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CHARACTERIZATIONS OF CHAOTIC ORDER ASSOCIATED WITH
KANTOROVICH INEQUALITY

TAKEAKI YAMAZAKI AND MASAHIRO YANAGIDA
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ABSTRACT. By using the order preserving operator inequality shown in [11] which is
associated with Kantorovich inequality, we shall give some characterizations of chaotic
order.

1. Introduction.

An operator means a bounded linear operator on a complex Hilbert space H. An operator
T is said to be positive (denoted by T' > 0) if (T'x,z) > 0 for all z € H. Also, an operator
T is strictly positive (denoted by T > 0) if T is positive and invertible.

A > B > 0 ensures A? > B? for any p € [0,1] by well-known Léwner-Heinz theorem.
However, it is also well known that A > B > 0 does not always ensure AP > BP for any
p > 1. Related to this result, the following result is given in [5].

Theorem A ([5]). If A>B >0 and M > B > m >0, then

MN\?
— ) AP >B? forp>1.
m

Recently, more precise estimation than Theorem A was given in [11] as follows:

Theorem B ([11]). If A> B >0 and M > B > m > 0, then
MNP
<E) AP > K (m,M,p)AF > B? forp>1, (1.1)
where
(p—1)r-t (MP — mP)P . (1.2)
pP (M —m){(mMp — Mmp)r—1

Ki(m,M,p)=

Theorem B is related to both Holder-McCarthy inequality [13] and Kantorovich
inequality: If A is an operator on a Hilbert space H such that M > A > m > 0, then
(A te,2)(Az, ) < (m+ M)?/4mM holds for every wnit vector x in H. Many authors
investigated a lot of papers on Kantorovich inequality, among others, there is a long research
series of Mond-Pecari¢, some of them are [14] and [15].
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The following Theorem F is an extension of the Lowner-Heinz theorem:

]

Theorem F (Furuta inequality [7]). p 1+r)g=p+r
g=1 _
If A> B >0, then for each r >0, \\\\ p=d
(i)  (BEAPBE)S > (BEBrBE): \\\\\‘
N
A
wnd (L K
(i)  (ATAPAT)T > (AT BraA%)s
(1.0) "

hold for p >0 and g > 1 with (1+7r)g>p+r. (0, )

FIGURE

We remark that Theorem F yields Lowner-Heinz theorem when we put » = 0 in (i) or (ii)
stated above. Alternative proofs of Theorem F are given in [3][12] and also an elementary
one-page proof in [8]. It is shown in [17] that the domain drawn for p,q and r in the Figure
is best possible one for Theorem F.

Ando [1] shows that log A > log B (so called chaotic order) is equivalent to (B% A?B*% )% >
B? for all p > 0. By using Theorem F, a generalization of Ando’s characterization is given
as follows:

Theorem C ([4][6][9]). Let A and B be positive and invertible operators on a Hilbert space
H. Then the following assertions are mutually equivalent:

(i) log A > log B.

(i) (B*APBE)# > B"  for allp >0 and r > 0.

In this paper, we shall give some characterizations of chaotic order by applying Theorem

B and Theorem C.

2. Results.
Theorem 1. Let A and B be positive and invertible operators on o Hilbert space H
satisfying log A > log B and M > B > m > 0. Then

MN\? . )

— | AP > Ky(m,M,p+1)A? > B forp >0, (2.1)

m
where K (m, M, p) is defined in (1.2).

Theorem 1 can be considered as an extension of Theorem A. Moreover, we obtain a new
characterization of chaotic order as follows:

Theorem 2. Let A and B be positive and invertible operators on a Hilbert space H
satisfying M > B > m > 0. Then the following assertions are mutually equivalent:
(i) log A > log B.

(mP + MP)?

AP P for all i
(it) VI AP > B? for all p > 0.
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As a generalization of both Theorem 1 and (i) = (ii) of Theorem 2, we show the
following result.

Theorem 3. Let A and B be positive and invertible operators on o Hilbert space H
satisfying log A > log B and M > B > m > 0. Then

Ky (7}1,']]\/1'", 1+ ]—))A" > B? for p>0 and r >0, (2.2)
r

where K1 (m, M, p) is defined in (1.2).

