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Abstract. In this paper, we propose a Bernoulli-Threshold service schedule for a queue-

ing system consisting of two-parallel queues and a single server. A threshold N(0 < N)

is set up in one of the two queues, say, the second queue. When the queue length of the

second queue is less than or equal to the threshold N , the server serves two queues with

a Bernoulli service schedule, otherwise only customers of the second queue are served

until its queue length is back to the threshold N . The sever takes switching times in its

transition from one queue to the other. For the queueing model, we carry out the perfor-

mance analysis and derive the generating functions of the joint stationary queue-length

distributions at service completion instants. We also determine the Laplace-Stieltjes

transforms of waiting time distributions for both queues, and obtain their mean waiting

times.

1. Introduction

Polling systems used for modelling distributed multiqueue systems sharing a single scarce

resource (i.e., server) such as a communication channel or a processor, have received a
considerable amount of attention in the recent literature. Important examples of such

distributed multiqueue systems are local area networks (LAN), high-speed Asynchronous
Transfer Mode (ATM) networks, multiprocessor systems, distributed computation, dis-
tributed data bases, and so forth. Levy and Sidi[21], and Takagi[29],[30] have given detailed

analyses and surveys on this subject. The special case of polling systems|that consisting
of two queues and a single server, has an important application for modelling communica-

tion network systems with two di�erent types of tra�c: real-time tra�c (such as voice and
video) and non-real-time tra�c (such as data), for example, hybrid switching voice/data
transmission systems, and packet-switched voice/data transmission systems. In order to be

able to meet the quality of service requirements for di�erent types of tra�c, various service
schedules such as the exhaustive, gated, k-limited, Bernoulli and threshold service schedules

or mixture of these service schedules have been considered ([1],[2],[3],[4],[7],[8],[9],[10],[14],
[15],[16],[17],[19],[20],[21]).

Recently, some polling systems with the threshold-based service schedules have been
analyzed by many authors. In [16], Lee considers a two-queue model with a single-server
where the high priority queue is served exhaustively; the low priority queue is served by

k-limited service. In [15], Lee and Sengupta analyze a model with a mixture of 1-limited
and threshold service schedules, where a customer of each queue is served alternatively if the

queue length of the high priority queue does not exceed a certain threshold level; otherwise
only customers from the high priority queue are served until its queue length is back to the
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threshold level. In [20], Ozawa deals with a model with mixed exhaustive and k-limited
service schedules, and in [14], Katayama and Takahashi analyze a model with mixture of

1-limited and Bernoulli service schedules. In [4], Boxma and Down consider a model with
a mixture of exhaustive and threshold service schedules that is di�erent from one in [15]

only when the queue length of the high priority queue does not exceed a threshold level,
the server serves the two queues exhaustively. In [10], Feng et al. analyze a model with two
threshold M and N(0 � M < N), where the server returns back to the low priority queue

when the queue length of the high priority queue is less than or equal to the threshold level
M . They determine respectively the generating functions of joint queue-length distributions

and the Laplace-Stieltjes transforms of waiting time distribution. For polling systems with
Bernoulli service schedule where the server decides with a probability which queue is going
to be served next, Lee [17] considers a model without switching times, and Feng et al.

[9] analyze the same model with switching times. Using the approach of the Riemann-
Hilbert boundary value problem they derive the generating functions of joint queue-length

distributions, the Laplace-Stieltjes transforms of waiting time distributions, and the mean
waiting times.

In the present paper, we consider a single-server two-queue model with a mixture of
Bernoulli and threshold service schedules called Bernoulli-Threshold service schedules. A

threshold N(0 < N) is set up in one of the two queues, say, the second queue. At each
epoch of service completion in the �rst queue where the queue is not empty, if the queue

length of the second queue exceeds the threshold N , the server switches the service to the
second queue; otherwise with the probability p1, it continues to serve the customers in the

�rst queue, and with the probability q1 = 1 � p1, it switches the service to the second
queue. At each epoch of service completion in the second queue, if the the queue-length in
the second queue is larger than the thresholdN , the server continues to sever the customers

in the second queue, otherwise with the probability p2 it continues to serve the customers
in the second queue, and with the probability q2 = 1�p2, it switches the service to the �rst

queue.

We are motivated to consider such a Bernoulli-Threshold service discipline for the polling
system by the following two-fold. The �rst is its application-oriented. In modern telecom-
munication networks employing ATM switching technology, one important problem is to

be able to meet the quality of service requirements for di�erent types of tra�c. One way
of accomplishing this is that the server should have more exibility to decide which queue

should be served next, as long as the constraint conditions are guaranteed. To a commu-
nication network system with real-time tra�c and non-real-time tra�c, for example, when

the queue length (or waiting time) of the real-time tra�c is below a certain threshold, the
server should be able to easily assign di�erent priorities to the two tra�cs. The Bernoulli-
Threshold service discipline, as can be seen, is one satisfying such requirements because

that (i) the control threshold N can be simply determined, and (ii) below N , the server
can devote more of its processing power to a queue with high priority by simply choosing

an appropriate parameter pi for each queue. In particular, if p1 = p2 = 1, the Bernoulli
discipline reduces to the exhaustive discipline, then we have a model studied in [4]. Further,
if p1 = p2 = 0, the Bernoulli discipline reduces to the 1-limited discipline, then we have a

model studied in [15]. The second motivation is the interesting feature that it can be taken
as an approximation of the Bernoulli service discipline. When N =1, the server serves two

queues with the Bernoulli service discipline completely, then we get a model studied in [17]
and [9]. In those two papers the approach of the Riemann-Hilbert boundary value problem

is used to derive the generating functions of joint queue-length distributions, which is com-
plex and di�cult both in theoretical analysis and numerical calculation. Therefore when
N is su�ciently large, the result obtained here by a di�erent method can be taken as an
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approximation of that obtained in [17] and [9]. The main aim of this paper is to derive the
generating functions of the joint stationary queue-length distributions, the Laplace-Stieltjes

transforms of waiting time distributions, and the mean waiting times.

The organization of the paper is as follows. In Section 2 the model is described in de-

tail, and the ergodicity condition and the system equations of the generating functions of
the joint stationary queue-length distributions are established. The solutions of the system
equations are derived in Section 3. A special case is considered in Section 4. By use of

these solutions, the Laplace-Stieltjes transforms of waiting time distributions and the mean
waiting times are given in Section 5. In Section 6, a conclusion is included.

