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Abstract. In this paper we consider a nonlinear periodic boundary value problem with a

discontinuous forcing term. Assuming that the partial di�erential operator satis�es the Leray-

Lions conditions, that the discontinuous perturbation term is locally of bounded variation

and that there exist an upper solution � and a lower solution  such that  � �, we prove

the existence of a maximal and a minimal periodic solution within the order interval [ ;�]

of an appropriately de�ned multivalued problem. Our approach is based on a Jordan-type

decomposition for the discontinuous perturbation term due to Stuart [21] and on a �xed point

theorem for monotone maps in order structures.

1. Introduction. In a series of interesting papers [19], [20], [21] and Stuart-Toland
[22] studied ordinary di�erential equations and semilinear elliptic boundary value problems
involving discontinuous nonlinearities. It is well-known that such problems need not have
a solution even under restrictive hypotheses. The paper of Stuart [19] contains some char-
acteristic examples illustrating this. It is then a good idea to replace the original equation
by a multivalued version of it. In [21] Stuart isolated a broad class of nonlinearities which
lead to multivalued problems obtained by �lling in only the downward jumps of the original
function. So if all the jumps are upward (i.e. f(r�) � f(r+) for every r 2 R) then the
single-valued and multivalued versions of the problem produce the same set of solutions.
In his main existence theorem Stuart [21] (Theorem 3.1) proved the existence of a max-
imal and a minimal solution located in the order interval determined by an upper and a
lower solution. In [22] Stuart-Toland developed a variational method to deal with such
problems based on the nonconvex duality theory of Toland [23]. We should also mention
the relevant works of Rauch [18] and Chang [5] who also deal with semilinear elliptic sys-
tems involving discontinuities. Rauch [18] used molli�cation techniques to establish the
existence of a solution between an upper and a lower solution for problems in which the dis-
continuous nonlinearity is not monotone and we only assume that f(�) ultimately increase

(i.e. lim
t!�1

f(t) � lim
t!+1

f(t)). Chang [15] used critical point theory for nondi�erentiable

functionals to deal with such problems.

The study of analogous dynamic (parabolic) problems is lagging behind. Only recently
some special semilinear initial-boundary value problems were considered by Carl-Heikkila
[4] and Feireisl-Norbury [9].

In this paper using the discontinuities introduced by Stuart [21], we examine nonlinear
periodic parabolic boundary value problems and with the help of an upper solution � and a
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lower solution  , we establish the existence of a maximum and a minimum periodic solution
located in the order interval [ ; �] (assuming  � �).

2. Mathematical preliminaries. Let T = [0; b] and Z � R
n be a bounded do-

main with a C1-boundary 
. We consider the following periodic parabolic boundary value
problem: 8>><

>>:
@x

@t
�

NX
k=1

Dkak(t; z;Dx) = f(x(t; z)) in T � Z

x(0; z) = x(b; z) a.e. on Z; xjT�
 = 0

9>>=
>>;

(1)

where Dk =
@

@zk
k = 1; 2; � � � ; N and D = (Dk)

N
k=1.

Here f : R! R is a discontinuous nonlinear perturbation term. We impose the following
conditions on the date of (1):

H(a) : ak : T � Z �RN ! Rk 2 f1; 2; � � � ; Ng are functions such that

(i) (t; z)! ak(t; z; �) is measurable,
(ii) � ! ak(t; z; �) is continuous,
(iii) jak(t; z; �)j � �1(t; z) + c1k�k

p�1 a.e. on T � Z for every � 2 N
N and with �1 2

Lq(T � Z); c1 > 0; 2 � p <1;
1

p
+

1

q
= 1,

(iv)
NP
k=1

(ak(t; z; �) � ak(t; z; �
0))(�k � �0k) > 0 a.e. on T � Z for every �; �0 2 R

N with

� 6= �0, and

(v)
NP
k=1

ak(t; z; �)�k � c2k�k
p

RN
��2(t; z) a.e. on T �Z with c2 > 0 and �2 2 L

1(T �Z).

