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CHARACTERIZATIONS OF CHAOTIC ORDER ASSOCIATED WITH

KANTOROVICH INEQUALITY

TAKEAKI YAMAZAKI AND MASAHIRO YANAGIDA
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Abstract. By using the order preserving operator inequality shown in [11] which is

associated with Kantorovich inequality, we shall give some characterizations of chaotic

order.

1. Introduction.

An operatormeans a bounded linear operator on a complex Hilbert spaceH. An operator
T is said to be positive (denoted by T � 0) if (Tx; x) � 0 for all x 2 H. Also, an operator

T is strictly positive (denoted by T > 0) if T is positive and invertible.
A � B � 0 ensures Ap � Bp for any p 2 [0; 1] by well-known L�owner-Heinz theorem.

However, it is also well known that A � B � 0 does not always ensure Ap � Bp for any
p > 1. Related to this result, the following result is given in [5].

Theorem A ([5]). If A � B > 0 and M � B � m > 0, then�
M

m

�p
Ap � Bp for p � 1:

Recently, more precise estimation than Theorem A was given in [11] as follows:

Theorem B ([11]). If A � B > 0 and M � B � m > 0, then�
M

m

�p�1
Ap � K+(m;M; p)Ap � Bp for p � 1; (1.1)

where

K+(m;M; p) =
(p� 1)p�1

pp
(Mp �mp)p

(M �m)(mMp �Mmp)p�1
: (1.2)

Theorem B is related to both H�older-McCarthy inequality [13] and Kantorovich
inequality: If A is an operator on a Hilbert space H such that M � A � m > 0, then

(A�1x; x)(Ax; x) � (m +M)2=4mM holds for every unit vector x in H. Many authors

investigated a lot of papers on Kantorovich inequality, among others, there is a long research

series of Mond-Pe�cari�c, some of them are [14] and [15].
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The following Theorem F is an extension of the L�owner-Heinz theorem:

Theorem F (Furuta inequality [7]).

If A � B � 0, then for each r � 0,

(i) (B
r
2ApB

r
2 )

1
q � (B

r
2BpB

r
2 )

1
q

and

(ii) (A
r
2ApA

r
2 )

1
q � (A

r
2BpA

r
2 )

1
q

hold for p � 0 and q � 1 with (1+ r)q � p+ r.

-

6p

q

(0;�r)
(1; 0)

(1;1)

q = 1
p = q

(1 + r)q = p + r

Figure

We remark that Theorem F yields L�owner-Heinz theorem when we put r = 0 in (i) or (ii)
stated above. Alternative proofs of Theorem F are given in [3][12] and also an elementary

one-page proof in [8]. It is shown in [17] that the domain drawn for p; q and r in the Figure
is best possible one for Theorem F.

Ando [1] shows that logA � logB (so called chaotic order) is equivalent to (B
p

2ApB
p

2 )
1
2 �

Bp for all p � 0. By using Theorem F, a generalization of Ando's characterization is given

as follows:

Theorem C ([4][6][9]). Let A and B be positive and invertible operators on a Hilbert space

H. Then the following assertions are mutually equivalent :

(i) logA � logB.

(ii) (B
r
2ApB

r
2 )

r
p+r � Br for all p � 0 and r � 0.

In this paper, we shall give some characterizations of chaotic order by applying Theorem

B and Theorem C.

2. Results.

Theorem 1. Let A and B be positive and invertible operators on a Hilbert space H

satisfying logA � logB and M � B � m > 0. Then�
M

m

�p
Ap � K+(m;M; p + 1)Ap � Bp for p � 0; (2.1)

where K+(m;M; p) is de�ned in (1.2).

Theorem 1 can be considered as an extension of Theorem A. Moreover, we obtain a new

characterization of chaotic order as follows:

Theorem 2. Let A and B be positive and invertible operators on a Hilbert space H

satisfying M � B � m > 0. Then the following assertions are mutually equivalent :

(i) logA � logB.

(ii)
(mp +Mp)2

4mpMp
Ap � Bp for all p � 0.
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As a generalization of both Theorem 1 and (i) =) (ii) of Theorem 2, we show the
following result.

