closed subset of X is QUC.

(2) For each Urysohn space Y each g : X ! Y with a u-strongly-subclosed inverse is a

closed function.

(3) For each Urysohn space Y each u-strongly-subclosed set-valued function F � Y �X is

u.s.c.

The paper is completed in x4, with formulations and proofs of generalizations of the Uniform

Boundedness Principle from classical analysis. To illustrate the type of uniform boundedness

results which are established, the classical theorem is set in the following framework. A

family F of functions from a spaceX to a space Y is uniformly bounded on A � X by � � 2Y

if there is a C 2 � such that g(A) � C for each g 2 F ; let UB[F ; X; Y;�] = fA � X : F is

uniformly bounded on A by �g: Using this terminology the classical Uniform Boundedness

Principle is stated as follows (see [19]): Let X be a complete metric space, let R be the

Euclidean line, let F be a family of real-valued continuous functions on X and let � be a

nonempty countable family of compact subsets of the reals. If UB[F ; X;R;�] contains the
collection of singletons then UB[F ; X;R;�] has a nonempty open subset as an element.

One of the theorems proved in this vein is (5�): Crucial to the proof of this theorem is

the fact (Theorem 4.6) that a QUC space X cannot be written as the union of a countable

number of sets of the form [A]u each having empty interior in X; a result of "second category
type".

(5�) Let X be a QUC space, let Y be any space, let � be a nonempty countable family

of QUC relative to Y subsets and let F be a family of functions from X to Y with u-

subclosed graphs such that UB[F ; X; Y;�] contains the collection of singletons of X: Then
the following properties hold:

(1) There is a nonempty open V � X such that [V ]u 2 UB[F ; X; Y;�]:

(2) For each g 2 F the restriction of g to [V ]u is u-continuous for the open subset V of part

(1).

(3) Each g 2 F is u-continuous at each x 2 V of part (1) such that V contains a closed

neighborhood of x:

(6�) Let X be a QHC (quasi H-closed) space, let Y be a space, let � be a nonempty

countable family of QUC relative to Y subsets and let F be a family of functions from X to

Y with (�;u)-subclosed graphs such that UB[F ; X; Y;�] contains the collection of singletons

of X: Then

(1) There is a nonempty open V of X such that V 2 UB[F ; X; Y;�]:

(2) For each g 2 F the restriction of g to V of part (1) is (�; u)-continuous.

(3) Each g 2 F is (�;u)-continuous at each point of V of part (1).

(4) There is a W open in X such that each g 2 F is (�;u)-continuous at each x 2 W and

W = X:

Several theorems of this type are given in x4.
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1. The weak continuity forms. In this section the new weak continuity forms are

introduced. The relationships between these forms and the relationships between these

forms and some forms which have been investigated are delineated. Let X be a space,

A � X; x 2 X; and let 
 be a �lterbase on X ; let �(A) represent the collection of

open neighborhoods of A; let �(A) be the collection of closed neighborhoods of A and let

�(A) =
S

�(A) �(V ) (if A = fxg the notation �(x); �(x); or �(x) will be used). The closure

of A is denoted by A and the adherence of 
 by A(
): Recall [18] that the ��closure of

A is
T

�(A)W and that the u-closure of A is
T

�(A)W [8]. The subset A is ��closed (u-

closed) if A = [A]� (A = [A]u). A space X is Urysohn if each singleton is u-closed. A

Urysohn �lterbase on a space X is an open �lterbase (i.e one consisting of open subsets)


 such that whenever x 2 X � A(
) some V 2 �(x) and F 2 
 satisfy V \ F = ;: It is
known that a Urysohn space is Urysohn-closed if and only if each Urysohn �lterbase on the

space has nonempty adherence. An arbitrary space is Quasi Urysohn-closed (QUC) if each

Urysohn �lterbase on the space has nonempty intersection. The �-adherence (u-adherence)

of a �lterbase 
 on a space is
T


[F ]� [26] (
T


[F ]u [12]): Herrington [12] has shown that a

Urysohn space is Urysohn-closed if and only if each �lterbase on the space has nonempty

u-adherence. It is easy to see from his proof that a space is QUC if and only if each �lterbase

on the space has nonempty u-adherence. For a space X , it is known and not di�cult to

establish that [V ]u = [V ]� for an open set V; that [A]u =
T

�(A)[V ]u and that, for x; y 2 X;

the relation x 2 [y]u whenever y 2 [x]u holds. If int(A) represents the interior of A; A is

called regular-closed (regular-open) if int(A) = A (int(A) = A):

For spaces X;Y Fomin [9] (Levine [22]) has called a function g : X ! Y �-continuous

(weakly-continuous) at x 2 X if for each W 2 �(g(x)) some V 2 �(x) satis�es g(V ) � W

(g(V ) �W ) and has called g �-continuous (weakly-continuous) if g is ��continuous (weakly-
continuous) at each x 2 X: The function g : X ! Y is u-continuous at x 2 X if for each

W 2 �(g(x)) some V 2 �(x) satis�es g(V ) �W and g is u-continuous if g is u-continuous

at each x 2 X: Our �rst theorem is a characterization theorem and our second result shows

that continuous functions are u-continuous. A �lterbase 
 on a space X u-converges to

x 2 X (
 !
u

x) if for each W 2 �(x) some F 2 
 satis�es F � W: A net � in X

u-converges to x 2 X (� !
u
x) if � is ultimately in W for each W 2 �(x):

Theorem 1.1. The following statements are equivalent for spaces X;Y and g : X ! Y :

(1) The function g is u-continuous.

(2) For each x 2 X each �lterbase 
 on X satisfying 
!
u
x also satis�es g(
)!

u
g(x):

(3) For each x 2 X each net � on X satisfying � !
u
x also satis�es g � � !

u
g(x):

(4) Each �lterbase 
 on X satis�es g([
]u) � [g(
)]u:

(5) Each A � X satis�es g([A]u) � [g(A)]u:

(6) Each B � Y satis�es [g�1(B)]u � g�1([B]u):

(7) Each �lterbase 
 on g(X) satis�es [g�1(
)]u � g�1([
]u):

(8) Each B � Y satis�es [g�1(int([B]�))]u � g�1([B]u):

(9) Each open W � Y satis�es [g�1(int(cl(W )))]u � g�1([W ]u):

(10) Each regular-closed R � Y satis�es [g�1(int(R))]u � g�1([R]�):

(11) Each open W � Y satis�es [g�1(W )]u � g�1([W ]u):

Proof. Only the proofs of implications (7) ) (8); (10) ) (11) ) (1) will be given

since the proofs of the other implications necessary to complete a cycle of implications
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beginning at (1) and proceeding numerically are either obvious or entirely similar to the

arguments used to prove analogous statements for continuity.

(7) ) (8): Let B � Y satisfy g(X) \ int([B]�) 6= ;: Then [g�1(int([B]�))]u

� g�1([int([B]�)]u) = g�1([int([B]�)]�) � g�1([ [B]�]�) � g�1([B]u)

since [B]� is closed and [ [B]�]� � [B]u: Hence (8) holds.

(10) ) (11): Let W � Y be open. Then W is regular-closed in Y and consequently

[g�1(W )]u � [g�1(int(W )]u � g�1([W ]�) = g�1([W ]u):

Thus (11) holds.

(11) ) (1): Let x 2 X and letW 2 �(g(x)): Then g(x) 62 [g(X�g�1(W ))]u: Therefore

g(x) 62 g([X � g�1(W ))]u; x 62 [X � g�1(W )]u and some V 2 �(x) satis�es g(V ) � W:
Hence (1) holds. �

Corollary 1.2 establishes that continuous functions are u-continuous while Example 1.3

exhibits that continuity at a point need not imply u-continuity at the point.

Corollary 1.2. Continuous functions are u-continuous.

Proof. Suppose g : X ! Y is continuous, let A � X and let W 2 �(g(A)): Some

Q 2 �(g(A)) satis�es A � g�1(Q) � g�1(Q) � g�1(Q) � g�1(W ): Since g is continuous it

follows that [A]u � g�1(W ) and that g([A]u) � g(g�1(W )) �W: So g([A]u) � [g(A)]u and

g is u-continuous by equivalence (5) of Theorem 1.1. �

Example 1.3. LetX = f0g[(1;1) and let fD(k) : k = 1; 2; 3; 4; 5g be a partition of (1;1)

into subsets dense in (1;1) in the usual topology and suppose N �f1g � D(1) where N is

the set of positive integers. Let B be a base of open intervals for the usual topology on (1;1)

with end points in D(1): Declare W to be open in X if W satis�es the following properties:

If k = 1; 3 or 5 and x 2 W \D(k) some B 2 B satis�es x 2 B\D(k) �W ; if k = 2 or k = 4

and x 2W \D(k) some B 2 B satis�es x 2 B\ (D(k�1)[D(k)[D(k+1)) �W ; if 0 2 W
then some m 2 N satis�es

S
n�m(2n; 2n+1)\D(1) �W: Let Y have the same description

as X except that N�f1g � D(5): Let g : X ! Y be the identity function. Then g is clearly
continuous at 0: To see that g is not u-continuous at 0 letW = f0g[

S
N ((2n; 2n+1)\D(1))

and V = W [
S
N ((2n; 2n+ 1) \D(2)): Then W � V and W;V 2 �(0) in Y so V 2 �(0):

If E � N is the set of multiples of 2 then E \A 6= ; is satis�ed for each A 2 �(0) in X and

that E \ V = ; in Y:

Next a space introduced by Herrlich [15] is used to show that u-continuity does not force

weak-continuity.