2. The model and the generating function equations

We consider a cyclic-service queueing system consisting of two-parallel queues, Q1 and
Q2 with in�nite bu�er capacities, which are served by a single server. The arrival processes
of customers at Q1(corresponding to the real-time tra�c) and Q2(corresponding to the

non-real-time tra�c) are Poisson processes with rates �1 and �2, respectively. For i =
1; 2, the service times at Qi are independent, identically distributed random variables with

general distribution Bi(�). Their �rst moment, second moment and LST (Laplace-Stieltjes

Transform) are denoted by bi; b
(2)

i , and B̂i(�), and assumed to be �nite. A threshold N(0 <
N) is set up in the queue Q2. The server serves two queues in accordance with a called

Bernoulli-threshold dynamic service schedule described as follows:

(1) At each epoch of service completion in Q1 at which the queue is not empty, if the

queue-length in Q2 exceeds the thresholdN the server switches the service to Q2; otherwise
with the probability p1, it continues to serve the customers in Q1, and with the probability
q1 = 1� p1, it switches the service to Q2.

(2) At each epoch of service completion in Q2, if the queue-length in Q2 is larger than the
threshold N the server continues to serve the customers in Q2, otherwise with probability

p2, it continues to serve the customers in Q2, and with the probability q2 = 1 � p2, it
switches the service to Q1.

(3) Whenever the queue being served becomes empty at an epoch of service completion,
if another queue is not empty the server switches the service to that queue; otherwise,

the server remains idle at the present queue until the arrival of the next coming customer
between Q1 and Q2.

The service is �rst-come-�rst-served within each queue and nonpreemptive. The server
experiences a switching time in the transition from one queue to another. For i = 1; 2, the
successive switching times from Qi to Q(i+1)mod2 form independent, identically distributed

random variables with general distribution Si(�). Their �rst moment, second moment and

LST are denoted by si; s
(2)

i , and Ŝi(�), and assumed to be �nite. All arrival, service and
switching processes are assume to be independent.

2.1. Ergodicity condition

We introduce the following notations.

� � �1 + �2; ri = �i=�; i = 1; 2

�i � �ibi; i = 1; 2; � � �1 + �2 (2:1)

s � s1 + s2; s(2) � s
(2)

1 + 2s1s2 + s
(2)

2 :
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�i is the utilization at Qi for i = 1; 2; and � is the total utilization of the server. s and
s(2) are respectively the �rst moment, second moment of the total switching time during

one cycle.

For a generally periodic polling systems with a mixture of various service schedules,
Fricker and Ja��bi[11] have presented the following necessary and su�cient condition for the

stability.

�+ max
1�i�2

(�i=L
�

i )s < 1 (2:2)

where for i = 1; 2, L�i is the maximum expected number of customers served in the queueQi
during a cycle. Appealing to the conclusion (2.2) we derive stable condition for the system

considered here. Since N is �nite, the service schedule in Q2, in fact, is an exhaustive-type
one. Especially, when p2 = 1, it becomes a pure exhaustive service schedule. Hence, we

have that L�2 =1. The calculation of L�1 for the queue Q1 is more complicated because it
depends not only on the number of the customers left by the server when it switched the
service from Q2 to Q1, but also on the time that number of customers in the queue Q2

reaches to the threshold N . For i = 1; 2, de�ne the random variable Li as follows.

Li =

8<
:

1 if pi = 0; qi = 1
Yi if 0 < pi; qi < 1

N if pi = 1; qi = 0;
(2:3)

where Yi is a random variable having the geometric distribution with parameter pi, i.e.,
P (Yi = n) = qip

n
i ; n � 0. Then Li represents the number of the customers served at Qi

during one visit cycle of the server. Let

�2 = minfn; S2 +

nX
j=1

B
j
1 >

L2X
j=1

A
j
2g (2:4)

and �1 = minfL1; �2g: (2.5)
where S2 is a generic switching time from Q2 to Q1; A

j
2 and Bj1 are, for each j, generic

interarrival times and service times for Q2 and Q1, respectively. Then we have L�1 = E[�1].
Now, the stable condition corresponding to our system is

�+
�1s

E[�1]
< 1: (2:6)

According to the service discipline, if �2 < 1, the set f0; 1; � � � ; Ng is regeneration one

in the sense that the state of the queue Q2 entries into it in�nitely often. Therefore, we
can also use the similar argument as in Boxma and Down [4] to give an explanation of
the condition (2.6). In particular, when p1 = p2 = 1; q1 = q2 = 0, the condition (2.6) is

consistent with one given there. Throughout the paper we assume that the condition (2.6)
holds.

2.2. The generating function equations

Let ftk; k � 1g be the successive epochs of service completion, X
(i)

k ; i = 1; 2; k � 1; the

number of customers at Qi at instant immediately after tk, and Jk; k � 1; the type of
the departing customer at tk, i.e., Jk = i if the kth departing customer is from Qi. Then

f(X
(1)

k ;X
(2)

k ; Jk)gk�1 forms an imbedded vector Markov chain. Let f�n;m;i;n;m � 0; i =
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1; 2g denote the equilibrium probabilities of f(X
(1)

k ;X
(2)

k ; Jk)gk�1, namely,

�n;m;i � lim
k!1

P ((X
(1)

k ;X
(2)

k ; Jk) = (n;m; i)): (2:7)

For j z1 j� 1; j z2 j� 1, de�ne the generating functions

�(z1; z2) �

1X
n=0

1X
m=0

�n;m;1z
n
1 z

m
2 ; (2:8)

	(z1; z2) �

1X
n=0

1X
m=0

�n;m;2z
n
1 z

m
2 : (2:9)

Considering the transition probabilities of the imbedded vector Markov chain during two
successive service completion epochs, we derive the following equations for the generating
functions �(z1; z2) and 	(z1; z2) :

�(z1; z2) = r1B̂1(�1(1� z1) + �2(1� z2))[�(0; 0) + Ŝ2(�1(1� z1) + �2(1� z2))	(0; 0)]

+z�11 B̂1(�1(1� z1) + �2(1� z2))f�(z1; 0) ��(0; 0) (2:10)

+Ŝ2(�1(1� z1) + �2(1� z2))(	(z1; 0) �	(0; 0)) + p1

NX
m=1

1X
n=1

�n;m;1z
n
1 z

m
2

+q2Ŝ2(�1(1� z1) + �2(1� z2))

NX
m=1

1X
n=1

�n;m;2z
n
1 z

m
2 g;

and

	(z1; z2) = r2B̂2(�1(1� z1) + �2(1� z2))[Ŝ1(�1(1� z1) + �2(1� z2))�(0; 0)+ 	(0; 0)]

+z�12 B̂2(�1(1� z1) + �2(1� z2))fŜ1(�1(1� z1) + �2(1� z2)) (2:11)

�(�(0; z2)� �(0; 0)) + (	(0; z2)�	(0; 0))

+Ŝ1(�1(1� z1) + �2(1� z2))[q1

NX
m=1

1X
n=1

�n;m;1z
n
1 z

n
2 +

1X
m=N+1

1X
n=1

�n;m;1z
n
1 z

n
2 ]