Theorem 3. Let A and B be positive and invertible operators on a Hilbert space H

satisfying logA � logB and M � B � m > 0. Then

K+

�
mr;Mr; 1 +

p

r

�
Ap � Bp for p > 0 and r > 0; (2.2)

where K+(m;M; p) is de�ned in (1.2).

Theorem 3 implies Theorem 1 when we put r = 1 in Theorem 3. And also Theorem 3
yields (i) =) (ii) of Theorem 2 when we put r = p in Theorem 3. Related to K+(m;M; p)

in (1.2), we obtain the following proposition.

Proposition 4. Let K+(m;M; p) be de�ned in (1.2). Then

F (p; r;m;M) = K+

�
mr;Mr;

p+ r

r

�

is an increasing function of p, r and M , and also a decreasing function of m for p > 0,

r > 0 and M > m > 0. And the following inequality holds :

�
M

m

�p
� K+

�
mr;Mr;

p + r

r

�
� 1 for any p > 0, r > 0 and M > m > 0. (2.3)

By considering Proposition 4, we obtain a more precise characterization of chaotic order

than Theorem 2.

Theorem 5. Let A and B be positive and invertible operators on a Hilbert space H

satisfying M � B � m > 0. Then the following assertions are mutually equivalent :

(i) logA � logB.

(ii) Mh(p)A
p � Bp holds for all p > 0, where h = M

m
> 1 and

Mh(p) =
h

p

hp�1

e log(h
p

hp�1 )
: (2.4)

We remark that Mh(1) =
(h� 1)h

1
h�1

e logh
is called Specht's ratio [2][16].
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3. Proof of results.

Proof of Theorem 1. Put r = 1 in (ii) of Theorem C, then logA � logB ensures the

following inequality:

(B
1
2ApB

1
2 )

1
p+1 � B for p � 0:

Put A1 = (B
1
2ApB

1
2 )

1
p+1 and B1 = B, then A1 and B1 satisfy A1 � B1 > 0 and

M � B1 � m > 0. Applying Theorem B to A1 and B1, we have�
M

m

�p1�1
(B

1
2ApB

1
2 )

p1
p+1 � K+(m;M; p1)(B

1
2ApB

1
2 )

p1
p+1 � Bp1

for p � 0 and p1 � 1:

(3.1)

Put p1 = p+ 1 � 1 in (3.1) and multiply B
�1

2 on both sides, then we have�
M

m

�p
Ap � K+(m;M; p+ 1)Ap � Bp for p � 0: (2.1)

Hence the proof of Theorem 1 is complete.

In order to give a proof of Theorem 2, we need the following lemma.

Lemma 6. If m > 0 and M > 0, then

lim
p!0

�
(mp +Mp)2

4mpMp

� 1
p

= 1:

Proof. Noting that

lim
p!0

�
mp +Mp

2

� 1
p

=
p
mM;

we have

lim
p!0

�
(mp +Mp)2

4mpMp

� 1
p

= lim
p!0

1

mM

�
mp +Mp

2

� 2
p

=
1

mM

�p
mM

�2
= 1:

Proof of Theorem 2.

(a) Proof of (i) =) (ii). Put r = p in (ii) of Theorem C, then logA � logB ensures the

following inequality:

(B
p

2ApB
p

2 )
1
2 � Bp for p � 0:

Put A1 = (B
p

2ApB
p

2 )
1
2 and B1 = Bp, then A1 and B1 satisfy A1 � B1 > 0 and

Mp � B1 � mp > 0. Applying Theorem B to A1 and B1, we have

K+(m
p;Mp; p1)(B

p

2ApB
p

2 )
p1
2 � (Bp)p1 for p � 0 and p1 � 1: (3.2)

Put p1 = 2 � 1 in (3.2) and multiply B
�p

2 on both sides, then we have

K+(m
p;Mp; 2)Ap � Bp for p � 0:

Hence the proof of (i) =) (ii) is complete since K+(m
p;Mp; 2) =

(mp +Mp)2

4mpMp
.
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(b) Proof of (ii) =) (i). Taking logarithm of both sides of (ii) since log t is an operator
monotone function, we have

log

(�
(mp +Mp)2

4mpMp

� 1
p

A

)
� logB for all p � 0: (3.3)

Letting p! +0 in (3.3), we have logA � logB by Lemma 6.