Theorem 3 implies Theorem 1 when we put r = 1 in Theorem 3. And also Theorem 3
yields (i) = (ii) of Theorem 2 when we put r = p in Theorem 3. Related to K4 (m, M, p)
in (1.2), we obtain the following proposition.

Proposition 4. Let K (m,M,p) be defined in (1.2). Then

F(p,r,m,M) =K, (m’"q M7, p—l—_7>

r

18 an increasing function of p, r and M, and also a decreasing function of m for p > 0,
r >0 and M >m > 0. And the following inequality holds:

m

M\" p 4
( ) > Ky (m”,]ﬂ”,p + r) >1 for anyp>0,r>0 and M >m > 0. (2.3)

By considering Proposition 4, we obtain a more precise characterization of chaotic order
than Theorem 2.

Theorem 5. Let A and B be positive and invertible operators on a Hilbert space H
satisfying M > B >m > 0. Then the following assertions are mutually equivalent:

(i) log A > log B.
ii) Mpy(p)AP > BF holds for all p > 0, where h =4 > 1 and
(i) Mn(r . p>0,

m

Vi) = — T (2.0
Mp, pP)= 3 . 2.4
‘ elog(h™-T)
) (h— 1A :
We remark that Mj(1) = ————— is called Specht’s ratio [2][16].

elogh
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3. Proof of results.

Proof of Theorem 1. Put » = 1 in (ii) of Theorem C, then log A > log B ensures the
following inequality:

(B*APB*)#7 > B for p > 0.
Put A, = (B%A”B%)# and By = B, then A; and B; satisfy Ay > By > 0 and
M > By > m > 0. Applying Theorem B to A; and B;, we have

J\f Pl 1 . 1, _P1 1 1. _P1
( ) (BzAPBZ)»+T > K, (m,M,p,)(B2 APB2)»+7 > B

m (3.1)
for p >0 and p, > 1.
Put py =p+12>1in (3.1) and multiply B on both sides, then we have
M g P - ) P
AP > K. (m,M,p+1)A” > B? forp > 0. (2.1)
m

Hence the proof of Theorem 1 is complete. O
In order to give a proof of Theorem 2, we need the following lemma.

Lemma 6. If m >0 and M > 0, then

i (mP + MP)? g _
lim {W =1.

Proof. Noting that

P4 MP\F
lim (L) =vmM,

p—0 2
we have
1 2
. (mP + MP)2\ > L 1 mP + MP\» 1 ( /,)2_
5 {W S\ T2 ) T VM) =0

Proof of Theorem 2.
(a) Proof of (i) = (ii). Put r = p in (ii) of Theorem C, then log A > log B ensures the
following inequality:
(BYA”B%)* > B" for p > 0.
Put 4, = (BgAPBg)% and By = BP, then A, and B; satisfy 4, > B; > 0 and
MP > By > mP > 0. Applying Theorem B to A; and B;, we have

IX’+(HL]),1f’),pl)(BgflpB%)pTl > (B*)"" for p > 0 and p; > L. (3.2)

Put p1 =2 > 11in (3.2) and multiply B~ on both sides, then we have

Ky (mP,MF 2)A? > B? for p > 0.
(m? + MP)?

Hence the proof of (1) = (ii) is complete since K (m?, MP 2) = yr—y
AmpMP
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(b) Proof of (ii) = (i). Taking logarithm of both sides of (ii) since logt is an operator
monotone function, we have

(mP + MP)? g
3 - b > log o > 0. o
log { ( YV Ay >logB forallp>0 (3.3)

Letting p — 40 in (3.3), we have log A > log B by Lemma 6. O

Proof of Theorem 3. By Theorem C, log A > log B is equivalent to the following inequality:
(BEAPB%)# > B"  for p >0 and r > 0.