+p2

NX
m=1

1X
n=1

�n;m;2z
n
1 z

n
2 +

1X
m=N+1

1X
n=1

�n;m;2z
n
1 z

n
2 g:

For clarity, de�ne

B�i (z1; z2) = B̂i(�1(1� z1) + �2(1� z2)); i = 1; 2;

S�i (z1; z2) = Ŝi(�1(1� z1) + �2(1� z2)); i = 1; 2;

and for j z1 j� 1, de�ne the one-dimensional generating functions of the joint equilibrium

probabilities f�n;m;1;n � 0g and f�n;m;2;n � 0g; 0 � m � N ,

'm(z1) �

1X
n=0

�n;m;1z
n
1 ; 0 � m � N; (2:12)

 m(z1) �

1X
n=0

�n;m;2z
n
1 ; 0 � m � N: (2:13)
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We have

1X
m=N+1

1X
n=1

�n;m;1z
n
1 z

n
2 = �(z1; z2)��(0; z2)�

NX
m=0

('m(z1)� 'm(0))z
m
2 ; (2:14)

1X
m=N+1

1X
n=1

�n;m;2z
n
1 z

n
2 = 	(z1; z2)�	(0; z2)�

NX
m=0

( m(z1)�  m(0))z
m
2 ; (2:15)

and in particular,

'0(0) = �(0; 0) = �0;0;1;  0(0) = 	(0; 0) = �0;0;2: (2:16)

Using the above notations and relations, equations (2.10) and (2.11) can be rewritten as

�(z1; z2) = (r1 � z�11 )B�1(z1; z2)['0(0) + S�2(z1; z2) 0(0)] + z�11 B�1 (z1; z2) (2:17)

�f '0(z1) + S�2 (z1; z2) 0(z1) + p1

NX
m=1

('m(z1)� 'm(0))z
m
2

+q2S
�

2 (z1; z2)

NX
m=1

( m(z1)�  m(0)) z
m
2 g;

	(z1; z2) =
B�2 (z1; z2)

z2 � B�2(z1; z2)
f [r2z2 + (r1 � z�11 )B�1(z1; z2)]S

�

1(z1; z2)'0(0) (2:18)

+[r2z2 + (r1 � z�11 )B�1(z1; z2)S
�

1(z1; z2)S
�

2(z1; z2)] 0(0)

+
(B�1(z1; z2)� z1)S

�
1(z1; z2)

z1
['0(z1) + p1

NX
m=1

('m(z1)� 'm(0))z
m
2 ]

+
B�1(z1; z2)S

�
1(z1; z2)S

�
2(z1; z2)� z1

z1
[ 0(z1) + q2

NX
m=1

( m(z1)�  m(0)) z
m
2 ] g:

As can be seen, the generating functions �(z1; z2) and 	(z1; z2) are completely deter-
mined by the one-dimensional generating functions 'm(z1) and  m(z1); 0 � m � N . In

order to solve 'm(z1) and  m(z1); 0 � m � N , we need to derive more equations about
these unknown functions. This can be done by considering the balance equations for
f�n;m;1;n � 0g and f�n;m;2;n � 0g; 0 � m � N . For every m, 1 � m � N , �rst,

we have

�n;m;1 = q2

n+1X
i=1

mX
j=0

�i;j;2

Z 1
0

(�1t)
n�i+1

(n � i+ 1)!
e��1t

(�2t)
m�j

(m� j)!
e��2tdFS2+B1

(t) (2:19)

+p2

n+1X
i=1

�i;0;2

Z 1
0

(�1t)
n�i+1

(n� i+ 1)!
e��1t

(�2t)
m

m!
e��2tdFS2+B1

(t)

+r1�0;0;2

Z 1
0

(�1t)
n

n!
e��1t

(�2t)
m

m!
e��2tdFS2+B1

(t)

+p1

n+1X
i=1

mX
j=0

�i;j;1

Z 1
0

(�1t)
n�i+1

(n� i+ 1)!
e��1t

(�2t)
m�j

(m� j)!
e��2tdB1(t)

+q1

n+1X
i=1

�i;0;1

Z 1
0

(�1t)
n�i+1

(n� i + 1)!
e��1t

(�2t)
m

m!
e��2tdB1(t)
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+r1�0;0;1

Z
1

0

(�1t)
n

n!
e��1t

(�2t)
m

m!
e��2tdB1(t); 0 � n <1;

and for m = 0, we have

�n;0;1 =

n+1X
i=1

�i;0;2

Z
1

0

(�1t)
n�i+1

(n� i+ 1)!
e��1te��2tdFS2+B1

(t) (2:20)

+r1�0;0;2

Z 1
0

(�1t)
n

n!
e��1te��2tdFS2+B1

(t)

+

n+1X
i=1

�i;0;1

Z 1
0

(�1t)
n�i+1

(n� i + 1)!
e��1te��2tdB1(t)

+r1�0;0;1

Z
1

0

(�1t)
n

n!
e��1te��2tdB1(t); 0 � n <1;

where FS2+B1
(�) denotes the distribution of the sum of the service time in Q1 and the

switching time from Q2 to Q1.

From (2.19) and (2.20), multiplying nth equation by zn1 and summing yield

'm(z1) =
1

z1
f q2

mX
j=0

H1;m�j(z1)( j(z1)�  j(0)) + p2H1;m(z1)( 0(z1)�  0(0)) (2:21)

+p1

mX
j=0

G1;m�j(z1)('j(z1)� 'j(0)) + q1G1;m(z1)('0(z1)� '0(0))

+r1z1H1;m(z1) 0(0) + r1z1G1;m(z1)'0(0) g; 1 � m � N;

and

'0(z1) =
1

z1
f H1;0(z1)( 0(z1)�  0(0)) +G1;0(z1)('0(z1)� '0(0)) (2:22)

+r1z1H1;0(z1) 0(0) + r1z1G1;0(z1)'0(0) g;

where

H1;j(z1) �

Z 1
0

(�2t)
j

j!
e��2te��1(1�z1)tdFS2+B1

(t)

=
1

j!

@j

@z
j
2

F̂S2+B1
(�1(1� z1) + �2(1� z2)) jz2=0; 0 � j � N;

G1;j(z1) �

Z 1
0

(�2t)
j

j!
e��2te��1(1�z1)tdB1(t)

=
1

j!