Remark. These are the standard Leray-Lions conditions on the coe�cient function
ak(t; z; �); cf. Lions [15].

H(f) : f : R! R is a function of bounded variation on every compact interval in R and

f(r) 2 f̂(r) for every f 2 R, where f̂ (r) = convff(r+); f(r�)g with f(r+) = lim
�!0+

f(r + �)

and f(r�) = lim
�!0+

f(r � �).

The following decomposition property of f(�) will be crucial in our subsequent consider-
ations and can be found in Stuart [21] (Lemma 2.1).

Lemma 2.1. If f : R! R satis�es hypothesis H(f) and I is a bounded open interval

in R, then there exist two nondecreasing functions g : I ! R and h : I ! R such that (a)

f(r) = g(r)� h(r) for every r 2 I; (b) g(�) is continuous on fr 2 I : f(r�) � f(r+)g; and
(c) h(�) is continuous on fr 2 I : f(r�) � f(r+)g.

Remark. According to Lemma 1 a function f : R! R satisfyingH(f), when restricted
to a bounded open interval I admits a decomposition as the di�erence of two nondecreasing
functions g(�) and h(�) (Jordan decomposition), with g(�) continuous at those points where
a downward jump occurs and h(�) continuous at those points where an upward jump occurs.

Lemma 1 leads us to a convenient expression for the multifunction f̂(r) at those points
where a downward jump occurs (cf. Stuart [21], Lemma 2.2).

Lemma 2. If f : R ! R satis�es hypothesis H(f), I is a bounded open interval and

f = g � h is the decomposition of f(�) established in Lemma 1, then f̂(r) = g(r)� ĥ(r) for
every r 2 I for which we have f(r+) � f(r�).
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So for a function f : R! R satisfying H(f), we can de�ne:

F (r) =

�
ff(r)g if f(r�) � f(r+)

f̂(r) = [f(r+); f(r�)] if f(r+) � f(r�)

and observe that by virtue of Lemma 2, F (r) = g(r) � f̂(r) for every r 2 R. Then we
replace problem (1) by the following multivalued version of it:

8>><
>>:
@x

@t
�

NX
k=1

Dkak(t; z;Dx) 2 F (x(t; z)) in T � Z

x(0; z) = x(b; z) a.e. on Z; xjT�� = 0

9>>=
>>;

(2)

It is this problem that we will studying in the sequel. Let W 1;p(Z) be the usual Sobolev
space and W 1;p(Z)� its dual. Then the spaces W 1;p(Z) � L2(Z) � W 1;p(Z)� form an
evolution triple with all embeddings being continuous, dense and compact (cf. Zeidler [24]).

Also by W 1;p
0 (Z) we denote the subspace of W 1;p(Z) whose elements have zero trace (i.e.

W
1;p
0 (Z) = ker v. 0 with v. 0(�) being the trace operator). As usual by W�1;q(Z) we denote

the dual ofW 1;p
0 (Z). ThenW 1;p

0 (Z) � L2(Z) � W�1;q(Z) is also an evolution triple with all
embeddings being again continuous, dense and compact. Then we introduce the following
function spaces:

Ŵpq(T ) = ff 2 Lp(T;W 1;p(Z)) :
@f

@t
2 Lq(T;W 1;p(Z)�)g

and

Wpq(T ) = ff 2 Lp(T;W 1;p
0 (Z)) :

@f

@t
2 Lq(T;W�1;q(Z))g:

Here the derivative
@f

@t
is understood in the sense of vector-valued distributions. Both

spaces endowed with the obvious norm kfkpq = kfkp+ kfkq, become Banach spaces which
are separable re
exive due to the separability and re
exivity of the Lebesgue-Bochner spaces

Lp(T;W 1;p(Z)); Lq(T;W 1;p(Z)�) and Lp(T;W 1;p
0 (Z)); Lq(T;W�1;q(Z)).