Example 1.4. This space H is described as follows: Let fD(k) : k = 1; 2; 3g be a partition
of [0; 1] into dense subsets in the usual topology. Let H = [0; 1] supplied with the following

sets V as open sets. If x 2 V \D(k); k = 1; 2 there exists a; b satisfying x 2 (a; b)\D(k) � V ;
if x 2 V \ D(3) there exist a; b with x 2 (a; b) \ H � V: It may be assumed without

loss of generality that 0; 1 2 D(3) and that all open intervals (a; b) used to describe our

open sets satisfy a; b 2 D(3): It is straightforward to show that if a; b 2 H and a < b

then (a; b) \D(1) = [a; b] � D(2); (a; b) \D(2) = [a; b] � D(1); (a; b) \D(3) = [a; b] and
[(a; b)]u = [a; b]: Let [0; 1] have the usual topology, let g : [0; 1]! H be the identity function

and let v 2 D(1): Then D(1) 2 �(v) in H and D(1) = [0; 1]�D(2); so no V 2 �(v) in [0; 1]

satis�es g(V ) � D(1); and g is not weakly-continuous. Now if v 2 [0; 1] and W 2 �(v) in H
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choose a; b 2 [0; 1] for which v 2 [a; b] �W in H: Since [0; 1] is regular there is a V 2 �(v)

in [0; 1] for which V � [a; b]: So g is u-continuous.

The next theorem o�ers two properties of functions between spaces, the �rst of which is a

consequence of either ��continuity or u-continuity and the second of which is an implication
of ��continuity but not of u-continuity.

Theorem 1.5. Let X;Y be spaces and let g : X ! Y be ��continuous. Then

(1) Each open A � X satis�es g([A]u) � [g(A)]u:

(2) For each x 2 X and W 2 �(g(x)); some V 2 �(x) satis�es g([V ]u) � [W ]u:

Proof. To prove (1) note that for open A � X;

g([A]u) = g([A]�) � [ [g(A)]�]� � [g(A)]u:

As for the proof of (2) if W 2 �(g(x)); some V 2 �(x) satis�es

g([V ]u) = g([V ]�) � [g(V )]� � [W ]�: �

Example 1.6 veri�es that a u-continuous function might fail (2) of Theorem 1.5.

Example 1.6. Let X = Y = f0g [ (1;1): A set V is open in X if V satis�es the

following properties: If 0 2 V there is a sequence �n in (0; 1) and a k 2 N such thatS
n�k(2n��n; 2n+�n) � V ; if x 2 V �f0g there is an open interval I such that x 2 I � V:

A set V is open in Y if V satis�es the following properties: If 0 2 V there is a k 2 N such

that
S
n�k(2n; 2n+1) � V ; if x 2 V �f0g there is an open interval I such that x 2 I � V:

Let g : X ! Y be the identity function. It is not di�cult to see that g is u-continuous,

and that W = f0g [
S
n�1(2n; 2n + 1) is open in Y and that no V 2 �(0) in X satis�es

g([V ]u) � [W ]u:

Since the function in Example 1.4 satis�es Theorem 1.5(2) it follows that ��continuity
is not implied by Theorem 1.5(2) and Example 1.7 shows that ��continuity does not imply
u-continuity.

Example 1.7. Let 	 be the set of irrationals between 0 and 1: Let fS(n; �) : (n; �) 2 N�	g
be a family of pairwise disjoint countably in�nite sets so that S(n; �) \ [0;1) = ; for each

(n; �) 2 N � 	: Let fD(k) : k = 1; 2; 3g be a partition of (1;1) into dense sets in the

usual topology. Let B be a base of open intervals for the usual topology on (1;1) with

end points in D(1) and suppose that N � f1g � D(1): Let E be the set of even positive

integers and let X = f0g [ (1;1) [ 	 [
S
N�	 S(n; �); with open subsets V de�ned as

follows: V �
S
N�	 S(n; �); if x 2 V \ (D(k) � E); k = 1; 3; some B 2 B satis�es

x 2 B \ D(k) � V ; if x 2 V \ D(2) some B 2 B satis�es x 2 B � V ; if 0 2 V some

m 2 N satis�es f0g [
S
n�m((2n; 2n+ 1) \D(1)) � V ; if 2n 2 V; then 2n 2 B \D(1) � V

for some B 2 B and all but �nitely many elements of all but �nitely many of the S(n; �)
belong to V ; if � 2 V \ 	 then all but �nitely many elements of all but �nitely many of

the S(n; �) belong to V: Let Y = f�1; 0g [ (1;1): A subset V is open in Y if V meets the

following criteria: If x 2 V \ (D(k)�E); k = 1; 3; some B 2 B satis�es x 2 B \D(k) � V ;
if x 2 V \ D(2) some B 2 B satis�es x 2 B � V ; if 0 2 V some m 2 N satis�es

f0g [
S
n�m((2n; 2n + 1) \ D(1)) � V ; if �1 2 V there is an m 2 N such that all but

�nitely many elements of D(3) \ (2n� 1; 2n) belong to V for each n � m: For each n 2 N
let nk be a strictly increasing sequence in (2n � 1; 2n) \ D(2) such that nk ! 2n in the

usual topology and for each (n; �) 2 N � 	 denote S(n; �) by fn(�; k) : k 2 Ng: De�ne
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g : X ! Y by g(x) = x for x 2 f0g [ (1;1); g(n(�; k)) = nk for (n; �) 2 N � 	 and

n(�; k) 2 S(n; �); g(�) = �1 for � 2 	: Straightforward arguments will verify that g is

��continuous. It will now be shown that g is not u-continuous at 0. Let V = f0g [S
n�1((2n; 2n+1)\D(1)): Then V 2 �(0) and V = f0g[

S
n�1[[2n; 2n+1]\ (D(1)[D(2))]

and so if W = f0g [
S
n�1[(2n � 1=2; 2n+ 3=4) \ (D(1) [ D(2))] [

S
n�1[2n; 2n+ 1] then

W 2 �(V ) and �1 62 W: If A 2 �(0) in X; there is an m 2 N such that f2n : n � mg � A
and hence at most countably many � 2 	 satisfy S(n; �) \ A = ; for some n � m: Thus

	 \ A 6= ; and g(A) 6�W:

Example 1.8 shows that a weakly-continuous function need not satisfy the property of

Theorem 1.5(2) and Example 1.9 exihibits that ��continuity at a point does not force the

property described in (2) of that theorem at that point. In these two examples subspaces of a

space denoted by J are used: LetW = N[f0g and let fpk : k 2 Wg be a strictly increasing

sequence of primes. For (j; k;m) 2 N �W �N let J(j; k;m) = f(j + p�nk ;m) : n 2 Ng; let

J = (W �N) [
[

(j;k)2N�W

J(j; k; 1) [
[

(j;k;m)2N�N�N

J(j; k;m) [ f(0; 0); (1; 0)g

with the topology generated by the aggregate of basic open sets listed below:

(1) Subsets of J � ((W �N)) [ f(0; 0); (1; 0)g:

(2) Subsets of the form f(0; 0)g [
S
j�j0

J(j; 0; 1):

(3) Subsets of the form f(1; 0)g [
S
m�m0

J(j; k;m):

(4) Subsets of the form f(0;m)g [
S
j�j0;k�k0

J(j; k;m):

(5) Relative open subsets from the plane in f(k; 1) : k 2 Ng [
S

(j;k)2N�W J(j; k; 1):

(6) For m > 1 and k 2 N all sets of the form A [ B where A is relative open in the plane

about (k;m) and B is of the form
S
j�j0

J(j; k;m� 1):

Example 1.8. Let

K = (N � f1; 2g) [
[

(j;k)2N�W

J(j; k; 1) [
[

(j;k)2N�N

J(j; k; 2) [ f(0; 0); (1; 3)g

with the topology generated by the following open set base:

(1) Relative open sets from J on f(0; 0)g[N�f1g[
S
(j;k)2N�W J(j; k; 1) and about (1; 3);

(2) all sets of the form (V \ f(x; 2) : (x; 2) 2 J g [ fj + p�nk ; 1) : 1 � k � m;n 2 N; j > j0g;
where (m; 2) 2 N � f2g and V 2 �((m; 2)) in J ; and