@j

@z
j
2

B̂1(�1(1� z1) + �2(1� z2)) jz2=0; 0 � j � N:

Note that H1;j(1) is the probability that there are j arrivals during the period of the
switching time from Q2 to Q1 and the service time at Q1, and G1;j(1) the probability
that there are j arrivals during the period of the service time at Q1. Next, for every m,

0 � m � N � 1, we have

�n;m;2 = q1

m+1X
j=1

nX
i=0

�i;j;1

Z 1
0

(�1t)
n�i

(n� i)!
e��1t

(�2t)
m�j+1

(m� j + 1)!
e��2tdFS1+B2

(t)

(2:23)



18 W. FENG, M. KOWADA AND K. ADACHI

+p1

m+1X
j=1

�0;j;1

Z
1

0

(�1t)
n

n!
e��1t

(�2t)
m�j+1

(m� j + 1)!
e��2tdFS1+B2

(t)

+r2�0;0;1

Z
1

0

(�1t)
n

n!
e��1t

(�2t)
m

m!
e��2tdFS1+B2

(t)

+p2

m+1X
j=1

nX
i=0

�i;j;2

Z 1
0

(�1t)
n�j

(n� j)!
e��1t

(�2t)
m�j+1

(m� j + 1)!
e��2tdB2(t)

+q2

m+1X
j=1

�0;j;2

Z 1
0

(�1t)
n

n!
e��1t

(�2t)
m�j+1

(m� j + 1)!
e��2tdB2(t)

+r2�0;0;2

Z 1
0

(�1t)
n

n!
e��1t

(�2t)
m

m!
e��2tdB2(t); 0 � n <1;

where FS1+B2
(�) denotes the distribution of the sum of the service time in Q2 and the

switching time from Q1 to Q2. In particular, we have

�0;0;2 = �0;1;1

Z 1
0

e�(�1+�2)tdFS1+B2
(t) + r2�0;0;1

Z 1
0

e�(�1+�2)tdFS1+B2
(t) (2:24)

+�0;1;2

Z 1
0

e(��1+�2)tdB2(t) + r2�0;0;2

Z 1
0

e(��1+�2)tdB2(t):

From (2.23) and (2.24), multiplying nth equation by zn1 and summing yield

 m(z1) = q1

m+1X
j=1

H2;m�j+1(z1)'j(z1) + p1

m+1X
j=1

H2;m�j+1(z1)'j(0) (2:25)

+p2

m+1X
j=1

G2;m�j+1(z1) j(z1) + q2

m+1X
j=1

G2;m�j+1(z1) j(0)

+r2H2;m(z1)'0(0) + r2G2;m(z1) 0(0); 0 � m � N � 1;

where

H2;j(z1) �

Z 1
0

(�2t)
j

j!
e��2te��1(1�z1)tdFS1+B2

(t)

=
1

j!

@j

@z
j
2

F̂S1+B2
(�1(1� z1) + �2(1� z2)) jz2=0; 0 � j � N;

G2;j(z1) �

Z 1
0

(�2t)
j

j!
e��2te��1(1�z1)tdB2(t)

=
1

j!

@j

@zj2
B̂2(�1(1� z1) + �2(1� z2)) jz2=0; 0 � j � N:

Also note that H2;j(1) is the probability that there are j arrivals during the switching time
from Q1 to Q2 and the service time at Q2, and G2;j(1) the probability that there are j

arrivals during the service time at Q2. Finally, we get  m(0) by substituting z = 0 into
(2.25)

 m(0) =

m+1X
j=1

H2;m�j+1(0)'j(0) +

m+1X
j=1

G2;m�j+1(0) j(0) (2:26)

+r2H2;m(0)'0(0) + r2G2;m(0) 0(0):
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3. Determination of the generating functions

In this section, we derive the generating functions �(z1; z2) and 	(z1; z2) of the equilib-
rium probabilities of the queue lengths. The function equations (2.17) and (2.18) show that

�(z1; z2) and 	(z1; z2) can be obtained as long as the one-dimensional generating functions
'm(z1) and  m(z1); 0 � m � N are determined. Therefore, the main aim here is to
deduce system equations about these one-dimensional generating functions by using (2.18),

(2.21),(2.22) and (2.25), and obtain their solutions.

3.1. The solution of the equations

First, we consider the equation (2.18). According to Tak�as Theorem, we have that for
each �xed z1 with j z1 j� 1, the equation

z2 �B2(�1(1� z1) + �2(1� z2)) = 0 (3:1)

has exactly one root in the region j z2 j� 1. Actually, the root satis�es

z2 = V̂ (�1(1� z1)) (3:2)

where V̂ (s) is the LST of the busy period distribution of an M/G/1 queue with arrival
rate �2 and service time distribution B2(�). Denoting this root by z2 = �(z1), we have
�(z1) = V̂ (�1(1� z1)). Furthermore, �(1) = 1, and

d

dz1
�(z1) jz1=1=

�1b2

1� �2
;

d2

dz21
�(z1) jz1=1=

�21b
(2)

2

(1� �2)3
: (3:3)

Since 	(z1; z2) should be regular for j z2 j< 1, and continuous for j z2 j� 1, for each �xed
z1 with j z1 j� 1 the numerator of (2.18) must vanish at z2 = �(z1). Substituting this root
into (2.18) and rearranging items we have

(B�1(z; �(z))� z)S�1 (z; �(z))['0(z) + p1

NX
m=1

('m(z)� 'm(0))�
m(z)] (3:4)

+(B�1(z; �(z))S
�

1(z; �(z))S
�

2(z; �(z))� z)[ 0(z) + q2
X
m=1

( m(z)�  m(0))�
m(z)]

+[r2z�(z) + (r1z � 1)B�1(z; �(z))]S
�

1(z; �(z))'0(0)

+[r2z�(z) + (r1z � 1)B�1(z; �(z))S
�

1(z; �(z)))S
�

2(z; �(z))] 0(0) = 0:

Since the equations discussed hereafter are mainly those about the argument z1, we write
z instead of z1 for simplicity. Next, rewrite (2.21) and (2.22) as follows

�G1;m(z)'0(z)� p1

m�1X
j=1

G1;m�j(z)'j(z) + (z � p1G1;0(z))'m(z) (3:5)

= H1;m(z) 0(z) + q2

mX
j=1

H1;m�j(z)( j(z)�  j(0))� p1

mX
j=1

G1;m�j(z)'j(0)

+(r1z � 1)G1;m(z)'0(0) + (r1z � 1)H1;m(z) 0(0); 1 � m � N;

and

(z �G1;0(z))'0(z) = H1;0(z) 0(z) + (r1z � 1)H1;0(z) 0(0) + (r1z � 1)G1;0(z)'0(0): (3:6)



20 W. FENG, M. KOWADA AND K. ADACHI

Then rewrite (2.25) as follows

�p2

m�1X
j=1

G2;m�j+1(z) j(z) + (1� p2G2;1(z)) m(z)� p2G2;0(z) m+1(z) (3:7)

= q1

m+1X
j=1

H2;m�j+1(z)'j(z) + p1

m+1X
j=1

H2;m�j+1(z)'j(0) + q2

m+1X
j=1

G2;m�j+1(z) j(0)