Moreover, we know that both Wpq(T ) and Ŵpq(T ) embed continuously in C(T;L2(Z))
and compactly in Lp(T � Z) (cf. Lions [15], theorem 5.1 p.58 and Zeidler [24], proposition
23.23 p.422 and p.450).
By virtue of hypothesisH(a) we can de�ne the semilinear Dirichlet form a : Lp(T;W 1;p(Z))
� Lp(T;W 1;p(Z))! R, by

a(x; y) =

Z b

0

Z
Z

NX
k=1

ak(t; z;Dx)Dky(t; z)dzdt;

where as we already said Dk =
@

@zk
; k 2 f1; 2; � � � ; Ng and D = (Dk)

N
k=1.

In what follows by (�; �)) we will denote the duality brackets between Lp(T;W 1;p(Z)) and

Lq(T;W 1;p(Z)�) and also between Lp(T;W 1;p
0 (Z)) and Lq(T;W�1;q(Z)). Recall that if X

is a re
exive Banach space (or even more generally if X� has the Radon-Nikodym property)

and 1 � p < 1, then Lp(T;X)� = Lq(T;X�);
1

p
+

1

q
= 1 (cf. Diestel-Uhl [8], theorem 1,

p.98).
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De�nition 3. A function ' = Ŵpq(T ) is said to be an `5pper solution" of (1) if

((
@'

@t
; u)) + a('; u) �

Z b

0

Z
z

f('(t; z))u(t; z)dzdt

for all u 2 Lp(T;W 1;p
0 (Z))\ Lp(T � Z)+; '(0; z) � '(b; z) a.e. on Z and 'jT�� � 0.

Similarly a function  2 Ŵpq(T ) is a \lower solution" to (1) if the inequalities in the
above de�nition are reversed.
H0: there exist an upper solution ' and a lower solution  such that  � ' and  ;' 2

L1(T � Z).

Remark. We can drop the requirement that  ;' 2 L1(T � Z) at the expense of
strengthening hypothesis H(f) by assuming that f(�) is of bounded variation on all of R.
Moreover in this case we also need to assume that g('(�; �)); g( (�; �)); h('(�; �)); h( (�; �)) all
belong in Lq(T;L2(Z)). It should be pointed out that Deuel-Hess [7], Mokrane [16] and
Boccardo-Murat-Puel [3] incorporate in their de�nition of upper and lower solutions the
assumption that they belong in L1(T � Z).

Let us now introduce the notion of a (weak) solution for problem (2).

De�nition 4. A function x 2 Wpq(T ) is said to be a solution of (2) if there exists a
function v 2 Lq(T � Z) such that v(t; z) 2 F (x(t; z)) a.e. on T � Z and

((
@x

@t
; u)) + a(x; u) =

Z b

0

Z
Z

v(t; z)u(t; z)dzdt

for all u 2 Lp(T;W0(Z)).
The standard pointwise partial ordering on Lp(T � Z) (i.e. x � y if and only if y � x 2

Lp(T �Z)+ = f the set of all nonnegative elements in Lp(T �Z)g) induces a corresponding

partial ordering in Ŵpq(T ). So we can de�ne [ ;'] = fy 2 Ŵpq(T ) :  � y � 'g, the order
interval determined by  � '. We will be looking for the extremal solutions of (2) in [ ;'].
By this we mean the greatest solution x� and the least solution x� of (2) within the order
interval [ ;']. So if x is any solution of (2) in [ ;'], we have x� � x � x�.

3. An auxiliary periodic problem. In this section with the help of a truncation and
a penalization functions (cf. Deuel-Hess [6]), we introduce and solve an auxiliary problem
which will be used in the sequel.