(3) all subsets of
S

(j;k)2N�N J(j; k; 2):

De�ne g : K ! K by g(0; 0) = g(1; 3) = (1; 3); g(x; 2) = (< x >; 2) for all x � 2; g((1 +
p�nk ; 2) = (pnk ; 1) for all k; n 2 N; g(j+ p�n1 ; 1) = (j+ pn1 ; 1) for all j; n 2 N; g(1; 2) = (0; 0)
and g(x; 1) = (< x >; 2) otherwise (the notation < x > represents the greatest integer in

x). Choose Q 2 �(g(0; 0)) such that (0; 0) 62 [Q]�: Since (1; 2) 2 [V ]� for all V 2 �((0; 0)) it

follows that no such V satis�es g([V ]�) � [Q]� and that g does not satisfy (2) of Theorem

1.5. Let Q 2 �(g(0; 0)): Choose m0 2 N such that f(m; 2) : m � m0g � Q: Let V = f(j +

p�10 ; 1) : j > m0g: Then g(V ) � Q and g is weakly-continuous at (0; 0): Let Q 2 �(g(1; 3)):

Choose m0 2 N such that f(m; 2) : m � m0g � Q: Let V = f(j + p�n1 ; 2) : j > m0g: Then

g(V ) � Q and g is weakly-continuous at (1; 3): Let j 2 N � f1g and let Q 2 �(g(j; 2)) be

basic open. Then g(Q) � Q and g is weakly-continuous at (j; 2): Let Q 2 �(g(1; 2)): Choose
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m0 2 N such that f(m; 1) : m � m0g � Q: Choose n0 2 N such that pn0k > m0 for all

k 2 N; and choose j0 2 N such that j0 � m0: Let A = f(1+ p�nk ; 2) : k 2 N;n > n0g; B =

f(j + p�n1 ; 1) : j > n0g and let V = A [ B: Then g(V ) � Q; so g is weakly-continuous

at (1; 2): Let Q 2 �(g(j; 1)) where j 2 N: Choose n0 2 N such that pn01 > m0 and let

V = f(j + p�nk ; 1) : n > n0g: Then g(V ) = g(f(j + p�n1 ; 1) : n > n0g [ g(fj + p�nk ; 1) : n >

n0; k 6= 1g = f(j + pn1 ; 1) : n > n0g [ f(j; 2)g � Q: Hence g is weakly-continuous at (j; 1):
Since g is obviously weakly-continuous at all other points, g is weakly-continuous.

Example 1.9. Let K = f(0; 0); (1; 2)g[(N�1)[
S

(j;k)2N�f0;1g J(j; k; 1) with the subspace

topology from J : De�ne g : K ! J by g(x) = (0; 0) if x 6= (1; 2) and g(1; 2) = (1; 1): Let

Q 2 �(g(0; 0)): Choose V 2 �((0; 0)) such that (1; 2) 62 V : Then g(V ) � Q: Hence g is

��continuous at (0; 0): Choose Q 2 �(g(0; 0)) such that (1; 1) 62 [Q]�: Since (1; 2) 2 [V ]�
for all V 2 �((0; 0)) it follows that no such V satis�es g([V ]�) � [Q]� and that g does not

satisfy (2) of Theorem 1.5 at (0; 0):

In [20] Joseph introduced the notion of u-weakly-continuous function. This notion, sim-

ilar to that of u-continuous function, was employed to give several characterizations of

Urysohn-closed and minimal Urysohn spaces. A function g : X ! Y is u-weakly-continuous

at x 2 X if for W 2 �(g(x)) in Y some V 2 �(x) satis�es g(V ) � W and is u-weakly-

continuous if g is u-weakly-continuous at each x 2 X: De�ne g : X ! Y to be (�; u)-

continuous at x 2 X if for W 2 �(g(x)) in Y some V 2 �(x) satis�es g(V ) � W and

is (�; u)-continuous if g is (�; u)-continuous at each x 2 X: It is readily observed that

weakly-continuous functions are u-weakly-continuous and that ��continuous functions are
(�; u)-continuous. The following two characterization theorems are stated without proof

since the proofs are analogous to the proof of Theorem 1.1.

Theorem 1.10. The following statements are equivalent for the spaces X;Y and g : X !
Y :

(1) The function g is u-weakly-continuous.

(2) For each x 2 X each �lterbase 
 on X satisfying 
! x also satis�es g(
)!
u
g(x):

(3) For each x 2 X each net � on X satisfying � ! x also satis�es g � � !
u
g(x):

(4) Each �lterbase 
 on X satis�es g(A(
)) � [g(
)]u:

(5) Each A � X satis�es g(A) � [g(A)]u:

(6) Each B � Y satis�es g�1(B)) � g�1([B]u:

(7) Each �lterbase 
 on g(X) satis�es A(g�1(
)) � g�1([
]u):

(8) Each B � Y satis�es g�1(int([B]�)) � g�1([B]u):

(9) Each open W � Y satis�es g�1(int(cl(W ))) � g�1([W ]u):

(10) Each regular-closed R � Y satis�es g�1(int(R)) � g�1([R]�):

(11) Each open W � Y satis�es g�1(W ) � g�1([W ]u):

Theorem 1.11. The following statements are equivalent for the spaces X;Y and g : X !
Y :

(1) The function g is (�; u)-continuous.

(2) For each x 2 X each �lterbase 
 on X satisfying 
!
�
x also satis�es g(
)!

u
g(x):

(3) For each x 2 X each net � on X satisfying � !
�
x also satis�es g � � !

u
g(x):

(4) Each �lterbase 
 on X satis�es g([
]�) � [g(
)]u:



CONTINUITY FORMS, GRAPH CONDITIONS 73

(5) Each A � X satis�es g([A]�) � [g(A)]u:

(6) Each B � Y satis�es [g�1(B))]� � g�1([B]u:

(7) Each �lterbase 
 on g(X) satis�es [g�1(
)]� � g�1([
]u):

(8) Each B � Y satis�es [g�1(int([B]�))]� � g�1([B]u):

(9) Each open W � Y satis�es [g�1(int(cl(W )))]� � g�1([W ]u):

(10) Each regular-closed R � Y satis�es [g�1(int(R))]� � g�1([R]�):

(11) Each open W � Y satis�es [g�1(W )]� � g�1([W ]u):

Su�cient conditions for (�; u)-continuity and u-weak-continuity are now given and examples

are provided to show that they are not necessary. Only the proof of Theorem 1.12(1) is

given since the proof of (2) is similar.

Theorem 1.12. Let X;Y be spaces and let g : X ! Y:

(1) If for each x 2 X and W 2 �(g(x)) some V 2 �(x) satis�es g(V ) � [W ]u then g is (�;
u)-continuous.

(2) If for each x 2 X and W 2 �(g(x)) some V 2 �(x) satis�es g(V ) � [W ]u then g is

u-weakly-continuous.

Proof of (1). Let x 2 X; W 2 �(g(x)): Choose Q 2 �(g(x)) satis�es Q � W: So some

V 2 �(x) satis�es g(V ) � [Q]u �W: �

Corollary 1.13. Weakly-continuous functions are (�; u)-continuous.

Proof. Let x 2 X; W 2 �(g(x)): Choose V 2 �(x) such that g(V ) � W: Then

g(V ) � [g(V )]� � [W ]u: �

While it is clear that the property (2) in Theorem 1.5 implies the hypothesis in Theorem

1.12(1) our Example 1.14 shows that they are not equivalent and that the hypothesis in

Theorem 1.12(1) does not force weak-continuity.

Example 1.14. Let K be the space in Example 1.9 and de�ne g : K ! J by g(0; 0) =
(1; 2); g(1; 2) = (0; 2) and g(x; 1) = (< x >; 2) otherwise. Choose Q 2 �(g(0; 0)) such that

(0; 2) 62 [Q]u: For each V 2 �((0; 0)); (1; 2) 2 [V ]u: Thus no such V satis�es g([V ]u) � [Q]u
and g does not satisfy property (2) in Theorem 1.5. It is immediate that g is (�; u)-
continuous at each x 2 K � (f(j; 1) : j 2 Ng [ f(0; 0); (1; 2)g): If Q 2 �(g(j0; 1)) then

V = f(j0; 1)g [ f(j0 + p�nk ; 1) : n 2 N; k = 0; 1g is open and g(V ) = f(j0; 2)g � Q;
so g is (�; u)-continuous at (j0; 1): Let Q 2 �(g(1; 2)): Choose j0; k0 2 N such that

(j+p�nk ; 2) 2 Q for all j � j0; k � k0 and n 2 N: Let V = f(1; 2)g[f(j+p�n1 ; 1) : j � j0g:

Then V 2 �((1; 2)) in K and g(V ) � Q: Finally let Q 2 �(g(0; 0)): Choose j0 2 N such

that f(j + p�n1 ; 1) : j � j0g � Q: Then (j; 2) 2 [Q]u for all j 2 N: It is now obvious that

any basic V 2 �((0; 0)) in K satis�es g(V ) � [Q]u: This completes the demostration that g
satis�es the hypothesis of Theorem 1.12(1).