Put A, = (BéAPB%)# and By = B", then A; and B satisfy Ay > By > 0 and

M"™ > By > m” > 0. Applying Theorem B to 4; and By, we have

K (m",M",p))A" > B for p; > 1. (3.4)
Put p; = @ > 1in (3.4), then we have

pr

K. (m",M”, ) BT APB® > BPTT (3.5)
By multiplying B~ on both sides of (3.5), we have

K. <m M”14 {—))417 >BP  forp>0andr>0. (2.2)
Hence the proof of Theorem 3 is complete. O

We prepare the following four lemmas to give a proof of Proposition 4.

Lemma 7. For each h > 1,

f(t) =log (ht; 1) (3.6)

18 a convex function for t > 0.

ht—1

Proof. Put z(t) = p

, then f(t) = log{z(t)} and

x(t)a" (t) — {2'(1)}?
{x(t)}2 )

so that f”(t) > 0 for t > 0 is equivalent to the following (3.7) since {x(t)}? > 0:

f//(t) —

()" (t) — {2 (1)} >0 for t > 0. (3.7)
By calculation on differential calculus and refinement, we have
. 1 L L
()" (t) = {a'(t)}* = t—4(h/’ — 1+ thzlogh)(h' —1—th? logh),

so that (3.7) is equivalent to the following (3.8) because h! — 1+ thz logh > 0 for h > 1
and ¢t > 0:

ht—1—th?logh>0  forh>1andt> 0. (3.8)
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Put y(t) =h' — 1 — th? log h. Then y(0) = 0 and
y'(t) = h?logh(h* — 1 —log hg),

so that y/(¢#) > 0 for h > 1 and ¢ > 0. Therefore y(t) > 0 for h > 1 and ¢ > 0, which is
equivalent to (3.8). Consequently, the proof of Lemma 7 is complete. [

Lemma 8. Let h > 1. Then

1
: ro hPTT—1\7
,7h) = ———— 3.9
g(p,r.h) (p PRy ) (3.9)

18 an increasing function of p and r for p > 0 and r > 0.

Proof. Define f(t) as in Lemma 7, i.e.,
o ht—1

t

. <hP+'“—1) | ,(h’"—l)
VTG ) T en - s
p p '

Then by (3.9),

log{g(p.r,h) (3.10)

(a) Proof of the result that g(p,r,h) is increasing for p > 0.

Let p; > pz > 0 and r > 0. Since f(t) is convex for ¢ > 0 by Lemma 7,

OF(t1) + (1 —0)f(t2) > f(0t1 + (1 — O)t2) (3.11)
holds for # € [0,1], #; > 0 and #, > 0. P11‘r9_—6[0 1, tr=p1+r>0andty =r >0,
P1
then
(97‘,]—I—(l—H)tg:[Q(p]—I—r)+<1—[£>r:p2—l—r. (3.12)
b1 p1

By (3.11) and (3.12), we have

]’j—jﬂp] )+ (1 - —) F(r) > F(p2+ 1),
so that
flpr+r)—f(r) S flp2 +7)— f(r)
P1 - P2 '

By (3.10) and (3.13), g(p,r,h) is increasing for p > 0.

(3.13)

(b) Proof of the result that g(p,r,h) is increasing for r > 0.

Let ry > ry > 0 and p > 0. Since f(t) is convex for t > 0 by Lemma 7, f”(t) > 0, so that
f/(t) is increasing, that is, f'(t+r1) — f'(t +r2) > 0. Therefore s(t) = f(t+r1 ) (t—I— r9)
is increasing for ¢t > 0. Then we have f(p+r1) — f(p+r2) = s(p) > s(0) = f(r1) — f(ra2),
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that is,

flp+mr)—f(r) > flp+r2) — 7‘(7“2) (3.14)
P p
By (3.10) and (3.14), g(p,r, h) is increasing for r > 0.

Consequently the proof of Lemma 8 is complete. [

Lemma 9. Forp>1andt>1,

p—1 tP — 1 p—1

Proof. To prove the first inequality of (3.15), define h(t) = ¢*. Since h(t) is a convex

h(t) —h(1
function of t for p > 1, we have h'(t) > %
first inequality of (3.15). On the other hand, the second inequality of (3.15) is equivalent
to the following;:

for ¢ > 1, which is equivalent to the

p—1

P —ptpT+1 +pt 7z —1>0 forp>1andt>1. (3.16)

So we have only to prove (3.16). Put f(t) =¥ —pt% —|—pl‘pTil — 1. Then f(1) =0 and

pp+1) os  pp—1) o

F#y=pt ! = ==t + =
1 1 (3.17)
— T (t”?—l - ]%t+ p%) .