+r2H2;m(z)'0(0) + r2G2;m(z) 0(0); 1 � m � N � 1;

and

 0(z)� p2G2;0(z) 1(z) = q1H2;0(z)'1(z) + p1H2;0(z)'1(0) + q2G2;0(z) 1(0) (3:8)

+r2H2;0(z)'0(0) + r2G2;0(z) 0(0):

Furthermore, we have from (2.26)

�r2G2;m(0) 0(0)�

m�1X
j=1

G2;m�j+1(z) j(0) + (1�G2;1(0)) m(0)�G2;0(0) m+1(0)

=

m+1X
j=1

H2;m�j+1'j(0) + r2H2;m(0)'0(0); 1 � m � N � 1; (3:9)

and

(1� r2G2;0(0)) 0(0)�G2;0(0) 1(0) = H2;0(0)'1(0) + r2H2;0(0)'0(0): (3:10)

De�ne the vectors

'(z) = ('0(z); '1(z); � � � ; 'N (z))
� ;  (z) = ( 0(z);  1(z); � � � ;  N (z))

� : (3:11)

Writing (3.5) and (3.6) in the matrix form we obtain a matrix equation

A1(z)'(z) = H1a(z) (z) +H1b(z) (0)) +G1(z)'(0) (3:12)

where A1(z) = (a1ij(z)), H1a(z) = (h1aij (z)), H1b(z) = (h1bij (z)), and G1(z) = (g1ij(z)) are all
the (N + 1)� (N + 1) matrices.

a1ij(z) =

8>>>><
>>>>:

z �G1;0(z) if j = i = 1
z � p1G1;0(z) if j = i; i = 2; � � � ; N + 1

�G1;i�1(z) if j = 1; i = 2; � � � ; N + 1
�p1G1;i�j(z) if j < i; i = 3; � � � ; N + 1
0 if j > i; i = 1; 2; � � � ; N;

h1aij (z) =

8<
:

H1;i�1(z) if j = 1; i = 1; � � � ; N + 1

q2H1;i�j(z) if j � i; i = 2; � � � ; N + 1
0 if j > i; i = 1; 2; � � � ; N;

h1bij (z) =

8<
:

(r1z � 1)H1;i�1(z) if j = 1; i = 1; � � � ; N + 1
�q2H1;i�j(z) if j � i; i = 2; � � � ; N + 1
0 if j > i; i = 1; 2; � � � ; N;

g1ij(z) =

8<
:

(r1z � 1)G1;i�1(z) if j = 1; i = 2; � � � ; N + 1
�p1G1;i�j(z) if j � i; i = 2; � � � ; N + 1

0 if j > i; i = 1; 2; � � � ; N:
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Note that z = 1 is the unique, simple zero of the equation z � B�1(z; �(z))S
�
1(z; �(z))

S�2(z; �(z)) = 0. We get the following equation from (3.4).

 0(z) + q2

NX
m=1

 m(z)�
m(z) = �(z)'0(z) + p1�(z)

NX
m=1

('m(z)� 'm(0))�
m(z) (3:13)

+�1(z)'0(0) + q2

NX
m=1

 m(0)�
m(z) + �2(z) 0(0);

where

�(z) �
(B�1(z; �(z))� z)S�1(z; �(z))

z � B�1(z; �(z))S
�
1(z; �(z))S

�
2(z; �(z))

; (3:12)

�1(z) �
(r2z�(z) + (r1z � 1)B�1(z; �(z)))S

�
1(z; �(z))

z �B�1(z; �(z))S
�
1(z; �(z))S

�
2(z; �(z))

; (3:15)

�2(z) �
r2z�(z) + (r1z � 1)B�1(z; �(z)))S

�
1(z; �(z))S

�
2 (z; �(z))

z �B�1(z; �(z))S
�
1(z; �(z))S

�
2(z; �(z))

; (3:16)

and for z = 1,

�(1) � lim
z!1

�(z) = �
1� �1 � �2

1� �1 � �2 � �1s1
;

�1(1) � lim
z!1

�1(z) =
1� �2 + r2(�1 � �1b2)

1� �1 � �2 � �1s1
;

�2(1) � lim
z!1

�2(z) =
1� �2 + r2(�1 + �1(s1 + s2)� �1b2)

1� �1 � �2 � �1s1
:

Rewriting (3.7), (3.8) and (3.13) in the matrix form yields another matrix equation.

G2a(z) (z) = A2(z)'(z) +H2(z)'(0) +G2b(z) (0) (3:17)

where A2(z) = (a2ij(z)), G2a(z) = (g2aij (z)), G2b(z) = (g2bij (z)), and H2(z) = (h2ij(z)) are all
the (N + 1)� (N + 1) matrices.

a2ij(z) =

8>>>><
>>>>:

q1H2;i�j+1(z) if 2 � j � i+ 1; i = 1; � � � ; N
p1�(z)�

j�1(z) if j = 2; � � � ; N + 1; i = N + 1

�(z) if j = 1; i = N + 1
0 if j = 1; i = 1; � � � ; N

and j > i+ 1; i = 1; � � � ; N � 1;

g2aij (z) =

8>>>>>><
>>>>>>:

�p2G2;i�j+1(z) if 2 � j � i + 1; j 6= i; i = 1; � � � ; N
1� p2G2;1(z) if j = i; i = 2; � � � ; N
q2�

j�1(z) if j = 2; � � � ; N + 1; i = N + 1

1 if j = 1; i = 1; N + 1
0 if j = 1; i = 2; � � � ; N

and j > i+ 1; i = 1; � � � ; N � 1;

g2bij (z) =

8>>>><
>>>>:

q2G2;i�j+1(z) if 2 � j � i + 1; i = 1; � � � ; N
r2G2;i�1(z) if j = 1; i = 1; � � � ; N

q2�
j�1(z) if j = 2; � � � ; N + 1; i = N + 1

�2(z) if j = 1; i = N + 1

0 if j > i+ 1; i = 1; � � � ; N � 1;
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h2ij(z) =

8>>>><
>>>>:

p1H2;i�j+1(z) if 2 � j � i + 1; i = 1; � � � ; N
r2H2;i�1(z) if j = 1; i = 1; � � � ; N

�p1�(z)�
j�1(z) if j = 2; � � � ; N + 1; i = N + 1

�1(z) if j = 1; i = N + 1

0 if j > i+ 1; i = 1; � � � ; N � 1:

Furthermore, we can write (3.9) and (3.10) as

VG ̂(0) = VH'(0) +  N (0)u; (3:18)

where  ̂(0) = ( 0(0);  1(0); � � � ;  N�1(0))
� ; u = (0; � � � ; 0; G2;0(0))

� , and VG = (vGij) is a

N �N matrix, and VH = (vHij ) is a N � (N + 1)

vGij =

8>>>><
>>>>:

�G2;i�j+1(0) if 2 � j � i+ 1; j 6= i; i = 1; � � � ; N � 1
1�G2;1(0) if j = i; i = 2; � � � ; N
1� r2G2;1(0) if j = i = 1

�r2G2;i�1(0) if j = 1; i = 2; � � � ; N
0 if j > i+ 1; i = 1; � � � ; N � 1;

vHij =

8<
:

H2;i�j+1(0) if 2 � j � i+ 1; i = 1; � � � ; N

r2H2;i�1(0) if j = 1; i = 1; � � � ; N
0 if j > i + 1; i = 1; � � � ; N � 1.