Example 1.15 shows that a function satisfying the hypothesis of Theorem 1.12(2) need not

satisfy the hypothesis of Theorem 1.12(1).

Example 1.15. Let L = N with the topology fA � N : A\f1; 2g = ; or N�A is �nite g:
De�ne g : L ! J by g(1) = (0; 0); g(2) = (1; 3); g(n) = (n; 2) otherwise. Choose

Q 2 �(g(2)) such that (0; 0) 62 [Q]�: For each V 2 �(2) in L; 1 2 V : Hence no such V

satis�es g(V ) � [Q]u and g does not satisfy the hypothesis of Theorem 1.12(1). Now if Q 2
�(g(1)); (n; 2) 2 [Q]u for all n 2 N and N � f2g 2 �(1) 2 L satis�es g(N � f2g) � [Q]u:

If Q 2 �(g(2)) choose n0 2 N such that (n; 2) 2 Q for all n � n0: Let V = fn 2 N : n �
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n0g [ f2g: Then V 2 �(2) in L and g(V ) � Q: Since L is discrete on N �f1; 2g; g satis�es
the hypothesis of Theorem 1.12(2).

The function constructed in Example 1.4 is not weakly-continuous but is u-continuous

and afortiori (�; u)-continuous and u-weakly-continuous. The function in Example 1.7 is

(�; u)-continuous but fails to be u-continuous. A function which is u-weakly-continuous but

not (�; u)-continuous is provided by Example 1.16.

Example 1.16. Let X = Y = (0;1) and let fD(k) : k = 1; 2; 3; 4; 5; 6g be a partition

of X into subsets dense in the usual topology. Let B be a base of open intervals for the

usual topology on X with endpoints in D(3): First assume N � D(5) and de�ne V � X
to be open if V satis�es the properties: If x 2 V \ D(k); k = 1; 3; 5 there is a B 2 B
satisfying x 2 B \ D(k) � V ; if x 2 V \ D(k); k = 2; 4 there is a B 2 B satisfying

x 2 B \ (D(k � 1) [ D(k) [ D(k + 1)) � V ; if x 2 V \ D(6) some B 2 B satis�es

x 2 B \ (D(5) [ D(6)) � V: Now assume N � D(1) and de�ne W � Y to be open if W
satis�es the following properties: If x 2 D(1) some B 2 B satis�es x 2 B \ (D(1)[D(2)) �

W ; if x 2 W \ D(k); k = 2; 4; 6 there is a B 2 B satisfying x 2 B \ D(k) � W ; if

x 2W \D(k); k = 3; 5 there is a B 2 B satisfying x 2 B\(D(k�1)[D(k)[D(k+1)) �W:
The identity function from X to Y is u-weakly-continuous but not (�; u)-continuous.

The function g de�ned in Example 1.3 fails to be (�; u)-continuous at 0 and it is obvi-

ous that continuity at a point implies weak-continuity at the point, which in turn implies

u-weak-continuity at the point. It is also evident that ��continuity at a point implies (�;
u)-continuity at the point. The following two implication diagrams summarize relation-

ships between the various weak continuity forms which we have discussed. None of the

implications reverse. The �rst diagram gives the implications when the property is satis�ed

globally while the second deals with the situation when the property is satis�ed at a point

but not necessarily at all points.

Diagram 1.17.

on the space

continuity

. &

u-continuity � � continuity

# #

(�; u)-continuity  weak-continuity

#

u-weak-continuity

Diagram 1.18.

at a point

continuity � � continuity u-continuity

& . & .

weak-continuity (�; u)-continuity
#

u-weak-continuity
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It is known that the operator [ ]u need not satis�y [ [A]u]u = [A]u for all A � X [8]

although it may be readily shown that the operator satis�es the other Kuratowski closure

axioms. It will be shown that when [ ]u is a Kuratowski closure operator many of the

generalizations in this paper may be studied in terms of continuity with appropriate changes

of topologies. Conditions which are equivalent to [ ]� being a Kuratowski closure operator

are known [10], [16]. Such conditions for [ ]u will now be produced. To this end, on a

space consider several subcollections of the closed subsets of a topology T on X: Let Ts be
the topology on X generated by the regular-closed subsets. This topology known as the

semiregularization of the topology on X has played an important role in the literature, for

instance in the study of minimal Hausdor� spaces. Let T� denote the topology generated by

the ��closed subsets. In [16] a space X is almost regular if for each regular-closed subset F
and x 2 X � F there are disjoint subsets A 2 �(F ) and B 2 �(x): Herrman [16] has noted

that a space X is almost regular if and only if T� = Ts or equivalently, [ ]� is a Kuratowski

closure operator. Hamlett [10] has also established the latter equivalence. Since [A]u = [A]�
for open A it follows that [A]u = [A]� for all A � X when [ ]� is a Kuratowski closure

operator, so in this case [ ]u is such an operator. Example 1.19 exhibits that [ ]u may be

a Kuratowski closure operator when [ ]� is not.

Example 1.19. Let H be a space in Example 1.4. It is known that H is Urysohn-closed,

semiregular and not compact [15]. It follows from the characterization above that [ ]� is

a Kuratowski closure operator on a semiregular space if and only if the space is regular.

Hence [ ]� is not such an operator on H: To show that [ ]u is a Kuratowski closure operator

it will be enough to prove that [V ]u � [V ]� for all V open in H: Let V be open in H and let

x 2 D(1)� [V ]�: Choose an interval (a; b) such that x 2 A = (a; b) \D(1) and A \ V = ;:

If [A]u \ V = ; it is easy to see that x 2 X � [V ]u: Since A = [a; b]�D(2); it will su�ce to

show that V \ D(2) \ [a; b] = ;: Assume the contrary and let y 2 V \ D(2) \ [a; b]: Since

y 2 V \D(2) \ (a; b); choose an open interval (c; d) such that y 2 (c; d) \D(2) \ (a; b) and
z 2 (c; d) \D(2) � V: Then there exists an interval (e; f) with z 2 (e; f) \ D(2) � V and

(e; f) � [a; b]: Then (c; d) \D(2) = [e; f ]�D(1) � V; which contradicts ([a; b]�D(2))\V =

;: Thus, for V open inH; if x 2 D(1)�[V ]� then x 2 X�[V ]u: The proof for x 2 D(2)�[V ]�
is similar and the proof for x 2 D(3) � [V ]� is clear. The fact that [ ]u is a Kuratowski

closure operator will now follow from Theorem 1.21 below.

Now let Tk denote the topology on X generated by the ��closures of regular-closed

subsets and let Tu denote the topology generated by the u-closed subsets. The topology Tk
plays a role for Tu similar to that of Ts for T�:

Lemma 1.20. For a space X;

(1) The topology Tu � Tk:

(2) If a net � !
T
k

x then � !
u
x:

(3) If a �lterbase 
!
Tk

x then 
!
u
x:

Proof. Let A be a basic Tu�closed subset of X and suppose x 2 X�A: Choose V 2 �(A)

such that x 62 [V ]�; a basic Tk�closed subset of X and the proof of (1) is complete. For

the veri�cation of (2) assume � !
Tk

x and let B 2 �(x): Choose A 2 �(x) satisfying

x 2 A � X� [X�B]� � B: If B is regular-open in X then � is ultimately in X� [X�B]�:

Hence, for any B 2 �(x); � is ultimately in B = (int(B)): The proof of (3) is omitted. �

Theorem 1.21. The following statements are equivalent for a space X:

(1) For all regular-closed subsets A � X; [A]� = [A]u:
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(2) For all A � X; [ [A]u]u = [A]u:

(3) For all regular-closed A � X; [ [A]u]u = [A]u:

(4) The topologies Tk and Tu are the same.

(5) If A � X is regular-closed inX and x 2 X�[A]�; then there exist P 2 �(x); Q 2 �([A]�)

such that P \Q = ;:

Proof. (1)) (2): If A � X and x 62 [A]u choose V 2 �(A) such that x 62 [V ]u: There

exists B 2 �(V ) with x 62 B: Repeated application of (1) yields [ [A]u]u � B and therefore

[ [A]u]u = [A]u:

(2)) (3): For any regular-closed A � X; [ [A]u]u = [A]u since [V ]u = [V ]� for open V:

(3)) (4): Since Tu � Tk always, the proof is completed by noting that (3) forces Tk � Tu:

(4)) (5): Suppose A is a regular-closed subset of X with x 2 X � [A]�: Since Tk = Tu
choose F such that [A]� � F = [F ]u; x 62 F: It follows that there exist P 2 �(x); Q 2 �(x)

satisfying x 2 P; [A]� � X �Q; P \X �Q = ;:

(5)) (1): From (5) [A]u � [A]� for regular-closed A: �

Corollary 1.22 follows immediately from Lemma 1.20 and Theorem 1.21.