First we consider the truncation function. So given x 2 Lp(T;W 1;p(Z)) we de�ne its
truncation T (x)(�; �) as follows:

T (x)(t; z) =

8><
>:
'(t; z) if '(t; z) � x(t; z)

x(t; z) if  (t; z) � x(t; z) � x(t; z)

 (t; z) if x(t; z) �  (t; z)

Proposition 5. T : Lp(T;W 1;p(Z))! Lp(T;W 1;p(Z)) is continuous.

Proof. First observe that by virtue of Lemma 7.6, p.145 of Gilbarg-Trudinger [10] we
have that for almost all t 2 T �(x)(t; �) 2 W 1;p(Z) (indeed just note that given any two
functions x1; x2;max(x1; x2) = (x1�x2)

++x2 and min(x1; x2) = x2� (x1�x2)
� and then

apply the aforementioned result of Gilberg-Trudinger). Therefore �(x) 2 Lp(T;W 1;p(Z)).
Next let xn ! x in Lp(T;W 1;p(Z)). Then by passing to a subsequence if necessary we
may assume that xn(t; z) ! x(t; z) a.e. on T � Z;Dkxn(t; z) ! Dkx(t; z) a.e. on T � Z
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for every k 2 f1; 2; � � � ; Ng and by virtue of Theorem 2.8.1, p.74 of Kufner-John-Fu�cik
[14], we can �nd �; �k 2 Lp(T � Z)k 2 f1; 2; � � � ; Ng such that jxn(t; z)j � �(t; z) and
jDkxn(t; z)j � �k(t; z) a.e. on T � Z. Observe that �(xn)(t; z) ! �(x)(t; z) a.e. on T � Z

and j�(xn)(t; z)j � maxf�(t; z); j'(t; z); j (t; z)jg a.e. on T � Z. So via the dominated
convergence theorem we get that �(xn) ! �(x) in Lp(T � Z). Also using once again
Lemma 7.6, p.145 of Gilbarg-Trudiner [10] we see that for every y 2 Lp(T;W 1;p(Z)) we
have

D�(y)(t; z) =

8><
>:
D'(t; z) if '(t; z) � y(t; z)

Dy(t; z) if  (t; z) � y(t; z) � '(t; z)

D (t; z) if y(t; z) �  (t; z):

In the light of this we have that D�(xn)(t; z)! D�(x)(t; z) a.e. on T �Z and moreover

jDk�(xn)(t; z)j � �k(t; z) + jDk'(t; z)j + jDk (t; z)j a.e. on T � Z

for every k 2 f1; 2; � � � ; Ng. Thus by the dominated convergence theorem we have that
D�(xn) ! D�(x) in Lp(T � Z) and so we �nally conclude that �(xn) ! �(x) in Lp(T;
W 1;p(Z)) establishing the continuity of x! �(x). �

Also we introduce a penalty function u : T � Z �R! R, de�ned by

u(t; z; x) =

8><
>:

(x� '(t; z))p�1 if '(t; z) � x

0 if  (t; z) � x � '(t; z)

�( (t; z)� x)p�1 if x �  (t; z)

A straightforward elementary calculation reveals that the following is true about the
penalty function:

Proposition 6. u : T �Z�R is a Caratheodory function (i.e. measurable in (t; z) and
continuous in x); ju(t; z; x)j � �3(t; z)+ c3jxj

p�1 a.e. on T �Z with �3 � Lq(T �Z); c3 > 0
and

Z b

0

Z
z

u(t; z; x(t; z))x(t; z)dzdt

� c4kxk
p

Lp(T�Z) � c5kxk
p�1
Lp(T�Z) for some c4; c5 > 0:

Now let K = fy 2 L2(T � Z) :  (t; z) � y(t; z) � '(t; z) a.e. on T � Zg. So K is the
order interval in L2(T � Z) determined by the functions  � '. Given y 2 K we consider
the following periodic boundary value problem:

8>>>><
>>>>:

@x

@t
�

nX
k=1

Dkak(t; z;Dx) 2 g(y(t; z))� ĥ(�(x)(t; z))� u(t; z; x(t; z))

in T � Z

x(0; z) = x(b; z) a.e. on Z; xjT�� = 0

9>>>>=
>>>>;

(3)

Proposition 7. If hypotheses H(a);H0 and H(f) hold, then problem (3) has unique
solution R(y)(�; �) 2Wpq(T ).