Note that both the matrices G2a(z) and VG are quasi-lower-triangular, i.e., g2aij (z) = 0

for i + 1 < j; i = 1; � � � ; N � 1 and vGij = 0 for i + 1 < j; i = 1; � � �N � 2: Since 0 <j

p2G2;0(z) j� 1 for all j z j� 1, obviously, the �rst two columns of the matrix G2a(z) are

mutually independent, and that is also true for the last two rows. Similar conclusion also
holds for the matrix VG. We have that the inverses of G2a(z) and VG exist. Substituting

(3.17) into (3.12), and then (3.18) into the resulting formula yield

N (z)'(z) = F (z)'(0) +  N (0)E(z) (3:19)

where E(z) � V �1G u+ v(z);

N (z) � A1(z)�H1a(z)G
�1
2a (z)A2(z);

F (z) � H1a(z)G
�1
2a (z)H2(z) +G1(z) +HG(z)V

�1
G VH ;

and HG(z) is a (N+1)�N matrix obtained from the matrixH1a(z)G
�1
2a (z)G2b(z)+H1b(z)

by deleting its (N + 1)th column, and v(z) is a (N + 1)-dimensional vector equal to the

(N + 1)th column of the matrix H1a(z)G
�1
2a (z)G2b(z) +H1b(z).

Whenever N (z) is non-singular, the solutions of (3.19) are given by

'(z) = N
�1(z)fF (z)'(0) +  N (0)E(z)g (3:20)

which may also be written as

'(z) =
[adjN (z)]fF (z)'(0) +  N (0)E(z)g

detN (z)
: (3:21)

Since we seek '(z) which is analytic in j z j� 1, the numerator of the right-hand side
of (3.21) must vanish at the zeros of detN (z) inside the unit circle j z j= 1. Therefore,

in solving (3.19) we have to consider the character of those zeros. Suppose there are K
such zeros, z1; z2; � � � ; zK . Let Ni(z) be the matrix obtained from N (z) by replacing the

ith column by the column vector F (z)'(0) +  N (0)E(z). According to Cramer's rule,
'i(z) = detNi(z)=detN (z) for i = 0; � � � ; N . The analyticity of 'i(z) in j z j� 1 implies
that

detNi(zj) = 0 (3:22)
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for j = 1; � � � ;K, or

[adjN (zj)]fF (zj)'(0) +  M (0)E(zj)g = 0 (3:23)

for j = 1; � � � ;K. For each given  N (0), using (3.22) or (3.23), every zero zj yields one

equation relating the N + 1 unknown 'i(0); i = 0; 1; � � � ; N . We shall argue that under the
ergodic condition (2.6), a set of N+1 independent equations results, determining the unique
solution for the constants 'i(0); i = 0; 1; � � � ; N . Indeed, the Kolmogorov equations for the

equilibrium distribution of the Markov chain f(X1
n;X

2
n; Jn); n = 1; 2; � � � g, along with the

normalizing condition �(1; 1) + 	(1; 1) = 1, have a unique absolutely convergent solution,

and using generating functions, we have transformed those Kolmogorov equation plus the
normalizing equation into the (N + 1)-dimensional matrix equation (3.19). If K = N + 1,

then as there exists a unique solution, the equations generated by (3.22) or (3.23) must be
independent. Now suppose that K < N + 1. Then we would obtain too few equations to
determine all N + 1 unknown constants uniquely, and we would �nd multiple solutions for

them-which is impossible. Finally, if K > N+1, then we would �nd too many equations for
the N + 1 unknown constants. Once again, as it is known that there is a unique solution,

there must be exactly N + 1 independent equations amongst those derived by using (3.22)
or (3.23). Summarizing the above, we have the following theorem.

Theorem 3.1. For each given  M (0), there exists a matrix F and a vector E such that:
there exists a solution '(z), '(0) of the equation (3.19) which is analytic and bounded in

j z j� 1 if and only if there exist a solution '(0) of the equation

F'(0)�  M (0)E = 0: (3:24)

The solutions of (3.19) correspond one-to-one the solutions of (3.24). The matrix F can be
taken to be (N + 1) � (N + 1), and the vector E be (N + 1)-dimensional. Each solution

'(z) is actually analytic in j z j� 1.

Remark. Here we still need to emphasize the same problem as in Boxma and Down[4].

In principle, it is possible that there are more than N +1 zeros, but that the ensuring linear
equations for the 'i(0); i = 0; � � � ; N are dependent. The di�culty of estimating this is

to calculate the determinant detN (z). Only for some special values of pi; qi; i = 1; 2, the
number of zeros of detN (z) can be directly determined by the approach of the homotopy
type of argument used in Gail et al. [12] [13], and Lee and Sengupta [15]. For example,

when p1 = p2 = 0, Lee and Sengupta[15] have proved that detN (z) has exactly N +1 zeros
in j z j< 1. In the section 4, we consider the case that p2 = 0; 0 � p1 � 1 and give a similar

proof by using the homotopy type of argument. As long as the number of zeros of detN (z)
is determined, the direct proof of theorem 3.1 may follow using techniques similar to those
in Gail et al. [12] [13].

3.2. The determination of  N (0)

The remained work is to determine the unknown constant  N (0). It follows from Theo-
rem 3.1 that the matrix F is made up of N + 1 independent row. The equation (3.24) can
be written as

'(0) =  N (0)� (3:25)

where � = (�0; � � � ; �N )
� � F�1E : In particular, '0(0) =  N (0)�0 and '1(0) =  N (0)�1.