Proof of Theorem 3. By Theorem C, logA � logB is equivalent to the following inequality:

(B
r
2ApB

r
2 )

r
p+r � Br for p > 0 and r > 0:

Put A1 = (B
r
2ApB

r
2 )

r
p+r and B1 = Br, then A1 and B1 satisfy A1 � B1 > 0 and

Mr � B1 � mr > 0. Applying Theorem B to A1 and B1, we have

K+(m
r;Mr; p1)A

p1
1
� B

p1
1

for p1 � 1: (3.4)

Put p1 =
p+r
r
� 1 in (3.4), then we have

K+

�
mr;Mr;

p+ r

r

�
B

r
2ApB

r
2 � Bp+r: (3.5)

By multiplying B
�r

2 on both sides of (3.5), we have

K+

�
mr;Mr; 1 +

p

r

�
Ap � Bp for p > 0 and r > 0: (2.2)

Hence the proof of Theorem 3 is complete.

We prepare the following four lemmas to give a proof of Proposition 4.

Lemma 7. For each h > 1,

f(t) = log

�
ht � 1

t

�
(3.6)

is a convex function for t > 0.

Proof. Put x(t) =
ht � 1

t
, then f(t) = logfx(t)g and

f 00(t) =
x(t)x00(t)� fx0(t)g2

fx(t)g2 ;

so that f 00(t) � 0 for t > 0 is equivalent to the following (3.7) since fx(t)g2 � 0:

x(t)x00(t)� fx0(t)g2 � 0 for t > 0: (3.7)

By calculation on di�erential calculus and re�nement, we have

x(t)x00(t)� fx0(t)g2 = 1

t4
(ht � 1 + th

t
2 logh)(ht � 1� th

t
2 logh);

so that (3.7) is equivalent to the following (3.8) because ht � 1 + th
t
2 log h � 0 for h > 1

and t > 0:

ht � 1� th
t
2 log h � 0 for h > 1 and t > 0: (3.8)
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Put y(t) = ht � 1� th
t
2 log h. Then y(0) = 0 and

y0(t) = h
t
2 log h(h

t
2 � 1� log h

t
2 );

so that y0(t) > 0 for h > 1 and t > 0. Therefore y(t) � 0 for h > 1 and t > 0, which is

equivalent to (3.8). Consequently, the proof of Lemma 7 is complete.

Lemma 8. Let h > 1. Then

g(p; r; h) =

�
r

p+ r

hp+r � 1

hr � 1

� 1
p

(3.9)

is an increasing function of p and r for p > 0 and r > 0.

Proof. De�ne f(t) as in Lemma 7, i.e.,

f(t) = log

�
ht � 1

t

�
: (3.6)

Then by (3.9),

logfg(p; r; h)g =
log

�
hp+r � 1

p+ r

�
� log

�
hr � 1

r

�
p

=
f(p+ r)� f(r)

p
: (3.10)

(a) Proof of the result that g(p; r; h) is increasing for p > 0.

Let p1 � p2 > 0 and r > 0. Since f(t) is convex for t > 0 by Lemma 7,

�f(t1) + (1� �)f(t2) � f(�t1 + (1� �)t2) (3.11)

holds for � 2 [0; 1], t1 > 0 and t2 > 0. Put � =
p2

p1
2 [0; 1], t1 = p1 + r > 0 and t2 = r > 0,

then

�t1 + (1� �)t2 =
p2

p1
(p1 + r) +

�
1� p2

p1

�
r = p2 + r: (3.12)

By (3.11) and (3.12), we have

p2

p1
f(p1 + r) +

�
1� p2

p1

�
f(r) � f(p2 + r);

so that

f(p1 + r)� f(r)

p1
� f(p2 + r)� f(r)

p2
: (3.13)

By (3.10) and (3.13), g(p; r; h) is increasing for p > 0.

(b) Proof of the result that g(p; r; h) is increasing for r > 0.