Proof. In what follows we consider the evolution triple X = W
1;p
0 (Z);H = L2(Z) and

X� = W�1;q(Z) (recall that all the embeddings are continuous, dense and compact). Let
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L : V � Lp(T;X)! Lq(T;X�) be de�ned by L(x) =
@x

@t
for x 2 V = fy 2Wpq(T ) : y(0) =

y(b)g (as before
@x

@t
is to be understood in the sense of vector-valued distributions). From

Zeidler [24] (Proposition 32.10, p.855) we know that L(�) is maximal monotone.

Next let G : Lp(T;X)! 2L
q(T;X�) be de�ned by

((G(x); y)) = f(a(x; y) +

Z b

0

Z
z

v(t; z)y(t; z)dzdt

+

Z b

0

Z
z

u(t; z; x(t; z))y(t; z)dzdt :

v(t; z) 2 ĥ(�(x)(t; z)) a.e. on T � Z; v 2 Lq(T;H) � Lq(T;X�)g:

From Krasnoselskii's theorem we see that G(�) is a bounded set-valued operator with

closed and convex values. Moreover since ĥ(�) is upper semicontinuous as a multifunction
(cf. Klein-Thompson [13], p.75), we see at once thatG(�) is upper semi-continuous from each
�nite-dimensional subspace of Wpq(T ) into L

q(T;X�). Also let fxngn�1 � Wpq(T ); wn 2

G(xn) and assume that xn
w
�! x in Lp(T;X); ((wn; y)) ! ((w; y)) for every y 2 Wpq(T )

and lim((wn; xn)) � ((w; x)). Note that

((wn; xn)) = a(wn; xn) + ((vn; xn)) + ((U(xn); xn))

with vn 2 L
q(t;H); vn(t; z) 2 ĥ(�(xn)(t; z)) a.e. on T �Z and U(xn)(t; z) = u(t; z; xn(t; z)).

Since jvn(t; z)j � h('(t; z)) a.e. on T � Z, by passing to a subsequence if necessary, we

may assume that vn
w
�! v in Lq(T � Z) and v(t; z) 2 ĥ(�(x)(t; z)) a.e. on T � Z (cf.

Papageorgiou [17]). So ((vn; xn))! (v; x)) with v(t; z) 2 ĥ(�(x)(t; z)) a.e. on T � Z. Also

let Â : Lp(T;X)! Lq(T;X�) be de�ned by

((Â(x); y)) = a(x; y) + ((U(x); y)) for every x; y 2 Lp(T;X):

It is well-known (cf. Lions [15] or Berkovitz-Mustonen [2], Proposition 1, p.615) that because

of hypothesis H(a) and because of Proposition 6, Â(�) is pseudomonotone with respect to
Wpq(T ), in particular then has property (M) with respect to Wpq(T ) (cf. Lions [15] pp.173
and 179).

Since lim((wn; xn)) � ((w; x)), we get lim((Â(xn); xn)) � ((Â(x); x)) and so by property

(M) we conclude Â(xn)
w
�! Â(x) in Lq(T;X�). Therefore w = Â(x) + v with v(t; z) 2

ĥ(�(x); (t; z)) a.e. on T � Z and so w 2 G(x). Thus we have checked that the set-valued
operator G(�) has property (M) with respect to Wpq(T ) (cf. Gupta [11], De�nition 1).