Let z1; � � � ; zK be K zeros of detN (z) on j z j� 1, and dj be the multiplicity of the zero zj .
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Then
PK

j=1 dj = N + 1. De�ne '(z) by substituting (3.25) into (3.20)

'(z) =  N (0)N
�1(z)fF (z)�+E(z)g =  N (0)

[adjN (z)]fF (z)�+ E(z)g

detN (z)
: (3:26)

Then '(z) is clearly analytic in j z j< 1 except on the zero set of detN (z). Since the

equation (3.24) holds the numerator of (3.26) vanish with su�cient order on the zeros of
detN (z). Furthermore, since zk; k = 1; � � � ;K are distinct, and dk is �nite for k = 1; � � �K,

'(z) is locally bounded. Thus '(z) may be extended to a function which is analytic in
j z j< 1 by Riemann removable singularity theorem. For simplicity, we still use the notation

'(z) to denote its extended function. When z = 1, in particular, we have,

'(1) =  N (0)N
�1(1)fF (1)�+E(1)g (3:27)

Hence

'(1)� '(0) =  N (0)N
�1(1)f[F (1)+N (1)]� +E(1)g �  N (0)w�: (3:28)

Substituting z = 1 into (3.17), and then substituting (3.18), (3.25) and (3.27) into the
resulting formula, we have

 (1)� (0) = G�12a (1)(A1(1)'(1) +H2(1)'(0)) + (G�12a (1)G2b(1)� I) (0) (3:29)

=  M (0)fG�12a (1)[A1(1)N
�1(1)fF (1)�+E(1)g+H2(1)�] +GabV

�1
G VH� + V �1G u+ gg

�  M (0)w 
where I is the (N + 1) � (N + 1) unit matrix, Gab is the (N + 1) � N obtained from
G�12a (1)G2b(1)� I by deleting its (N + 1)th column and g is a (N + 1)-dimensional vector
equal to (N + 1)th column of G�12a (1)G2b(1)� I.

Substituting z1 = 1 and z2 = 1 into (2.17) we have

�(1; 1) = �r2('0(0) +  0(0)) + '0(1) +  0(1) + p1

NX
m=1

('m(1)� 'm(0)) (3:30)

+q2

NX
m=0

( m(1)�  m(0)):

Substituting z1 = 1 into (2.18) and subsequently letting z2 ! 1 we have

	(1; 1) =
r2(1� �2b1)

1� �2
'0(0) +

r2(1� �2(b1 + s1 + s2))

1� �2
 0(0) (3:31)

+
�2b1

1� �2
f'0(1) + p1

NX
m=1

('m(1)� 'm(0))g+
�2(b1 + s1)

1� �2
f 0(1) +

NX
m=1

( m(1)�  m(0))g:

Therefore, using the normalization condition:

�(1; 1) + 	(1; 1) = 1; (3:32)

the relations (3.28), (3.29) and noting that from (3.18), there exist a vector ei and a constant
�i such that  i(0) = ei'(0)+ �i N (0) =  N (0)(ei�+ �i) for i = 0; 1, the unknown constant

 N (0) may be determined by

 N (0) = (1� �2)�
�1 (3:33)

here

� � r2(�2 � �2b1)�0 + r2(�2 � �2(b1 + s1 + s2))(e0� + �0)

+(1� �2 + �2b1)(�1 + p1 < w'; 1 > +(1� �2 + �2(b1 + s1 + s2))(e1� + �1 + q2 < w ; 1 >
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where < �; � > represents the usual inner product between vectors, and 1 = (0; 1; � � � ; 1) the
(N + 1)-dimensional vector.

4. The special case

In the present section, we consider the special case that p2 = 0; q2 = 1, i.e., when the
queue length in the queueQ2 is less than or equal to the thresholdN , the service discipline in

Q2 is 1-limited one, and in Q1 is Bernoulli one with the probabilities 0 � p1 � 1; q1 = 1�p1.
Hereafter we write p; q instead of p1; q1 for convenience. We prove that detN (z) has exactly

N + 1 zeros in j z j< 1 by using the homotopy type of argument. If p2 = 0; q2 = 1, the
matrix G2a(z) = (g2aij (z)) becomes

g2aij (z) =

8<
:

1 if j = i; i = 1; � � � ; N
�j�1(z) if j = 1; � � � ; N + 1; i = N + 1

0 otherwise

So we can easily get the inverse G�12a (z) = (g�2aij (z)) of the matrix G2a(z) as follows

g�2aij (z) =

8>><
>>:

1 if j = i; i = 1; � � � ; N

��j�N�1(z) if j = 1; � � � ; N; i = N + 1
��N (z) if j = i = N + 1
0 otherwise

Then we can directly calculate the matrix N (z) = A1(z)�H1q(z)G
�1
2a (z)A2(z) � (nij(z)).

nij(z) =

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

�qH1;0(z)H2;0(z) if j = i+ 1; i = 1; � � � ; N

z � pG1;0(z)� q
P1

l=0H1;1�l(z)H2;l(z) if j = i; i = 2; � � � ; N

�pG1;i�j+1(z)� q
Pi�j+1

l=0 H1;i�j+1�l(z)H2;l(z) if 2 � j < i; i = 2; � � � ; N
z �G1;0(z) if j = i = 1
�G1;i�1(z) if j = 1; i = 2; � � � ; N

�G1;N (z)� �(z)��N (z)H1;0(z) if j = 1; i = N + 1
�p(G1;N�j+1(z) + �(z)�j�N�1(z)H1;0(z))

�q
PN�j+1

l=0 (H1;N�l�j+2(z)�H1;0(z) if j = 2; � � � ; N + 1;

��l+j�N�2(z))H2;l(z) i = N + 1
0 if j > i+ 1; i = 1; � � � ; N � 1:

Now we identify the singularities of the matrix N (z), i.e., determine the number of zeros

of detN (z). To do this, we study the determinant of another matrix which is deduced from
N (z) by the following steps: (i) multiplying Nth row by ��1(z), and then adding it to

N + 1th row; (ii) to the resulting matrix, multiplying Nth row by �p�(z)=qH2;0(z), and
then adding it to N +1th row again. Denoting the �nal resulting matrix byM(z), we have

detN (z) = detM(z) by construction. Hence, it is su�cient to discuss the number of the
zeros of detM(z). Note that all entries of M(z) are analytic j z j< 1. This implies that
detM(z) is analytic on j z j< 1.

Theorem 4.1. detM(z) has exactly N + 1 zeros on j z j� 1.

Proof. We prove the conclusion by the approach of the homotopy type of argument used in
the proof of Theorem 1 in Lee and Sengupta[18](also see Gail, et.al. [12],[13] for details).

First, we writeM(z) = D(z)+O(z), where D(z) is the diagonal matrix and O(z) is the o�-
diagonal matrix corresponding to M(z), namely, the diagonal entries of O(z) are all zero.
We have that the diagonal entries of D(z) are d1(z) = z �G1;0(z); di(z) = z � pG1;0(z)�
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q(H1;0(z)H2;1(z)+H1;1(z)H2;0(z)); i = 2; � � � ; N ; dN+1(z) = z�pG1;0(z)�qH1;1(z)H2;0(z).
De�ne

M(z; t) = D(z) + tO(z); 0 � t � 1: (4:1)

Note thatM(z; 1) =M(z). We �rst show that detD(z) has exactly N +1 zeros on j z j� 1.