Corollary 1.22. For a space X; if [ ]u is a Kuratowski closure operator then whenever a

net � !
u
x; � is ultimately in each W 2 �(x):

Theorem 1.23 follows easily from Theorem 1.1(6) and the fact that Tu � T� � T :

Theorem 1.23. Let g : (X; T )! (Y;Q) be u-continuous. Then

(1) g : (X; Tu)! (Y;Qu) is continuous,

(2) g : (X; T�)! (Y;Qu) is continuous, and

(3) g : (X; T )! (Y;Qu) is continuous.

Theorems 1.24 and 1.25 are consequences of Theorems 1.10(6) and 1.11(6), respectively,

and the fact that T� � T :

Theorem 1.24. If g : (X; T ) ! (Y;Q) is u-weakly-continuous then g : (X; T ) ! (Y;Qu)
is continuous.

Theorem 1.25. If g : (X; T )! (Y;Q) is (�; u)-continuous then

(1) g : (X; T�)! (Y;Qu) is continuous, and

(2) g : (X; T )! (Y;Qu) is continuous.

When [ ]u is a Kuratowski closure operator converses of some of the above theorems

may be obtained.

Theorem 1.26. Let (X; T ); (Y;Q) be spaces and suppose the operator [ ]u is a Kuratowski

closure operator. Then g : (X; T ) ! (Y;Q) is u-continuous if g : (X; Tu) ! (Y;Qu) is

continuous

Proof. If A � Y then [A]u is u-closed and g�1([A]u) is u-closed. It follows that

[g�1(A)]u � g�1([A]u) and g is u-continuous by Theorem 1.1(6). �

The next two results are given without proof.

Theorem 1.27. Let (X; T ); (Y;Q) be spaces and suppose the operator [ ]u induced by

Q is a Kuratowski closure operator. Then g : (X; T ) ! (Y;Q) is u-weakly-continuous if

g : (X; T )! (Y;Qu) is continuous
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Theorem 1.28. Let (X; T ); (Y;Q) be spaces and suppose the operator [ ]u induced by

Q is a Kuratowski closure operator. Then g : (X; T ) ! (Y;Q) is (�; u)-continuous if

g : (X; T�)! (Y;Qu) is continuous

Example 1.29 presents spaces (X; T ); (Y;Q) and a function g such that g : (X; Tu) !
(Y;Qu) is continuous while g : (X; T )! (Y;Q) is not u-continuous.

Example 1.29. Let K; J ; g be the spaces and function in Example 1.14. Choose Q 2
�(g(0; 0)) such that (0; 2) 62 Q: For each V 2 �(0; 0); (1; 2) 62 V ; so no such V satis�es

g(V ) � Q. Hence g is not u-continuous at (0; 0): Now let A be u-closed in J and let

(x; y) 2 [g�1(A)]u: If (x; y) 2 K � (f(0; 0); (1; 2)g [ f(n; 1) : n 2 Ng) it is easily seen that

(x; y) 2 g�1(A): If (x; y) = (0; 0) then J(j; 0; 1) � g�1(A) for in�nitely many j; so (j; 2) 2 A
for in�nitely many j and (1; 2) 2 [A]u = A: Hence (0; 0) 2 g�1(A): If (1; 2) 2 [g�1(A)]u
we see that (j; 2) 2 A for in�nitely many j so that (0; 2) 2 [A]u = A and (1; 2) 2 g�1(A):

Finally if n 2 N and (n; 1) 2 [g�1(A)]u then (n; 1) 2 g�1(A) = g�1(A): Therefore g�1(A)
is u-closed.

Example 1.30 exhibits spaces (X; T ); (Y;Q) and a function g such that g : (X; T�)! (Y;Qu)
is continuous while g : (X; Tu)! (Y;Qu) is not continuous.

Example 1.30. Let K; g be the space and function in Example 1.8. Since g is weakly-

continuous it follows from Corollary 1.13 and Theorem 1.25(1) that g�1(A) is ��closed
whenever A is u-closed. However A = f(1; 3)g is u-closed in K but g�1(A) = f(1; 3); (0; 0)g
is not u-closed.

Example 1.31 produces spaces (X; T ); (Y;Q) and a function g such that g : (X; T ) !
(Y;Qu) is continuous while g : (X; T�)! (Y;Qu) is not continuous.

Example 1.31. Let L; g be the space and function de�ned in Example 1.15. Since g is

u-weakly-continuous it follows from Theorem 1.10 that g�1(A) is closed in L when A is

u-closed in J : On the other hand, A = (W � (N � f1; 2g)) [ f(0; 2)g is u-closed in J and

g�1(A) = f2g; which is not ��closed in L:

Example 1.32. Spaces (X; T ); (Y;Q) and a function g are given such that g : (X; T )!
(Y;Q�) is continuous while g : (X; T )! (Y;Q) is not u-weakly-continuous. Let g : J ! J
be de�ned by g(0; 0) = (1; 0) = g(1; 0); g(0; 1) = (0; 3); g(x;m) = (< x >;m+1) otherwise.

Let A = f(x; 1) : (x; 1) 2 J g� (W �f0; 1g): Then (0; 1) 2 A but (0; 3) 62 [g(A)]u; so g is not
u-weakly-continuous. Let A be ��closed in J and let (x; y) 2 [g�1(A)]� : If (x; y) = (1; 0)
then A\f(j;m) : j 2W; m � m0g 6= ; is satis�ed for all m0 2 N: So (1; 0) 2 [A]� = A and

(1; 0) 2 g�1(A): If (x; y) = (0; 0) then A \ f(j; 2) : j � j0g 6= ; is satis�ed for all j0 2 N:
Hence (1; 0) 2 [A]� = A and (0; 0) 2 g�1(A): Suppose x = 0 and y 2 N ; then (0;m) 2 A for

all m > y and (0; y) 2 g�1(A): Now assume x; y 2 N . If g�1(A) \
S
W J(x; k; y) 6= ; then

(x; y + 1) 2 A and (x; y) 2 g�1(A); if g�1(A) \
S
j�j0

J(j; k; y � 1) 6= ; is satis�ed for each

j0 2 N then A\f(j; y) : j � j0g 6= ; is satis�ed for each j0 2 N: Hence (x; y+1) 2 [A]� = A
and (x; y) 2 g�1(A): Clearly if (x; y) 62 (W � N) [ f(0; 0); (1; 0)g then (x; y) 2 g�1(A):
Thus if (X; T ) = J ; g : (X; T�)! (X; T�) is continuous.

2. The Graph Conditions. In this section the operators [ ]� and [ ]u are used to de�ne

conditions on graphs and to establish results which will be used in x3 and x4. If X is a space

let S(x) = fV � fxg : V 2 �(x)g: If X; Y are spaces, a set-valued function F � X � Y is

subclosed (strongly-subclosed) [u-strongly- subclosed] if

A(F (S(x)))([F (S(x))]� )[ [F (S(x))]u] � F (x)
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for each x 2 X for which S(x) is a �lterbase on X ; the set-valued function F is closed

(strongly-closed) [u-strongly- closed] ifA(F (�(x)))([F (�(x))]� )[ [F (�(x))]u] � F (x) for each
x 2 X: It can be established that for spaces X;Y; F � X � Y is closed (strongly-closed)

[u-strongly-closed] if F is subclosed (strongly-subclosed) [u-strongly-subclosed] and F (x) is
closed (��closed) [u-closed] in Y for each x 2 X (see [20]). A set-valued function F � X�Y
with domain X is said to be upper semi-continuous at x 2 X if for eachW 2 �(F (x)) there
exists V 2 �(x) such that F (V ) � W; and is upper semi-continuous if it is upper semi-

continuous at each x 2 X: If X is a space and x 2 X let G(x) = fA � fxg : A 2 �(x)g

and L(x) = fA � fxg : A 2 �(x)g; and, for a space Y; call F � X � Y (�; u)-subclosed
(u-subclosed) if [F (G(x))]u ([F (L(x))]u) � F (x) for each x 2 X for which G(x) (L(x))
is a �lterbase on X: If X;Y are spaces and g : X ! Y is a function, P is one of the

properties de�ned above, and g satis�es property P; the the terminology "g has a P graph"

will be used. It will be said that "g has a P inverse" if g�1 � g(X) �X has property P:
Proposition 2.1 (Proposition 2.4) for ��continuous (u-continuous) functions into Hausdor�
(Urysohn) spaces enables us to see immediately that such functions have strongly-closed

(u-strongly-closed) inverses. Only the proof of Proposition 2.4 is given.

Proposition 2.1. A function g : X ! Y is ��continuous if and only if

\

�(A)

[g�1(V )]� � g�1([A]�)

for each A � Y:

It is easy to see from Proposition 2.1 that

\

�(A)

[g�1(V )]� = g�1(A)

for each ��closed A � Y: In particular we have the next corollary.