Put g(t) = U ’)f t+ % then ¢'(t) = %t%;l — % >0for p>1andt > 1, and also
g(1) = 0. Therefore g(t) > 0 for p > 1 and ¢ > 1, so that f'(¢) = ptpzig(t) >0forp>1
and ¢ > 1 by (3.17). Hence f(t) > 0 for p > 1 and ¢ > 1, which is equivalent to (3.16).

Consequently the proof of Lemma 9 is complete. [

Lemma 10. Forp >0, r >0 and h > 1,
h> g(p,r,h) > h?, (3.18)
where g(p,r,h) is as in Lemma 8, i.c.,

1
; roo bt 1\
)= —— ) . 3.9
g(p,r.h) (p T 1 ) (3.9)

ptr
r

Proof. Replace p with > 1 in Lemma 9, we have the following inequality.

ptr
p+r\ p_ 51 ptr\ »

r t—1 7
Put t = h" > 1in (3.19). Then we have
v ro bt —1 e
h? > — >z forp>0,r>0and h > 1, (3.20)

“p+r hT—=1
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therefore we have (3.18) by taking é exponent of each side of (3.20). O

Proof of Proposition 4. Put h = % > 1 and g(p,r, h) is as in Lemma 8, i.e.,

o hPTT -1 v
,rm,h) = _— ] . 3.9
g(p,r,h) (p—l—l‘ hr— 1 > (3.9)
Then
p+r A MPHT ey T
Jiu (m"aM"ap—i— ’) = () T ( m”’) 5 by (1.2)
" (1+2) TR (M — 7 (mr MPtr — MrTmptr)F

[l
7N

- ” ,ﬁ }p+7*_1 1+% M
! ) < b ) (h ) ~ byh=—>1
p+r p+r (hr _ 1) (hp+r _ hr)? m
1 1yP 3.21
_J1 ro hPTT—1\7 p RPTT—1\T ( )
T lh\p+r Ar—1 p+r h?—1

1 P
= {— -g(p,r,h) -g(rqpqh,)} by (3.9).

h

By Lemma 10, we have the following (3.22).
1
h > 5 -g{p,r,h) - g(r.p,h) > 1 for p> 0 and r > 0. (3.22)
)

By (3.21) and (3.22), we have (2.3), i.e.,

M P ] r
<—> > Ky <m”,ﬂ/[”, p—l—_r) >1 forany p> 0,7 >0and M >m > 0. (2.3)
m r

(a) Proof of the result that F(p,r,m,M) = Ky (m",M", ’H,f") 18 increasing for p > 0
and r > 0.

By Lemma 8, g(p,r,h) is increasing for p > 0 and r > 0. Then we obtain that
g(p,r,h) - g(r,p, k) is increasing for p > 0 and r > 0. By (3.21) and (3.22), F(p,r,m, M) =

K (m", M", @) is increasing for p > 0 and r > 0.

(b) Proof of the result that F(p,r,m, M) = Ky (m",M", @) is an increasing function
of M and also a decreasing function of m for M > m > 0.

Firstly, for s > 0,

< r h1’+7“—1)? (3.23)

p+r hr—1

={g(p.r.h)}",
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1
so that g(p,r,h) = {g(E, £, h®)}* for s > 0. Then for s > 1, we have

1 p
e (mr o PEEY L g atrp | by 320
r )
1 por g |
R o R CR ) N ML
L1 5 t (3.24)
< {E ~g(p,r, h*) -g(rqpqh,”)} by the result of (a)
g he~'M
=K, <m’" (R* 1M, li) since h® = ~ ,
r m

so that K4 (m", M", ) is an increasing function of M for M > m > 0 since h*~1M > M.