Let r1 � r2 > 0 and p > 0. Since f(t) is convex for t > 0 by Lemma 7, f 00(t) � 0, so that

f 0(t) is increasing, that is, f 0(t+ r1)� f 0(t+ r2) � 0. Therefore s(t) = f(t+ r1)� f(t+ r2)

is increasing for t � 0. Then we have f(p+ r1) � f(p + r2) = s(p) � s(0) = f(r1)� f(r2),
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that is,

f(p+ r1)� f(r1)

p
� f(p+ r2)� f(r2)

p
: (3.14)

By (3.10) and (3.14), g(p; r; h) is increasing for r > 0.

Consequently the proof of Lemma 8 is complete.

Lemma 9. For p � 1 and t > 1,

ptp�1 � tp � 1

t� 1
� pt

p�1

2 : (3.15)

Proof. To prove the �rst inequality of (3.15), de�ne h(t) = tp. Since h(t) is a convex

function of t for p � 1, we have h0(t) � h(t)� h(1)

t� 1
for t > 1, which is equivalent to the

�rst inequality of (3.15). On the other hand, the second inequality of (3.15) is equivalent
to the following:

tp � pt
p+1

2 + pt
p�1

2 � 1 � 0 for p � 1 and t > 1: (3.16)

So we have only to prove (3.16). Put f(t) = tp � pt
p+1

2 + pt
p�1

2 � 1. Then f(1) = 0 and

f 0(t) = ptp�1 � p(p+ 1)

2
t
p�1

2 +
p(p� 1)

2
t
p�3

2

= pt
p�3

2

�
t
p+1

2 � p+ 1

2
t+

p� 1

2

�
:

(3.17)

Put g(t) = t
p+1

2 � p+1
2
t+ p�1

2
, then g0(t) = p+1

2
t
p�1

2 � p+1
2
� 0 for p � 1 and t > 1, and also

g(1) = 0. Therefore g(t) � 0 for p � 1 and t > 1, so that f 0(t) = pt
p�3

2 g(t) � 0 for p � 1

and t > 1 by (3.17). Hence f(t) � 0 for p � 1 and t > 1, which is equivalent to (3.16).
Consequently the proof of Lemma 9 is complete.

Lemma 10. For p > 0, r > 0 and h > 1,

h � g(p; r; h) � h
1
2 ; (3.18)

where g(p; r; h) is as in Lemma 8, i.e.,

g(p; r; h) =

�
r

p+ r

hp+r � 1

hr � 1

� 1
p

: (3.9)

Proof. Replace p with p+r
r
� 1 in Lemma 9, we have the following inequality.�

p + r

r

�
t
p

r � t
p+r

r
�1

t� 1
�
�
p+ r

r

�
t
p

2r for p > 0, r > 0 and t > 1. (3.19)

Put t = hr > 1 in (3.19). Then we have

hp � r

p+ r

hp+r � 1

hr � 1
� h

p

2 for p > 0, r > 0 and h > 1, (3.20)
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therefore we have (3.18) by taking 1

p
exponent of each side of (3.20).

Proof of Proposition 4. Put h = M
m

> 1 and g(p; r; h) is as in Lemma 8, i.e.,

g(p; r; h) =

�
r

p+ r

hp+r � 1

hr � 1

� 1
p

: (3.9)

Then

K+

�
mr;Mr;

p+ r

r

�
=

�
p
r

� p
r�

1 + p
r

�1+ p

r

(Mp+r �mp+r)
1+

p

r

(Mr �mr) (mrMp+r �Mrmp+r)
p

r

by (1.2)

=

�
r

p+ r

��
p

p+ r

�p

r (hp+r � 1)
1+

p

r

(hr � 1) (hp+r � hr)
p

r

by h =
M

m
> 1

=

(
1

h

�
r

p+ r

hp+r � 1

hr � 1

� 1
p
�

p

p+ r

hp+r � 1

hp � 1

� 1
r

)p

=

�
1

h
� g(p; r; h) � g(r; p; h)

�p
by (3.9).