Corollary 2.2. If Y is a Hausdor� space and g : X ! Y is ��continuous then

\

�(y)

[g�1(V )]� = g�1(y)

for each y 2 Y:

Corollary 2.3. If Y is Hausdor� and g : X ! Y is ��continuous then g has a strongly-

closed inverse.

Proposition 2.4. A function g : X ! Y is u-continuous if and only if

\

�(A)

[g�1(V )]u � g�1([A]u)

for each A � Y:

Proof. The su�ciency comes by applying equivalence (6) of Theorem 1.1 since

[g�1(A)]u �
\

�(A)

[g�1(V )]u � g�1([A]u)
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for each A � Y: The necessity is also straightforward after we observe from equivalence (11)

of Theorem 1.1 that
\

�(A)

[g�1(V )]u �
\

�(A)

g�1([V ]u) � g�1([A]u)

for each A � Y: �

Corollary 2.5. If Y is a Urysohn space and g : X ! Y is u-continuous then

\

�(y)

[g�1(V )]u = g�1(y)

for each y 2 Y:

Corollary 2.6. If Y is Urysohn and g : X ! Y is u-continuous then g has a u-strongly-

closed inverse.

Corollary 2.7. If Y is Hausdor� (Urysohn) and g : X ! Y is continuous then g has a

strongly-closed (u-strongly-closed) inverse.

A subset A of a space X is called Quasi H-closed (QHC) relative to the space X if each

�lterbase 
 on A satis�es A\ [
]� 6= ;: For Hausdor� spaces these are the H-sets of Veli�cko

[26]. Subsets of a similar type for Urysohn spaces will be utilized in the sequel.

De�nition 2.8. A subset A of a space X is Quasi Urysohn-closed (QUC) relative to the

space X if each �lterbase 
 on A satis�es A \ [
]u 6= ;:

Theorems 2.9{2.11 will be applied in later sections. Only 2.11 is proved since the proofs of

the other two are similar to the proof of 2.11.

Theorem 2.9. Let X;Y be spaces and let g : X ! Y have a u-strongly-subclosed graph.

Then g�1(A) is closed in X for each QUC relative to Y subset A:

Theorem 2.10. Let X;Y be spaces and let g : X ! Y have a (�;u)-subclosed graph. Then

g�1(A) is ��closed in X for each QUC relative to Y subset A:

Theorem 2.11. Let X;Y be spaces and let g : X ! Y have a u-subclosed graph. Then

g�1(A) is u-closed in X for each QUC relative to Y subset A:

Proof. For v 2 [g�1(A) � fvg]u; there is a �lterbase 
 on g�1(A) � fvg such that


!
u
v: Then g(
) is a �lterbase on A and, since g has a u-subclosed graph, it follows that

; 6= A \ [g(
)]u � fg(v)g and v 2 g�1(A): �

Theorems 2.12{2.14 will also be instrumental in the next sections. Only 2.14 is proved.

Theorem 2.12. Let X;Y be spaces and let A be QUC relative to Y: If g : X ! Y has a

u-strongly-subclosed graph and g(X) � A then g is u-weakly-continuous.

Theorem 2.13. Let X;Y be spaces and let A be QUC relative to Y: If g : X ! Y has a

(�; u)-subclosed graph and g(X) � A then g is (�;u)-continuous.

Theorem 2.14. Let X;Y be spaces and let A be QUC relative to Y: If g : X ! Y has a

u-subclosed graph and g(X) � A then g is u-continuous.

Proof. Let v 2 X: If V = fvg for some V 2 �(v) then g is u-continuous at v: Otherwise


 = fV � fvg : V 2 �(v)g is a �lterbase on X; and [g(
)]u � fg(v)g since g has a u-

subclosed graph. Let W 2 �(g(v)): There exists F 2 
 such that g(F ) � W: If not then

� = fg(F )�W : F 2 
g is a �lterbase on A, and g(v) 62 [� ]u � [g(
)]u: �
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3. The weak continuity forms, graph conditions, old and new compactness

generalizations. In this section the results in x1 and x2 are applied to produce several

characterizations of QUC spaces analogous to the original de�nition and well-known char-

acterizations of Urysohn-closed spaces. In addition analogues of theorems for functionally

compact and C-compact spaces are provided for Urysohn-closed spaces.

Theorem 3.1. The following statements are equivalent for a space X:

(1) The space X is QUC.

(2)The inclusion A(g(
)) �
S

[
]u
[g(x)]u is satis�ed for all u-continuous functions g and

�lterbases 
 on X:

(3) All u-continuous functions g on X and A � X satisfy g(A) �
S

[A]u
[g(x)]u:

(4) Same as (3) except that A is open.

(5) Same as (3) except that A = X and the conclusion is g(X) �
S
X [g(x)]u:

(6) The inclusion X �
S
X [x]u holds in any space which contains X as a subspace.

(7) The equality Y =
S
X [x]u holds in any space Y which contains X as a dense subspace.

(8) The equality Y =
S
X [x]u holds in any space Y which contains X as a dense open

subspace.

(9) Each �lterbbase on X with at most one u-adherent point u-converges.

Proof. (2)) (3)) (4)) (5)) (6)) (7)) (8); and (9)) (1) are all obvious.

(1)) (2): Let Y be a space, g : X ! Y be u-continuous, let 
 be a �lterbase on X and

y 2 A(g(
)): Then 
1 = fg
�1(V ) \ F : V 2 �(y); F 2 
g is a �lterbase on X: Since g is

u-continuous it follows that g([
1]u) � [g(
1)]u: Since ; 6= g([
1]u) � [�(y)]u = [y]u; there
exists x 2 [
]u satisfying g(x) 2 [y]u; this implies y 2 [g(x)]u and hence y 2

S
[
]u

[g(x)]u
and (2) holds.

(8)) (9): Let 
 be a �lterbase on X with at most one u-adherent point, say x0: If 
 6!
u

x0; then there is a W 2 �(x0) such that 
1 = fV �W : V 2
S


 �(F )g is an open �lterbase

on X: Choose 1 62 X and let Y = X [ f1g endowed with the topology generated by the

open set base composed of the topology of X and sets of the form H[f1g; where H 2 
1:

Then X is a dense open subspace of Y: Hence Y =
S
X [x]u and there is an x 2 X such that

1 2 [x]u in Y: This implies that x 2 [1]u and that x = x0: A contradiction is reached since

�(x0) in Y is the same as �(x0) in X and W \ (H [ f1g) = ; for all H 2 
1: Hence (9)
holds. �

Corollary 3.2 o�ers additional chacterizations of QUC spaces and Corollary 3.3 o�ers new

characterizations of Urysohn-closed spaces.

Corollary 3.2. A space X is QUC if an only if any of the statements obtained by replacing

" u-continuous " by " continuous " in Theorem 3.1(2), (3), (4), or (5) holds.

Corollary 3.3. The following statements are equivalent for a Urysohn space X:

(1) The space X is Urysohn-closed.

(2) The inclusion A(g(
)) � g([
]u) is satis�ed for all u-continuous functions g and �lter-

bases 
 on X:

(3) All u-continuous functions g on X and A � X satisfy the inclusion g(A) � g([A]u):

(4) Same as (3) except that A is open.

(5) Each u-continuous (continuous) function g from X to a Urysohn space maps u-closed

subsets onto closed subsets.
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(6) Each u-closed subset of X is closed in any Urysohn space in which X is embedded.

(7) Each �lterbbase on X with at most one u-adherent point u-converges.

Theorem 3.4 is an improvement of the result of Herrlich [15] that the continuous image of

a Urysohn-closed space is Urysohn-closed.

Theorem 3.4. The u-continuous image of a QUC space is QUC.

Proof. Let X be QUC and let g : X ! Y; f : g(X) ! Z be u-continuous. Then

f � g is u-continuous. Hence, since X is QUC, f(g(X)) = f � g(X) �
S
X [f � g(x)]u =S

g(X)[f(y)]u: �

De�nition 3.5. A function g from a subset A of a space X to a space Y will be called

u-continuous on A relative to X if g(A \ [
]u) � [g(
)]u for each �lterbase 
 on A:

It is readily seen that if g is u-continuous on X then g is u-continuous on A relative to X for

each A � X; and that g is u-continuous on X relative to X if an only if g is u-continuous.