On the other hand, b} the same way as (3.24) we have

p
1{+< m", M", p+’><{]1 ~g(p,r,h%) - g(r.p. h* )} =K, ((h1 ‘m)", M" p+'>.,
r S

r

since h® = PIETT Hence K (m",M", @) is a decreasing function of m for M > m > 0

S

since m > h'™m.

By (a) and (b), the proof of Proposition 4 is complete. [
We need the following lemmas to give a proof of Theorem 5.

Lemma 11. Let M > m >0, p > 0 and Ky (m, M,p) be defined in (1.2). Then

lim K, (mu 14 B) = Mj(p),
,.

r—+0

where h = % > 1, and My(p) is defined in (2.4).

Proof. Define g(p,r,h) as in Lemma 8, i.e.,
1
; P RPTT 1\ 7"
rh)= | ———— ) . 3.9
g(p,r.h) (p 1 ) (3.9)

As in the proof of Proposition 4, we have

1 p
I(—}- ( m ,AI’ p+,> = {]_ g(p,f‘.h) g(r,p,h)} - (321)
r 1

We define f(t) as follows:

Then
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so that
hPtr 1\ log(hP+" — 1) —log(h? — 1
lim log (li) — lim og(h ) —log(h )
r—+0 hr — 1 r—+40 r
= g JREDZIW) 50
r—+0 r
= f'(p)
= log hAPT by (3.26),
. RPTT— 1\ 7" B . r\ . h"—
therefore lim | ——— = h#-T. Since lim (14 - =eand lim = logh,
r—+0 hr — 1 r—-+0 p r—+0 r
we have

1

1
; o1 e\ (=17 Rt
lim g(p,r.h) = lim (——=—" = (Z =(———) (327
r—+0 r—-+0 p+r hr—1 plogh log h77=1

and

L 1 p
N T p\T (hPtT—1\T AT :
i g(r.ph) = T, (p + r) ( w—1) : (3.28)

Applying (3.27) and (3.28) in (3.21), we have

R 1 i
lim K (m' S M7, —) = lim {E -g(p,r,h) - g(r,p, h,)} by (3.21)
r

r—40 r—+0
phP
1 1 h7F—T
- . .z by (3.27) and (3.28)
h? log hwr=1 e
hFPT

P *
elog h77=1

Hence the proof of Lemma 11 is complete. O

Lemma 12. Let h > 1 and My(p) be defined in (2.4). Then
. T
plgﬂo{llh(p)} =1.

9(p)

————_ It is easily obtained that
elog g(p)

Proof. Put g(p) = h77T, then M (p) =
plgﬂo 9(p) = hrer =e

and
h? — 1 — phPlogh »
') — S oy ;
g (p) = { (hp 1)2 }h’ log/z,.
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Then ¢'(p) is bounded as p — +0 since

lim il 1,_ php‘log h = lim _Z)h]){IOg h}? by L’Hospital’s theorem
p—r+0 (h? —1)2 p—+0 2(h? — 1)hr logh
_ —plogh
= poto 2(hr — 1)
-1
=5

Then we have

log g(p) —log{logg(p)} — 1

. / 1y
pl_lg}“ log{My(p)} lim

p—+0 p
! 1
= liIE() g ((p)) {1 1 ( )} by L’Hospital’s theorem
p=+0 g\p 0g g\p

=0,

so that lin_go{ﬂlh (p)}}l = 1. Hence the proof of Lemma 12 is complete. [J
p—

Proof of Theorem 3.
(a) Proof of (i) = (ii). By Theorem 3, log A > log B implies
K. (m M1+ 3) AP > BP forp>0and r > 0. (2.2)
,

Letting r — 40 in (2.2), we have Mj(p)AP > B? for p > 0 since K (m",M", 1+ &) —
My (p) as r = +0 by Lemma 11.

(b) Proof of (ii) = (i). By taking logarithm of both sides of (ii), we have
log({Mn(p)}* A) > log B for p > 0. (3.29)

Then letting p — 40 in (3.29), we have log A > log B since { M}, (p)}% — lasp— +0 by
Lemma 12.