(3.21)

By Lemma 10, we have the following (3.22).

h � 1

h
� g(p; r; h) � g(r; p; h) � 1 for p > 0 and r > 0: (3.22)

By (3.21) and (3.22), we have (2.3), i.e.,�
M

m

�p
� K+

�
mr;Mr;

p+ r

r

�
� 1 for any p > 0, r > 0 and M > m > 0. (2.3)

(a) Proof of the result that F (p; r;m;M) = K+(m
r;Mr; p+r

r
) is increasing for p > 0

and r > 0.

By Lemma 8, g(p; r; h) is increasing for p > 0 and r > 0. Then we obtain that

g(p; r; h) � g(r; p; h) is increasing for p > 0 and r > 0. By (3.21) and (3.22), F (p; r;m;M) =

K+(m
r;Mr; p+r

r
) is increasing for p > 0 and r > 0.

(b) Proof of the result that F (p; r;m;M) = K+(m
r;Mr; p+r

r
) is an increasing function

of M and also a decreasing function of m for M > m > 0.

Firstly, for s > 0,

g
�p
s
;
r

s
; hs
�
=

 
r
s

p
s
+ r

s

(hs)
p

s
+

r
s � 1

(hs)
r
s � 1

! s
p

=

�
r

p+ r

hp+r � 1

hr � 1

� s
p

= fg(p; r; h)gs ;

(3.23)
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so that g(p; r; h) =
�
g( p

s
; r
s
; hs)

	 1
s for s > 0. Then for s > 1, we have

K+

�
mr;Mr;

p+ r

r

�
=

�
1

h
� g(p; r; h) � g(r; p; h)

�p
by (3.21)

=

�
1

hs
� g
�p
s
;
r

s
; hs
�
� g
�r
s
;
p

s
; hs
��p

s

by (3.23)

�
�

1

hs
� g(p; r; hs) � g(r; p; hs)

�p
by the result of (a)

= K+

�
mr; (hs�1M)r;

p+ r

r

�
since hs =

hs�1M

m
;

(3.24)

so thatK+(m
r;Mr; p+r

r
) is an increasing function ofM forM > m > 0 since hs�1M >M .

On the other hand, by the same way as (3.24) we have

K+

�
mr;Mr;

p + r

r

�
�
�

1

hs
� g(p; r; hs) � g(r; p; hs)

�p
= K+

�
(h1�sm)r;Mr;

p+ r

r

�
;

since hs =
M

h1�sm
. Hence K+(m

r;Mr; p+r
r
) is a decreasing function of m for M > m > 0

since m > h1�sm.

By (a) and (b), the proof of Proposition 4 is complete.

We need the following lemmas to give a proof of Theorem 5.

Lemma 11. Let M > m > 0, p > 0 and K+(m;M; p) be de�ned in (1.2). Then

lim
r!+0

K+

�
mr;Mr; 1 +

p

r

�
= Mh(p);

where h = M
m

> 1, and Mh(p) is de�ned in (2.4).

Proof. De�ne g(p; r; h) as in Lemma 8, i.e.,

g(p; r; h) =

�
r

p+ r

hp+r � 1

hr � 1

� 1
p

: (3.9)

As in the proof of Proposition 4, we have

K+

�
mr;Mr;

p+ r

r

�
=

�
1

h
� g(p; r; h) � g(r; p; h)

�p
: (3.21)

We de�ne f(t) as follows:

f(t) = log(ht � 1): (3.25)

Then

f 0(t) =
ht log h

ht � 1
= log h

ht

ht�1 ; (3.26)
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so that

lim
r!+0

log

�
hp+r � 1

hp � 1

� 1
r

= lim
r!+0

log(hp+r � 1)� log(hp � 1)

r

= lim
r!+0

f(p+ r)� f(p)

r
by (3.25)

= f 0(p)

= log h
hp

hp�1 by (3.26);

therefore lim
r!+0

�
hp+r � 1

hp � 1

� 1
r

= h
hp

hp�1 . Since lim
r!+0

�
1 +

r

p

� p

r

= e and lim
r!+0

hr � 1

r
= logh,

we have

lim
r!+0

g(p; r; h) = lim
r!+0

�
hp+r � 1

p+ r

r

hr � 1

� 1
p

=

�
hp � 1

p log h

� 1
p

=

�
1

log h
p

hp�1

� 1
p

(3.27)

and

lim
r!+0

g(r; p; h) = lim
r!+0

�
p

p+ r

� 1
r
�
hp+r � 1

hp � 1

� 1
r

=
h

hp

hp�1

e
1
p

: (3.28)