Previous proofs may be modi�ed to produce proofs of the next two theorems,

Theorem 3.6. The following statements are equivalent for a a subset A of a space X:

(1) The subset A is QUC relative to X:

(2) The inclusion A(g(
)) �
S
A\[
]u

[g(x)]u is satis�ed for all u-continuous relative to X

functions g on A and �lterbases 
 on A:

(3) All u-continuous relative to X functions g on A and Q � A satisfy the inclusion g(Q) �S
A\[Q]u

[g(x)]u:

(4) Same as (3) except that Q is open in A:

(5) Same as (3) except that A = Q and the conclusion is g(A) �
S
A[g(x)]u:

(6) Each �lterbbase on A with at most one u-adherent point u-converges to a point in A:

Theorem 3.7. The following statements are equivalent for a a subset A of a Urysohn space

X:

(1) The subset A is QUC relative to X:

(2) The inclusion A(g(
)) � g(A \ [
]u) is satis�ed for all u-continuous relative to X
functions g on A and �lterbases 
 on A:

(3) All u-continuous relative to X functions g on A and Q � A satisfy the inclusion g(Q) �
g(A \ [Q]u):

(4) Same as (3) except that Q is open in A:

(5) Same as (3) except that A = Q and the conclusion is g(A) � g(A):

(6) If g(A) is a u-continuous on A relative to X image of A in a Urysohn space, then g(A)
is closed.

Corollary 3.8. A QUC relative subset to X subset of a Urysohn space X is closed in X:

It is not di�cult to prove that if A � X , and g : X ! Y is u-continuous on A relative to

X , and f : g(A)! Z is u-continuous on g(A) relative to Y then f � g is u-continuous on A
relative to X: Hence the next result.

Corollary 3.9. If A is QUC relative to X and g : X ! Y is u-continuous on A relative to

X then g(A) is QUC relative to Y:

The following three corollaries are consequences of the results above.
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Corollary 3.10. Let Y be a Urysohn space and let g : X ! Y be u-continuous. If A is

QUC relative to X then g(A) = g(A):

Proof. It is shown in [8] that A �
S
A[x]u in X: Thus g(A) �

S
A[g(x)]u and since Y is

Urysohn, the set on the right side of the inclusion is g(A): �

A subset of a space is called u-rigid in [8] if A \ [
]u 6= ; is satis�ed for each �lterbase 


on X for which F \ V 6= ; is satis�ed for each V 2 �(A); F 2 
: It is shown in [8] that

[A]u =
S
A[x]u for each u-rigid subset A of the space. This equality leads to Corollary 3.11.

Corollary 3.11. Let Y be a Urysohn space and let g : X ! Y be u-continuous. Then

g([A]u) = g(A) for each u-rigid subset A of X:

Recall that a Hausdor� space is functionally compact if each open �lterbase on the space

satisfying A(
) = I(
) is an open set base for I(
): Theorem 3.12, a characterization

theorem for functionally compact spaces, is proved in [21].

Theorem 3.12. The following statements are equivalent for a space X :

(1) The space X is functionally compact.

(2) Each �lterbase 
 on X satisfying [
]� = I(
) converges to I(
):

(3) For each Hausdor� space Y each strongly-closed set-valued function � � Y �X is u. s.

c.

(4) For each Hausdor� space Y each function from Y to X with a strongly-closed inverse

is a closed function.

Corollary 3.13. [3] If a spaceX is functionally compact and Y is Hausdor� and g : X ! Y
is ��continuous then g is a closed function.

Proof. From Theorem 3.12(3) and Corollary 3.7. �

For Urysohn spaces the following parallel of the class of functionally compact spaces is

given.

De�nition 3.14. A Urysohn space is u-functionally compact if each Urysohn �lterbase 


on the space which satis�es A(
) = I(
) is an open set base for I(
):

Herrington [12] showed that a Urysohn �lterbase 
 on a space satis�es A(
) = [
]u: In fact

it is quite easy to see that the following converse holds. The proof is omitted.

Theorem 3.15. If 
 is an open �lterbase on a space satisfying A(
) = [
]u then 
 is a

Urysohn �lterbase.

Corollary 3.16. If 
 in an open �lterbase on a space X and [
]u = ; then 
 is a Urysohn

�lterbase.

The following parallel of Theorem 3.12 may now be established.

Theorem 3.17. The following statements are equivalent for a Urysohn space X :

(1) The space X is u-functionally compact.

(2) Each open �lterbase 
 on X satisfying [
]u = I(
) converges to I(
):

(3) Each �lterbase 
 on X satisfying [
]u = I(
) converges to I(
):

(4) For each Urysohn space Y each u-strongly-closed set-valued function � � Y �X is u.

s. c.

(5) For each Urysohn space Y each function from Y to X with a u-strongly-closed inverse

is a closed function.
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(6) For each Urysohn space Y each u-continuous function from X to Y is a closed function.

(7) For each Urysohn space Y each continuous function from X to Y is a closed function.

Proof. (1)) (2): Follows from Theorem 3.15.

(2)) (3): Follows from the fact that [
]u = [
S


�(F )]u:

(3)) (4): Note that [�(�(y))]u = �(y) for each y 2 Y and hence � is u. s. c.

(4)) (5): Assuming (4), X is Urysohn-closed from a result due to Joseph [18]. Thus

[
]u 6= ; is satis�ed for each �lterbase 
 on X: Consequently if g : X ! Y satis�es the

hypothesis in (5) and v 2 g(X); then g�1(�(v)) is a �lterbase on X and ; 6= [g�1(�(v))]u =

g�1(v): So v 2 g(X) and g(X) is closed in X: Now g�1 � g(X)�X is u. s. c. from (4) so

g is a closed function [23] and (5) holds.

(5)) (6): From Corollary 2.6, u-continuous functions into Urysohn spaces have u-

strongly-closed inverses.

(6)) (7): Continuous functions are u-continuous.

(7)) (1): The space X is Urysohn-closed and if 
 is an open �lterbase on X satisfying

A(
) = I(
) then 
 is a Urysohn �lterbase and A(
) 6= ; [20]. The proof may be completed

as in the proof of the su�ciency of Theorem 3 in [4]. �

A Hausdor� space is C-compact if each closed subset of the space is an H-set. Nayar [24]

has recently proved that a Hausdor� space X is C-compact if an only if for each Hausdor�

space Y each g : X ! Y with a strongly-subclosed inverse is a closed function. If a space

X is Urysohn we call a subset of X a U-set if it is QUC relative to X: We de�ne a Urysohn

space to be u-C-compact if each closed subset of the space is a U-set, and prove the following

analogue of Nayar's result and the main result in [2].

Theorem 3.18. The following statements are equivalent for a Urysohn space X :

(1) The space X is u-C-compact.

(2) For each Urysohn space Y each g : X ! Y with a u-strongly-subclosed inverse is a

closed function.

(3) For each Urysohn space Y each u-strongly-subclosed set-valued function F � Y �X is

u.s.c.

Proof. (1)) (2): Let Y be Urysohn, A � X be closed, and g : X ! Y have a u-strongly-

subclosed inverse. If y is a limit point of g(A) then 
 = fg�1(W �fyg)\A : W 2 �(y)g is
a �lterbase on A and hence ; 6= A \ [
]u � A \ g�1(y): So g(A) is closed.

(2)) (1): Suppose A is a closed subset of X and that 
 is a �lterbase on A such that

A \ [
]u = ;: Since continuous functions into Urysohn spaces have u-strongy-subclosed

inverses, it follows that X is Urysohn-closed and hence that A 6= X: Choose v 2 A and

de�ne g : X ! Y by g(x) = x if x 2 A; g(x) = v if x 2 X � A; where Y = X with the

topology fV � X : v 2 X � V or some F 2 
 satis�es F � V g: Then Y is Urysohn and

g�1 � g(X)�X is u-strongly-subclosed since S(y) is a �lterbase on Y only if v = y; and

[g�1(S(v))]u � [
]u � X � A � g�1(v): Choose H 2 
 and W 2 �(v) with W \H = ; in

X: It follows that g(H) = H � A�W = g(A �W ); so v 2 A�W � (A �W ) in Y: Since
A�W is closed in X the function g is not a closed function.

(1)) (3): Let Y be Urysohn and F � Y � X be u-strongly-subclosed. If y 2 Y and

some W 2 �(F (y)) satis�es ; 6= F (V ) �W for all V 2 �(y) then S(y) is a �lterbase on

Y and ; 6= [F (S(y))]u �W � F (y) �W since each closed subset of X is QUC and F is

u-strongly-subclosed. This is a contradiction.



84 JAMES E. JOSEPH, MYUNG H. KWACK, BHAMINI M. P. NAYAR

(3)) (1): Suppose A is a closed subset of X and that 
 is a �lterbase on A such that

A \ [
]u = ;: It follows from Theorem 3.17(4) that X is Urysohn-closed and hence that

A 6= X: Choose v 2 A , and let Y = X with the topology fV � X : v 2 X � V or some

H 2 
 satis�es H � V g: Then Y is Urysohn. De�ne F � Y � X by F = f(x; x) : x 6=
vg [ f(v; x) : x 2 X � Ag: To see that F is u-strongly-subclosed only v need be checked.