Next we claim that G(�) is coercive; i.e.

lim
w2G(x)

kxkLp(T;X)!1

((w; x))

kxkLp(T;X)

= +1:

To this end, because of hypothesis H(a)(v) we have

Z b

0

Z
z

NX
k=1

ak(t; z;Dx)Dkxdz � c2

Z b

0

Z
z

kDx(t; z)kp
RN

dzdt

= ĉ2kxk
p

Lp(T;X)
; ĉ2 > 0 (4)
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(recall that kDx(t; �)kLp(Z) is an equivalent norm on W 1;p
0 (Z)). Also from Proposition 6 we

know that Z b

0

Z
z

u(t; z; x(t; z))x(t; z)dzdt � c4kxk
p

Lp(T�Z)
� c5kxk

p�1
Lp(T�Z)

(5)

In addition for every v 2 Lp(T;H); v(t; z) 2 ĥ(�(x)(t; z)) a.e. on T � Z, from H�older's
inequality we have that

j

Z b

0

Z
z

v(t; z)x(t; z)dzdtj �M1kxkLp(T�Z) for some M1 > 0;

and so Z b

0

Z
z

v(t; z)x(t; z)dzdt � �M1kxkLp(T�Z) (6)

Combining (4), (5) and (6) we get that for every w 2 G(x) we have

((w; x) � ĉ2kxk
p

Lp(T�X)
+ c4kxk

p

Lp(T�Z)
� c5kxk

p�1
Lp(T�Z)

�M1kxkLp(T�Z);

from which it follows easily that G(�) is coercive as claimed.
Now rewrite the periodic boundary value problem (3) in the following abstract operator

equation form
L(x) +C(x) 3 �g(y) (7)

Applying Theorem 1.2 p.319 of Lions [15] (see also Theorem 1 of Gupta [11]), we get that

this problem has a solution x 2 Wpq(T ). Since Â(�) is strictly monotone (see hypothesis

H(a)(iv) and recall the de�nition of the penalty function u(t; z; x) and because ĥ(�) is a
monotone multifunction (the function h(�) being monotone), we have that G(�) is strictly
monotone and so we conclude that (7) (hence (3) too) has a unique solution x = R(y) 2
Wpq(T ). Q.E.D.

4. Existence of extremal periodic solutions. In this section we establish the
existence of extremal solutions for problem (2). Our approach is based on the following
result essentially due to Amann [1] (Corollary 1.5) (see also Heikkila-Hu [12], Corollary
3.2):

Proposition 8. If [x0; y0] is a nonempty order interval in a regularly ordered metric
space, then every increasing map R : [x0; y0]! [x0; y0] has the least and the greatest �xed
points.

Note that because of the dominated convergence theorem the positive cone in L2(T;H) =
L2(T � Z); L2(T � Z)+ = fy 2 L2(T � Z) : 0 � y(t; z) a.e. on T � Zg is regular, i.e. every
order bounded (hence pointwise bounded by an L2(T � Z)-function) sequence fyngn�1 in
L2(T � Z)+ converges in the L2(T � Z)-norm.

To apply Proposition 8 we take K as our order interval in L2(T � Z) and as R(�) the
single-valued map obtained in Proposition 7.

Proposition 9. If hypothesis H(a);H(f) and H0 hold, then R(K) � K.

Proof. Let y 2 K and set x = R(y). From Gilbarg-Trudinger [10] as before we get that
( � x)+ 2 Wpq(T ) \ L

p(T � Z)+. Since  (�; �) is a lower solution of (1) according to
De�nition 3 with ( � x)+ as our test function, we have:

�((
@ 

@t
; ( � x)+))� a( ; ( � x)+) � �

Z b

0

Z
Z

f( (t; z))( � x)+(t; z)dzdt

 (0; z) �  (b; z) a.e. on Z: (8)
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Also since x = R(y), we have for some v 2 Lq(T;H) with v(t; z) 2 ĥ(�(x)(t; z)) a.e. on
T � Z:

