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SUCCESSIVE APPROXIMATIONS TO POSITIVE SOLUTIONS OF

NONLINEAR DIFFERENCE EQUATIONS

BING LIU AND SUI SUN CHENG

Received December 2, 1997

Abstract. By means of successive approximations, existence of positive solutions are

established for a class of nonlinear higher order neutral di�erence equations.

A number of methods have been employed for obtaining positive solutions to di�erence
equations. Among these methods there are comparison principles [1], Schauder type �xed
point theorem [2], Banach's contraction principle [3], methods of super- and lower-solutions
[4], and others [5]. In this paper, we will employ the basic method of successive approxi-
mations to obtain a sharp theorem which provides a positive solution to the neutral type
di�erence equation

�n (xk � cxk��) + F (k; xk��) = 0; k = 0; 1; 2; :::; (1)

where n is a positive integer, � and � are nonnegative integers, c is a nonnegative constant,
and F (n; x) is a real function de�ned for n = 0; 1; 2; ::: and x 2 R such that F is continuous
in the second variable. Neutral type di�erence equations have been studied by a number of
authors, and the existence of a positive solution (i.e. a positive sequence fxkg de�ned for
k � �� � �maxf�; �g; which satis�es (1)) is an important issue in some of their studies.
In particular, it is known [6] that when F (n; x) � bx; then (1) has a positive solution if,
and only if, its \characteristic equation"

(�� 1)n � c�
��(�� 1)n + b�

�� = 0 (2)

has a positive root.

We intend to �nd su�cient conditions for the existence of positive solutions of (1) which
are also necessary for the special case just mentioned. In these conditions, we will employ
the factorial function h[m](i) which is de�ned to be h(i)h(i� 1) � � � h(i�m+ 1):

THEOREM 1. In addition to the assumptions imposed on equation (1), suppose further
that n is odd and that there exists a number � such that 0 � F (n; x) � F (n; y) � �y for
all n = 0; 1; 2; ::: and 0 � x � y: If the inequality

c�
�� +

����

(1� �)n
� 1 (3)

has a solution 2 (0; 1); then equation (1) has a nonnegative (but nontrivial) solution.
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PROOF. Let 
 be the set of real sequences of the form x = fxkg
1

k=�� : We now de�ne
an operator T : 
! 
 as follows: for x = fxkg

1

k=�� 2 
;

(Tx)
k
= cxk�� +

1X
j=k

(j � k + n � 1)[n�1]

(n� 1)!
F (j; xj��); k = 0; 1; 2; :::;

and

(Tx)
k
= 

k
; �� � k < 0:

Consider the following successive approximations: w(0) = fkg1
k=��; w

(j+1) = Tw(j) for
j = 0; 1; 2; ::: : By means of the assumptions on F and the constant c; it is easy to see that

0 � ::: � w
(2)

k
� w

(1)

k
� w

(0)

k
; k � ��:

Indeed, our assertion clearly holds when �� � k < 0: Next, note that the binomial series
expansion of (1� )�n is given by

1

(1� )n
=

1X
j=0

(j + n � 1)[n�1]

(n� 1)!

j
;

so that by (2), we have

1 � c
�� + �

��

1X
j=0

(j + n � 1)[n�1]

(n� 1)!

j
:

Therefore, when k = 0; 1; 2; :::;

0 � (T)
k
� c

k�� +

1X
j=k

(j � k + n� 1)[n�1]

(n� 1)!
�

j��

= 
k

8<
:c

�� + �
��

1X
j=0

(j + n � 1)[n�1]

(n� 1)!

j

9=
; � 

k
:

That is, 0 � w(1)
� w(0): Assume by induction that 0 � w(i)

� w(i�1) for i = 1; :::;m: Then

w
(m+1)

k
= cw

(m)

k��
+

1X
j=k

(j � k + n� 1)[n�1]

(n� 1)!
F (j; w

(m)

j��
)

� cw
(m�1)

k��
+

1X
j=k

(j � k + n � 1)[n�1]

(n� 1)!
F (j; w

(m�1)

j��
) = w

(m)

k
; k � 0;

Our assertion is thus proved.

As a consequence , as j ! 1; w(j) converges (pointwise) to some nonnegative sequence
w� = fw�

k
g
1

k=��; and furthermore, by means of the Lebesque dominated convergence theo-

rem, we may take limits on both sides of w(j+1) = Tw(j) to obtain

w
�

k
� cw

�

k��
=

1X
j=k

(j � k + n � 1)[n�1]

(n� 1)!
F (j; w�

j��
); k � 0:

Taking di�erences on both sides of the above equality, we see that w� is a nonnegative
solution of equation (1). The proof is complete.
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We may further show that w� is positive under additional conditions. Indeed, w�
k
= k >

0 for �� � k < 0: Suppose to the contrary that w�
k
> 0 for �� � k < v and w�

v
= 0; where

v � 0: Then

0 = w
�

v
= cw

�

v��
+

1X
j=v

(j � v + n� 1)[n�1]

(n� 1)!
F (j; w�

j��
):

If � = 0; then since (j�v+n�1)(n�1) > 0 for j � v; we must have F (j; w�
j��

) = 0 for j � v:

In other words, if we impose the condition that � > 0 and F (n; x) > 0 for all n = 0; 1; 2; :::
and x > 0; then a contradiction will be reached. Similarly, if � > 0; we must have c = 0
or F (j; w�

j��
) = 0 for j � v: Thus if we impose the condition that c > 0; or, � > 0 and

F (n; x) > 0 for all n = 0; 1; 2; ::: and x > 0; another contradiction will be reached. We
summarize these as follows.