Now 
 � S(v) in Y so [F (S(v))]u � [F (
)]u = [
]u � Y � A = F (v): However F is not

u.s.c. since Y �A 2 �(F (v)) in X and no V 2 �(v) satis�es F (V ) � Y �A: �

4. Generalizations of the Uniform Boundedness Principle. In this �nal section

results of previous sections are utilized to provide generalizations of the Uniform Bounded-

ness Principle. Initially several generalizations of the Uniform Boundedness Principle are

established when the range space Y is arbitrary and � is a nonempty countable collection

of QUC relative to Y subsets. In establishing these generalizations it will be evident that

the following generalization of the Uniform Boundedness Principle is valid (recall that a

topological space is a Baire space if the intersection of each sequence of dense open subsets

of the space is dense in the space [17]). A subset Q of a topological space X is of second

category in X if Q is not the union of a countable number of nowhere dense subsets of X:
It is known that a topological X is a Baire space if an only if each nonempty open subset

of the space is of second category in X [17]: Let X be a Baire space, let � be a nonempty

countable family of compact subsets of a space Y; and let F be a family of functions from

X to Y with subclosed graphs such that UB[F ; X; Y;�] contains the collection of singletons
of X: Then there is a nonempty open subset V of X satisfying (1) V 2 UB[F ; X; Y;�] and
(2) each g 2 F is continuous at each x 2 V: Moreover, there is a W open in X such that

each g 2 F is continuous at each x 2 W and W = X:

Theorem 4.1 is the �rst main result in this section. The proof is omitted since the proofs

of subsequent theorems will indicate the method of proof.

Theorem 4.1. Let X be a Baire space, let Y be a space, let � be a nonempty countable

family of QUC relative to Y subsets and let F be a family of functions from X to Y with

u-strongly-subclosed graphs such that UB[F ; X; Y;�] contains the collection of singletons

of X: Then

(1) There is a nonempty open V of X such that V 2 UB[F ; X; Y;�]:

(2) For each g 2 F the restriction of g to V of part (1) is u-weakly-continuous.

(3) Each g 2 F is u-weakly-continuous at each point of V of part (1).

(4) There is a W open in X such that each g 2 F is u-weakly-continuous at each x 2 W

and W = X:

De�nition 4.2. A subset A is of the ��second category in X if A is not contained in the

union of a countable family, �; of subsets of X such that int([F ]�) = ; for each F 2 �; A
is of the ��second category if A is of the ��second category in A: A space X is ��Baire if
W is of the ��second category for each nonempty open subset of X:

In [19] it is shown that Baire spaces and QHC spaces are ��Baire. Theorem 4.3 is the

second main result in this section.

Theorem 4.3. Let X be a ��Baire space, let Y be a space, let � be a nonempty countable

family of QUC relative to Y subsets and let F be a family of functions from X to Y with

(�;u)-subclosed graphs such that UB[F ; X; Y;�] contains the collection of singletons of X:
Then

(1) There is a nonempty open V of X such that [V ]u 2 UB[F ; X; Y;�]:
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(2) For each g 2 F the restriction of g to [V ]u of part (1) is (�; u)-continuous.

(3) Each g 2 F is (�;u)-continuous at each point of V of part (1).

(4) There is a W open in X such that each g 2 F is (�;u)-continuous at each x 2 W and

W = X:

Proof. (1) For each C 2 � let I(C) =
T
g�1(C): Then I(C) is ��closed since it

is the intersection of sets which are ��closed from Theorem 2.10. If x 2 X there is a

C(x) 2 � such that g(x) 2 C(x) for all g 2 F : Hence fI(C) : C 2 �g is a cover of X by a

countable family of ��closed sets. Since X is of the �� second category there is a C0 2 �

such that int(I(C0)) 6= ;: Let V = int(I(C0)): Evidently, [V ]u � I(C0): Hence for each

g 2 F ; g([V ]u) � g(I(C0)) � g(g�1(C0)) � C0:

(2) Let V be an open set of the type guaranteed in part (1) and let g 2 F : Since C0 is

QUC relative to Y and the restriction, g[V ]u ; of g to [V ]u has a (�;u)-subclosed graph, then

g[V ]u is (�;u)-continuous from Theorem 2.13.

(3) Let V be an open set of the type guaranteed in part (1), let x 2 V; let g 2 F ; and let

W 2 �(g(x)): Choose Q 2 �(x) such that g[V ]u(Q \ [V ]u) � W: Then Q \ V 2 �(x) and

Q \ V � Q \ [V ]u; so g(Q \ V ) �W:

(4) Let W be the union of all open V such that each g 2 F is (�;u)-continuous at each
x 2 V: Then each g 2 F is (�;u)-continuous at each x 2 W: Let A be a nonempty open

subset of the ��Baire space X: Then A is of the ��second category and FA = fgA : g 2 Fg
satis�es the conditions imposed on F in the hypotheses (relative to X). Hence, from Parts

(1) and (2), choose a nonempty relatively open B of A with each h 2 FA (�;u)-continuous

at each point of the nonempty subset A \ H where B = H \ A and H is open in X: It
follows as in the proof of part (3) that each g 2 F is (�,u)-continuous at each x 2 A \H:

Hence A \H �W; A \W 6= ;; and W = X: �

The next several results are preliminary to the �nal main generalization of the Uniform

Boundedness Principle, Theorem 4.9.

Theorem 4.4. The following statements are equivalent for a space X and A � X:

(1) The relation int([A]u) = ; holds.

(2) If V is a nonempty open subset of X and W 2 �(V ) there is an x 2 V and Q 2 �(x)

such that Q �W and A \Q = ;:

(3) For each nonempty open V in X there is a nonempty open Q � V such that Q\[A]u = ;:

Proof. (3)) (1). Obvious.

(1)) (2). If (1) holds and V is a nonempty open subset of X then V � [A]u 6= ;:

Let x 2 V � [A]u; P 2 �(x) such that A \ P = ;: For W 2 �(x); Q = W \ P satis�es

Q 2 �(x); Q �W; and A \Q = ;: Hence (2) holds.

(2)) (3). Assume (2) and let V be a nonempty open subset of X: Then X 2 �(V );

from (2) choose x 2 V and Q 2 �(x) satisfying A \ Q = ;: Let T 2 �(x) with Q 2 �(T ):

Then X � T 2 �(A) and, consequently, V \ T \ [A]u � T \X � T = ;: �

Theorem 4.6. If X is a space and A � X satis�es int([A]u) = ; then for each nonempty

open V � X there is a nonempty open Q � V satisfying A \ [Q]u = ;:

Proof. If int([A]u) = ; and V is a nonempty open subset of X choose W 2 �(A) such

that V �W 6= ;: Then Q = V �W satis�es Q � V and A \ [Q]u = ;: �

Theorem 4.6 utilizes [ ]u to show that QUC spaces satisfy a property of " second category

type ".
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Theorem 4.6. If X is a QUC space and V is a nonempty open subset of X then [V ]u is

not contained in the union of a countable family, 
; of subsets of X such that int([F ]u) = ;
for all F 2 
:

Proof. Let 
 = fFn : n 2 Ng: Using Theorem 4.5, a decreasing sequence Vn of nonempty
subsets of X is constructed inductively such that V1 � V and Fn \ [Vn]u = ;. Since X is

QUC choose x 2
T
N [Vn]u: It follows that x 2 [V ]u �

S
N Fn: �

Corollary 4.7. If X is QUC and V is a nonempty open subset of X then [V ]u is not

contained in the union of a countable family of u-closed subsets with empty interiors.

Corollary 4.8. If X is QUC and W 2 �(A) for some nonempty subset A then W is not

contained in the union of a countable family, 
; of subsets of X such that int([F ]u) = ; for
all F 2 
:

Proof. There exists V 2 �(A) such that [V ]u �W: �

Theorem 4.9. Let X be a QUC space, let Y be a space, let � be a nonempty countable

family of QUC relative to Y subsets and let F be a family of functions from X to Y with

u-subclosed graphs such that UB[F ; X; Y;�] contains the collection of singletons of X: Then

(1) There is a nonempty open V of X such that [V ]u 2 UB[F ; X; Y;�]:

(2) For each g 2 F the restriction of g to [V ]u for V guaranteed in part (1) is u-continuous.

(3) For each V satisfying (1), each g 2 F is u-continuous at each point x of V with V 2 �(x):

Proof. The proofs of (1) and (2) may be produced by the use of Theorems 2.11, 2.14, 4.6,

the fact that the intersection of u-closed subsets is u-closed, the readily established fact that

restrictions of functions with u-subclosed graphs have u-subclosed graphs, and techniques

similar to those used in the proof of Theorem 4.3. For the proof of (3) let g 2 F ; W 2 �(x)

satisfy (1), and let Q 2 �(g(x)): From (2) choose A 2 �(x) in X such that A \W 2 �(x)

in W and g(A \W ) � Q: Choose B 2 �(x) in X such that B \W � B \W � A \W

and P 2 �(x) in X such that P � W: Then P \ B \W 2 �(x) in X and P \ B \W �

P \ B \W �W \ A: Hence W \ A 2 �(x) in X and g(A \W ) = g(A \W ) � Q: �
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