Hence the proof of Theorem 5 is complete. [

4. Concluding Remarks.

Remark 1. Let A and B be positive and invertible operators on a Hilbert space H. We
consider an order A° > B? for § € (0,1] which interpolates usual order A > B and chaotic
order log A > log B continuously. The following result is easily obtained by Theorem B.

Proposition 13. Let A and B be positive and invertible operators on a Hilbert space H
satisfying A® > B® for § € (0,1] and M > B >m > 0, then

K (mé, M, ]g)) AP > B? forp >0,

where K1 (m, M, p) is defined in (1.2).



48 TAKEAKI YAMAZAKI AND MASAHIRO YANAGIDA

Proof. Put A, = A% and By, = B%, then 4, > B, > 0 and M® > B; > m’. By applying
Theorem B to A; and B, we have

Ky (m® M p)AP > B for py > 1. (4.1)

Put py = £ > 1in (4.1), then we have

K. <m6 MO, g) AP > BP for p > 6. O

We show the following result to consider the relation between Proposition 13 and
Theorem 5.

Proposition 14. Let K (m,M,p) and My (p) be defined in (1.2) and (2.4), respectively.
Then for p >0 and M > m > 0,

: (8 A PN oy,
51_1}20 Ky (m LM ’(5) M(p),

M

where h = o > L

Proposition 14 can be proved by the same way as Lemma 11.

Proof. Define g(p,r,h) as in Lemma 8, i.e.,

1
ro hPT 1\
b)) = ————) . .
g(p,r.h) (p+r e > (3.9)

By (3.21), we have

. . . . —0)+4
Ky (mo, M, g) =Ky <m°, M?°, u)

)
) ot (4.2)
= {Z cglp—30,8,h) - g(d,p— 4, h)} by (3.21).
We define f(t) as follows:
f(t) =log(h' —1). (3.25)
Then
htlogh —nt_
()= T log hni=T, (3.26)
so that
hr—1\7* log(h? — 1) — log(h?~% — 1
lim log| ——— | = lim 08 ) ~O°( )
§—40 hp=6 — 1 §—40 )
AT ) R P
§—+0 0

= f'(p)
—logh™T by (3.26),
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ol
[y
=

o
|
[y

§—+0 \ hP=9 — 1 §—+0 p F—s+0 0

gl

i h?P — 1 3 hP i . ) 3 .
therefore lim | ———— = h?»-1., Since lim (1-— - = — and lim — =

log h, we have

1 1 1
=1 & \77 [(hP—1\* 1 v
lim g(p—4,0,h) = lim ros 9 = (Z =———— (4.3)
5—+0 5—+0 p hi—1 plogh log h#7 =1

and

1 L A
N | o (p=0\F -1 \F N
51_1:20 g(0,p—4&,h) = lim ( > (Iﬂ’“ — ) = (4.4)

§—+0 p er

Applying (4.3) and (4.4) in (4.2), we have

P 1 p—=4
lim Ky (m® M 2) = lim {=-g(p—0,6,h)-g(d,p—6&,h by (4.2
* 5

§—+0 s—+0 | h -
PhP
1 1 hRP=1
= . . by (4.3) and (4.4)
hP log h RP—1 €
hFT

elogh#'

Hence the proof of Proposition 14 is complete. O

Remark 2. We summarize the results which have been obtained as follows:
Let A> 0 and M > B> m > 0. Then the following assertions hold:
(i) A > B implies K;(m,M,p)AP > BY for p>1,
(ii) for each 6 € (0,1], A° > B implies K (m‘s,ﬂf‘s, ‘g) AP > B? for p >4,
(iii) log A > log B implies My (p)AF > BP for p > 0,
where h =22 > 1, and Ky (m,M.p) and My(p) are defined in (1.2) and (2.4), respectively.
Proposition 14 states that as the order in the assumption of (ii) interpolates the orders

of (i) and (iil) continuously, the scalar in the consequence of (ii) also interpolates the scalar

of (i) and (iil) continuously. Therefore Theorem 5 can be considered as a natural result

which is parallel to Theorem B.

Remark 3. Very recently, the following characterization of chaotic order was obtained.