Applying (3.27) and (3.28) in (3.21), we have

lim
r!+0

K+

�
mr;Mr;

p+ r

r

�
= lim

r!+0

�
1

h
� g(p; r; h) � g(r; p; h)

�p
by (3.21)

=
1

hp
� 1

log h
p

hp�1

� h
php

hp�1

e
by (3.27) and (3.28)

=
h

p

hp�1

e log h
p

hp�1

:

Hence the proof of Lemma 11 is complete.

Lemma 12. Let h > 1 and Mh(p) be de�ned in (2.4). Then

lim
p!+0

fMh(p)g
1
p = 1:

Proof. Put g(p) = h
p

hp�1 , then Mh(p) =
g(p)

e log g(p)
. It is easily obtained that

lim
p!+0

g(p) = h
1

log h = e

and

g0(p) =

�
hp � 1� php log h

(hp � 1)2

�
h

p

hp�1 logh:
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Then g0(p) is bounded as p! +0 since

lim
p!+0

hp � 1� php log h

(hp � 1)2
= lim

p!+0

�phpfloghg2
2(hp � 1)hp log h

by L'Hospital's theorem

= lim
p!+0

�p log h
2(hp � 1)

=
�1
2
:

Then we have

lim
p!+0

logfMh(p)g
1
p = lim

p!+0

log g(p)� log flog g(p)g � 1

p

= lim
p!+0

g0(p)

g(p)

�
1� 1

log g(p)

�
by L'Hospital's theorem

= 0;

so that lim
p!+0

fMh(p)g
1
p = 1. Hence the proof of Lemma 12 is complete.

Proof of Theorem 5.

(a) Proof of (i) =) (ii). By Theorem 3, logA � logB implies

K+

�
mr;Mr; 1 +

p

r

�
Ap � Bp for p > 0 and r > 0: (2.2)

Letting r ! +0 in (2.2), we have Mh(p)A
p � Bp for p > 0 since K+(m

r;Mr; 1 + p
r
) !

Mh(p) as r ! +0 by Lemma 11.

(b) Proof of (ii) =) (i). By taking logarithm of both sides of (ii), we have

log(fMh(p)g
1
pA) � logB for p > 0: (3.29)

Then letting p ! +0 in (3.29), we have logA � logB since fMh(p)g
1
p ! 1 as p ! +0 by

Lemma 12.

Hence the proof of Theorem 5 is complete.

4. Concluding Remarks.

Remark 1. Let A and B be positive and invertible operators on a Hilbert space H. We
consider an order A� � B� for � 2 (0; 1] which interpolates usual order A � B and chaotic

order logA � logB continuously. The following result is easily obtained by Theorem B.

Proposition 13. Let A and B be positive and invertible operators on a Hilbert space H

satisfying A� � B� for � 2 (0; 1] and M � B � m > 0, then

K+

�
m�;M� ;

p

�

�
Ap � Bp for p � �;

where K+(m;M; p) is de�ned in (1.2).
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Proof. Put A1 = A� and B1 = B�, then A1 � B1 > 0 and M� � B1 � m�. By applying
Theorem B to A1 and B1, we have

K+(m
�;M� ; p1)A

p1
1
� B

p1
1

for p1 � 1: (4.1)

Put p1 =
p
�
� 1 in (4.1), then we have

K+

�
m�;M�;

p

�

�
Ap � Bp for p � �:

We show the following result to consider the relation between Proposition 13 and

Theorem 5.

Proposition 14. Let K+(m;M; p) and Mh(p) be de�ned in (1.2) and (2.4), respectively.

Then for p > 0 and M > m > 0,

lim
�!+0

K+

�
m�;M� ;

p

�

�
= Mh(p);

where h = M
m

> 1.