THEOREM 1'. Under the assumptions of Theorem 1, assume further that (i) � > 0 and
F (n; x) > 0 for all n = 0; 1; ::: and x > 0; or (ii) � > 0 and c > 0: If the inequality (2) has a
solution  2 (0; 1); then (1) has a positive solution.

When n is even, we have the following dual Theorem.

THEOREM 2. In addition to the assumptions imposed on equation (1), suppose further
that n is even and that there exists a number � such that �y � F (n; y) � F (n; x) � 0 for
all n = 0; 1; 2; ::: and 0 � x � y: If the inequality

c�
��
�

����

(�� 1)n
� 1 (4)

has a solution  2 (0; 1); then equation (1) has a nonnegative (but nontrivial) solution.
The proof is similar to that of Theorem 1 and will therefore be sketched. Let 
 be the

set of real sequences of the form x = fxkg
1

k=�� : We now de�ne an operator T : 
 ! 
 as
follows: for x = fxkg

1

k=�� 2 
,

(Tx)
k
= cxk�� �

1X
j=k

(j � k + n � 1)[n�1]

(n� 1)!
F (j; xj��); k = 0; 1; 2; :::;

and

(Tx)
k
= 

k
; �� � k < 0:

De�ne the following successive approximations: w(0) = fkg1
k=��; w

(j+1) = Tw(j) for
j = 0; 1; 2; ::: : By means of the assumptions on F and rewriting the condition (3) as

c�
��
� ��

��

1X
j=0

(j + n� 1)[n�1]

(n� 1)!
�
j
� 1;

it is readily seen that

0 � ::: � w
(2)

k
� w

(1)

k
� w

(0)

k
; k � ��:

Finally, by Lebesgue's dominated convergence theorem, the limiting sequence of fw(j)
g
1

j=0

will be the desired nonnegative solution.
Similar to Theorem 1', we may also verify the validity of the following result.

THEOREM 2'. Under the assumptions of Theorem 1, assume further that (i) � > 0 and
F (n; x) < 0 for all n = 0; 1; ::: and x > 0; or (ii) � > 0 and c > 0: If the inequality (3) has a
solution  2 (0; 1); then (1) has a positive solution.

While Theorem 2 can be considered as a dual of Theorem 1, there is another possibility
when 0 � F (n; x) � F (n; y) � �y:
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THEOREM 3. In addition to the assumptions imposed on equation (1), suppose further
that n is even, that c > 0; and that there exists a number � such that 0 � F (n; x) �
F (n; y) � �y for all n = 0; 1; 2; ::: and 0 � x � y: If the inequality

1

c
�
� +

�

c
�
���

1

(1� �)n
� 1 (5)

has a solution  2 (0; 1); then equation (1) has a nonnegative solution.

The proof is again similar to that of Theorem 1 and will therefore be sketched. Let 
 be
the set of real sequences of the form x = fxkg

1

k=��: We de�ne an operator T : 
 ! 
 as
follows: for x = fxkg

1

k=�� 2 
,

(Tx)
k
=

1

c
xk+� +

1

c

1X
j=k+�

(j � k � � + n� 1)[n�1]

(n� 1)!
F (j; xj�� ) ; k � ��;

and when � < �;

(Tx)
k
= 

k
;�� � k � �� � 1: (6)

De�ne the following successive approximations: w(0) = fkg1
k=��; w

(j+1) = Tw(j) for j =
0; 1; 2; :::. By means of the assumption on F and by rewriting (4) as

1

c
�
� +

�

c
�
���

1X
j=0

(j + n� 1)[n�1]

(n � 1)!
�
j
� 1;

it is readily seen that 0 � ::: � w
(2)

k
� w

(1)

k
� w

(0)

k
for k � ��: Finally, by Lebesgue's

dominated convergence theorem, the limiting sequence w� of fw(j)
g
1

j=0 will satisfy the
equation

w
�

t
� cw

�

t��
+

1X
j=t

(j � t+ n � 1)[n�1]

(n� 1)!
F
�
j; w

�

j��

�
= 0; t � 0:

By taking di�erences on both sides of the above equation, we see that w� is the desired
nonnegative solution.

We remark that in case � < �; then in view of (5), the nonnegative solution w� obtained
in the above Theorem cannot be trivial. Indeed, w�

k
= k > 0 for �� � k � �� � 1: Thus

the same reasoning following Theorem can be applied again to conclude the following.

THEOREM 3'. Under the assumptions of Theorem 3, suppose further that either (i)
� < � and F (n; x) > 0 for all n = 0; 1; ::: and x > 0; or (ii) 0 < � < � and c > 0: If the
inequality (4) has a solution  in (0; 1); then (1) has a positive solution.

We remark that the above procedures can be extended to suit more general equations of
the form

�n(xk � cxk��) + F (k; xk��1 ; xk��2 ; :::; xk��m ) = 0:

By replacing conditions in the above Theorems with appropriate ones such as

c�
�� +

1

(1� �)n

mX
i=1

�i�
��i � 1;

etc. nonnegative and positive solutions to this equation can be found.
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