Theorem D ([6]). If A, B > 0, then log A > log B if and only if for any 6 € (0,1] there
ewists an a = as > 0 such that (e A)* > B,

On the other hand, Theorem 2 and Theorem 5 can be rewritten in the following form.

Theorem 2°. If A B > 0, then log A > log B if and only if for any p > 0 there exists a
K, > 1 such that K, = 1 as p — +0, and (K,A)" > BP.
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Also we can obtain Theorem D from Theorem 2 by the almost same way to rewriting
Theorem 2 into Theorem 2°. We remark that Theorem 2 is proved by using Theorem C and
Theorem C can be proved by using Theorem F and Theorem D, so that Theorem 2 can be
considered as a formal extension of Theorem D.

Remark 4. Theorem 2’ is a parallel result to the following Theorem E [10].

Theorem E ([10]). If A,B > 0, then log A > log B if and only if for any p > 0 there

exists the unique unitary operator U, such that U, — I as p — +0, and (L",)AU;)” > BP.

Acknowledgement.

We would like to express our cordial thanks to Professor Takayuki Furuta for his guidance
and encouragement.

REFERENCES

T.Ando, On some operator inequalities, Math. Ann. 279 (1987), 157-159.
. J.L.LFujii, S.Izumino and Y.Seo, Determinant for posilive operators and Specht’s theorem, preprint.
M.Fujii, Furuta’s inequality and tts mean theoretic approach, J. Operator Theory 28 (1990), 67-72.

W N

L

M.Fujii, T.Furuta and E.Kamei, Furuta’s inequality and its application to Ando’s theorem, Linear

Algebra Appl. 179 (1993), 161-169.

5. M.Fujii, S.Izumino, R.Nakamoto and Y.Seo, Operator inequalities related to Cauchy-Schwarz and
Hélder-McCarthy inequalities, Nihonkai Math. J. 8 (1997), 117 122,

6. M.Fujii, J.F.Jiang and E.Kamei, Characterization of chaotic order and its application to Furuta in-
equality, Proc. Amer. Math. Soc. 125 (1997), 3655-3658.

7. T.Furuta, A > B > 0 assures (B"’A”B"’)l/‘l > Br+2r)/q forr>0,p>0,q>1with (1+2r)qg > p+2r,
Proc. Amer. Math. Soc. 101 (1987), 85-88.

8. T.Furuta, An elementary proof of an order preserving inequality, Proc. Japan Acad. 65 (1989), 126.

9. T.Furuta, Applications of order preserving operator inequalities, Oper. Theory Adv. Appl. 59 (1992),
180-190.

10. T.Furuta, Characterizations of chaotic order via generalized Furuta inequality, J. Inequal. Appl. 1
(1997), 11-24.

11. T.Furuta, Operator inequalities associated with Hélder-McCarthy and Kantorovich inequalities, J. In-
equal. Appl. 2 (1998), 137 148.

12. E.Kamei, A satellite to Puruta’s inequality, Math. Japon. 83 (1988), 8383 886.

13. C.A.McCarthy, c,, Israel J. Math. 5 (1967), 249-271.

14. B.Mond and J.E.Petarié, Convez inequalities in Hilbert spaces, Houston J. Math. 19 (1993), 405-420.

15. B.Mond and J.E.Pecari¢, A matriz version of the Ky Fan generalization of the Kantorovich inequality,
Linear and Multilinear Algebra 36 (1994), 217-221.

16. W.Specht, Zur Theorie der elementaren Mittel, Math. Z. 74 (1960) 91 98.

17. K.Tanahashi, Best possibility of the Furuta inequality, Proc. Amer. Math. Soc. 124 (1996), 141 146.

DEPARTMENT OF APPLIED MATHEMATICS, FACULTY OF SCIENCE, SCIENCE UNIVERSITY OF ToKyo, 1-3
KAGURAZAKA, SHINJUKU, TOKYO 162-8601, JAPAN

E-mail address, Takeaki Yamazaki: tyamaz@Qam kagu.sut.ac.jp

E-mail address, Masahiro Yanagida: yanagida@am.kagu.sut.ac.jp