Proposition 14 can be proved by the same way as Lemma 11.

Proof. De�ne g(p; r; h) as in Lemma 8, i.e.,

g(p; r; h) =

�
r

p+ r

hp+r � 1

hr � 1

� 1
p

: (3.9)

By (3.21), we have

K+

�
m�;M� ;

p

�

�
= K+

�
m�;M� ;

(p� �) + �

�

�

=

�
1

h
� g(p� �; �; h) � g(�; p� �; h)

�p��
by (3.21):

(4.2)

We de�ne f(t) as follows:

f(t) = log(ht � 1): (3.25)

Then

f 0(t) =
ht log h

ht � 1
= log h

ht

ht�1 ; (3.26)

so that

lim
�!+0

log

�
hp � 1

hp�� � 1

� 1
�

= lim
�!+0

log(hp � 1)� log(hp�� � 1)

�

= lim
�!+0

f(p)� f(p� �)

�
by (3.25)

= f 0(p)

= logh
hp

hp�1 by (3.26);
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therefore lim
�!+0

�
hp � 1

hp�� � 1

� 1
�

= h
hp

hp�1 . Since lim
�!+0

�
1� �

p

�p

�

=
1

e
and lim

�!+0

h� � 1

�
=

logh, we have

lim
�!+0

g(p� �; �; h) = lim
�!+0

�
hp � 1

p

�

h� � 1

� 1
p��

=

�
hp � 1

p log h

� 1
p

=

�
1

log h
p

hp�1

� 1
p

(4.3)

and

lim
�!+0

g(�; p� �; h) = lim
�!+0

�
p � �

p

� 1
�
�

hp � 1

hp�� � 1

� 1
�

=
h

hp

hp�1

e
1
p

: (4.4)

Applying (4.3) and (4.4) in (4.2), we have

lim
�!+0

K+

�
m�;M�;

p

�

�
= lim

�!+0

�
1

h
� g(p� �; �; h) � g(�; p� �; h)

�p��
by (4.2)

=
1

hp
� 1

log h
p

hp�1

� h
php

hp�1

e
by (4.3) and (4.4)

=
h

p

hp�1

e log h
p

hp�1

:

Hence the proof of Proposition 14 is complete.

Remark 2. We summarize the results which have been obtained as follows:

Let A > 0 and M � B � m > 0. Then the following assertions hold :

(i) A � B implies K+(m;M; p)Ap � Bp for p > 1,

(ii) for each � 2 (0; 1], A� � B� implies K+

�
m�;M� ;

p

�

�
Ap � Bp for p > �,

(iii) logA � logB implies Mh(p)A
p � Bp for p > 0,

where h = M
m

> 1, and K+(m;M; p) and Mh(p) are de�ned in (1.2) and (2.4), respectively.

Proposition 14 states that as the order in the assumption of (ii) interpolates the orders
of (i) and (iii) continuously, the scalar in the consequence of (ii) also interpolates the scalar

of (i) and (iii) continuously. Therefore Theorem 5 can be considered as a natural result
which is parallel to Theorem B.

Remark 3. Very recently, the following characterization of chaotic order was obtained.

Theorem D ([6]). If A;B > 0, then logA � logB if and only if for any � 2 (0; 1] there

exists an � = �� > 0 such that (e�A)� > B�.

On the other hand, Theorem 2 and Theorem 5 can be rewritten in the following form.

Theorem 2'. If A;B > 0, then logA � logB if and only if for any p � 0 there exists a

Kp > 1 such that Kp ! 1 as p! +0, and (KpA)
p � Bp.
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Also we can obtain Theorem D from Theorem 2 by the almost same way to rewriting
Theorem 2 into Theorem 2'. We remark that Theorem 2 is proved by using Theorem C and

Theorem C can be proved by using Theorem F and Theorem D, so that Theorem 2 can be
considered as a formal extension of Theorem D.

Remark 4. Theorem 2' is a parallel result to the following Theorem E [10].

Theorem E ([10]). If A;B > 0, then logA � logB if and only if for any p � 0 there

exists the unique unitary operator Up such that Up ! I as p! +0, and (UpAU
�

p )
p � Bp.
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