((
@x

@t
; ( � x)+)) + a(x; ( � x)+) =

Z b

0

Z
Z

g(y(t; z))( � x)+dzdt

�

Z b

0

Z
Z

v(t; z)( � x)+(t; z)dzdt�

Z b

0

Z
Z

u(t; z; x(t; z))( � x)+(t; z)dzdt

�

Z b

0

Z
Z

g(y(t; z))( � x)+(t; z)dzdt

�

Z b

0

Z
Z

h(�(x)(t; z)�)dzdt�

Z b

0

Z
Z

u(t; z; x(t; z))( � x)+(t; z)dzdt (9)

Adding inequalities (8) and (9) above and recalling that f(r) = g(r)� h(r), we get that

((
@(x�  )

@t
; ( � x)+))+

Z b

0

Z
Z

NX
k=1

(ak(t; z;Dx)� ak(t; z;D ))Dk( � x)+(t; z)dzdt

�

Z b

0

Z
Z

(g(y(t; z))� g( (t; z)))( � x)+(t; z)dzdt

�

Z b

0

Z
Z

(h(�(x)(t; z)�)� h( (t; z)))( � x)+(t; z)dzdt

�

Z b

0

Z
Z

u(t; z; x(t; z))( � x)+(t; z)dzdt: (10)

From the integration by parts formula for functions in Wpq(T ) (cf. Zeidler [24], Propo-
sition 23.23, p.423), we have that

((
@(x�  )

@t
; ( � x)+)) = �((

@(x�  )+

@t
; ( � x)+))

= �
1

2
k (b; �)� x(b; �))+k2L2(Z)+ +

1

2
k( (0; �)� x(0; �))+k2L2(Z):

Note that ( �x)(0; �) =  (0; �)�x(0; �) �  (b; �)�x(b; �) = ( �x)(b; �) in L2(Z) and so
we have ( � x)+(0; �) � ( � x)+(b; �), from which we deduce that k( � x)+(0)kL2(Z) �

k( � x)+(b)kL2(Z). Thus we get that

((
@(x�  )

@t
; ( � x)+)) � 0 (11)

Since

Dk( � x)+(t; z) =

�
Dk( � x)(t; z) if x(t; z) �  (t; z)

0 if  (t; z) � x(t; z)

(cf. Gilbarg-Trudinger [10], p.145), and using hypothesis H(a) (iv), we get that

Z b

0

Z
Z

NX
k=1

(ak(t; z;Dx)� ak(t; z;D ))Dk( � x)+(t; z)dzdt � 0 (12)
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Also because y 2 K and g(�) is nondecreasing (see Lemma 1), we have that

Z b

0

Z
Z

(g(y(t; z))� g( (t; z)))( � x)+(t; z)dzdt � 0 (13)

Finally becasue of the fact that h(�) too is nondecreasing (see Lemma 1), we have

Z b

0

Z
Z

(h(�(x)(t; z)�)� h( (t; z)))( � x)+(t; z)dzdt � 0: (14)

Using inequalities (11) ! (14) in (10) we get

Z b

0

Z
Z

u(t; z; x(t; z))( � x)+(t; z)dzdt � 0

hence Z b

0

Z
Z

�( (t; z)� x(t; z))p�1( � x)+(t; z)dzdt � 0

and so Z Z
fy�xg

[( � x)(t; z)]pdzdt =

Z b

0

Z
Z

[( � x)+(t; z)]pdzdt = 0

from which we conclude that  (t; z) � x(t; z) a.e. on T � Z. In a similar manner we can
show that x(t; z) � '(t; z) a.e. on T � Z. Therefore we �nally conclude that R(K) � K.
Q.E.D.

Proposition 10. If hypotheses H(a);H(f) and H0 hold, then R(�) is nondecreasing on
K.

Proof. Assume that y1; y2 2 K; y1(t; z) � y2(t; z) a.e. on T �Z and set x1 = R(y1); x2 =
R(y2). We need to show that x1(t; z) � x2(t; z) a.e. on T � Z. As before let (x1 � x2)

+ 2

Wpq(T )\ L
p(T � Z)+ be the test function. Then we have:

((
@x1

@t
; (x1 � x2)

+)) + a(x1; (x1 � x2)
+) =

Z b

0

Z
Z

g(y1(t; z))(x1 � x2)
+(t; z)dzdt

�

Z b

0

Z
Z

v1(t; z)(x1 � x2)
+(t; z)dzdt (15)

and

((
@x2

@t
; (x1 � x2)

+))� a(x2; (x1 � x2)
+)

=

Z b

0

Z
Z

�g(y2(t; z))(x1 � x2)
+(t; z)dzdt

+

Z b

0

Z
Z

v2(t; z)(x1 � x2)
+(t; z)dzdt (16)

with v1; v2 2 Lq(T;L2(Z)) and vi(t; z) 2 ĥ(x1(t; z)) a.e. on T � Z; i = 1; 2: Remark that
because of Proposition 9, �(xi) = xi and u(t; z; xi(t; z)) = 0 for i = 1; 2.
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Adding (15) and (16) we get that

((
@(x1 � x2)

@t
; (x1 � x2)

+)) + a(x1; (x1 � x2)
+)� a(x2; (x1 � x2)

+)

=

Z b

0

Z
Z

(g(y1(t; z))� g(y2(t; z)))(x1 � x2)
+(t; z)dzdt

+

Z b

0

Z
Z

(v2(t; z)� v1(t; z))(x1 � x2)
+(t; z)dzdt (17)

As in the proof of Proposition 9 we can get that

((
@(x1 � x2)

@t
; (x1 � x2)

+)) � 0 (18)

and

a(x1; (x1 � x2)
+)� a(x2; (x1 � x2)

+)

=

Z b

0

Z
Z

NX
k=1

(ak(t; z;Dx1)� ak(t; z;Dx2))Dk(x1 � x2)
+(t; z)dzdt � 0 (19)

On the other hand exploiting the monotonicity of g(�) and ĥ(�) (see Lemma 1), we getZ b

0

Z
Z

(g(y1(t; z))� g(y2(t; z)))(x1 � x2)
+(t; z)dzdt � 0 (20)

and Z b

0

Z
Z

(v2(t; z)� v1(t; z))(x1 � x2)
+(t; z)dzdt � 0 (21)

Combining (17)! (21) above, we readily see that �f(t; z) 2 T�Z : x1(t; z) > x2(t; z)g =
0, with �(�) being the Lebesguemeasure on T�Z. Therefore x1 � x2 and so we have proved
that R(�) is nondecreasing. Q.E.D.

Proposition 9 and 10 permit the application of Proposition 8. Note that a �xed point of
R(�) is a solution of (2) and vice versa of course. Moreover L2(T � Z)+ is regular. So we
get:

Theorem 11. If hypotheses H(a);H(f) and H0 hold, then problem (2) has a greatest

solution x� and a least solution x� (extremal solutions) in K = [ ;'].

If the discontinuous perturbation f(�) has only upward jumps, then the extremal solutions
of Theorem 11, also are extremal solutions for the original single-valued problem (1).

Corollary 12. If hypotheses H(a);H(f);H0 hold and f(r�) � f(r+) for every r 2

[�k k1; k'k1], then problem (1) has a greatest solution x� and a least solution x� (ex-
tremal solutions) in K = [ ;'].

Remark. In the terminology of Stuart [21] (used there in the context of semilinear
elliptic systems), a solution of problem (1) is called \solution of type I", while a solution
of problem (2) is called \solution of type II". While clearly a solution of type I (i.e. of
problem (1)) is always a solution of type II (i.e. of problem (2)), the converse need not
be true. Stuart [19] produced some nice examples of ordinary di�erential equations in R,
illustrating this. This then justi�es the passage to the multivalued problem (2). Corollary
(12) tell us that when only upward jumps occur then the two solution sets are equal and
nonempty.
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