Since detD(z) = (z � G1;0(z))(z � pG1;0(z) � q(H1;0(z)H2;1(z) + H1;1(z)H2;0(z))
N�1(z �

pG1;0(z)�qH1;1(z)H2;0(z)), we only need to prove that each equation of (i) z�G1;0(z) = 0,

(ii) z�pG1;0(z)�q(H1;0(z)H2;1(z)+H1;1(z)H2;0(z)), and (iii) z�pG1;0(z)�qH1;1(z)H2;0(z) =
0 has exactly one root on j z j� 1. First we consider the equation (i), let f(z) = z; g(z) =
G1;0(z). On j z j= 1, we have

j g(z) j�j

Z
1

0

e�(�2+�1(1�z))tdB1(t) j<

1X
i=0

j

Z
1

0

�2te
��2t

i!
e��1(1�z))tdB1(t) j� 1 =j f(z) j :

An simple application of Rouch�e's Theorem shows that z � G1;0(z) = 0 has exactly one
root on j z j� 1. Next consider the equation (ii). Let f(z) = z; g(z) = pG1;0(z) +

q(H1;0(z)H2;1(z) + H1;1(z)H2;0(z)): Note that for j � 0, H1;j(1) is the probability that
there are j arrivals during the switching time from Q2 to Q1 and the service time at Q1,

and G1;j(1) the probability that there are j arrivals during the service time at Q1. Then
by the de�nition of G1;j(z), H1;j(z) and H2;j(z), we have that

j g(z) j� pG1;0(1) + q(H1;0(1)H2;1(1) +H1;1(1)H2;0(1)) � pG1;0(1) + q(H1;0(1) +H1;1(1))

< pG1;0(1) + q

1X
j=0

H1;j(1) � p + q = 1 =j f(z) j :

Again by applying Rouch�e's Theorem, we get that the equation z�pG1;0(z)�q(H1;0(z)H2;1(z)
+H1;1(z)H2;0(z)) = 0 has exactly one root on j z j� 1. The proof of (iii) is similar to (ii).

Next, we consider detM(z; t). Note that there exists an � > 0 such that detM(z; t) is

analytic on j z j� 1 + � for t 2 [0; 1]. Since zeros of an analytic function which is not
identically zero must be isolated(see, for example, Churchill and Brown[5]), we can take
any closed contour Ĉ in the region 1 <j z j� 1 + � such that detM(z; t) 6= 0 for z 2 Ĉ and

t 2 [0; 1]. Let m(t) be the number of zeros of detM(z; t) on the region enclosed by Ĉ. By
the argument principle,

m
Ĉ
(t) =

1

2�i

I
Ĉ

@
@z
detM(z; t)

detM(z; t)
dz: (4:2)

Observing thatM(z; t) is a continuous function of t we have that m(t) is also a continuous
integer-valued function of t. Therefore, m

Ĉ
(t) = m

Ĉ
(0). Since the contour Ĉ is arbitrary

on the region 1 <j z j� 1 + �, it follows that mC(1) = mC(0) = N + 1: These complete the
proof. �

5. Waiting times

In this section we consider the LST of the waiting time distributions and the mean
waiting times at Qi; i = 1; 2. Let Wi represent the waiting time at Qi; and Ŵi(s) its LST
for i = 1; 2. Since the customers present in Qi just after the instant of service completion of

type i customer are just the customers who had arrived during the waiting time and service
time of that type i customer, we have the following relations:

r1Ŵ1(�1(1� z1))B̂1(�1(1� z1)) = �(z1; 1); j z1 j� 1; (5:1)

r2Ŵ2(�2(1� z2))B̂2(�2(1� z2)) = 	(1; z2); j z2 j� 1: (5:2)
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Therefore

E[W1] =
1

r1�1

d

dz1
�(z1; 1)jz1=1 � b1; (5:3)

E[W2] =
1

r2�2

d

dz2
	(1; z2)jz2=1 � b2: (5:4)

Substituting z2 = 1 into (2.12), and then di�erentiating in z1, we get

d

dz1
�(z1; 1)jz1=1 = r1('0(0) +  0(0))� �1s2[r2 0(0) +  0(1) + q2

NX
m=1

( m(1)�  m(0)))]

�(1� �1)�(1; 1) + '
0

0(1) +  
0

0(1) + p1

NX
m=1

'
0

m(1) + q1

NX
m=1

 
0

m(1): (5:5)

Next, substituting z1 = 1 into (2.13), we get 	(1; z2) = �(z2)=�(z2) where
�(z2) � z2 � B̂2(�2(1� z2))

�(z2) � B̂2(�2(1� z2))f (r2(z2 � B̂1(�2(1� z2))Ŝ1(�2(1� z2))'0(0)

+r2(z2 � B̂1(�2(1� z2))Ŝ1(�2(1� z2))Ŝ1(�2(1� z2))) 0(0)

+(B̂1(�2(1� z2))� 1)Ŝ1(�2(1� z2))['0(1) + p1

NX
m=1

('m(1)� 'm(0))z
m
2 ]

+(B̂1(�2(1�z2))Ŝ1(�2(1�z2))Ŝ2(�2(1�z2))�1)[ 0(1)+q2

NX
m=1

( m(1)� m(0))z
m
2 ]:

Since �(1) = �(1) = 0, using L'Hospital's rule, we get

d

dz2
	(1; z2)jz2=1 =

�
00

(1)�
0

(1)� �
0

(1)�
00

(1)

2(�
0

(1))2
(5:6)

where �
0

(1) = 1� �2, �
00

(1) = ��2b
(2)

2 and

�
0

(1) = r2(1��2b1)'0(0)+r2(1��2(b1+s1+s2)) 0(0)+�2b1['0(1)+p1

NX
m=1

('m(1)�'m(0))]

+�2(b1 + s1 + s2)[ 0(1) + q2

NX
m=1

( m(1)�  m(0))];

and

�
00

(1) = 2�2�
0

+ r2[2(1� �2b1)�2s1 � �22b
(2)

1 ]'0(0)� r2�
2
2(b1 + s1 + s2)

(2) 0(0)

+�22(b
(2)

1 + 2b1s1)['0(1) + p1

NX
m=1

('m(1)� 'm(0))] + 2�2b1p1

NX
m=1

m('m(1)� 'm(0))

+�22(b1+s1+s2)
(2)[ 0(1)+q2

NX
m=1

( m(1)� m(0))]+2�2(b1+s1+s2)q2

NX
m=1

m( m(1)� m(0)):

where (b1 + s1 + s2)
(2) = b

(2)

1 + s
(2)

1 + s
(2)

2 + 2b1s1 + 2b1s2 + 2s1s2. As shown in (5.5), the

di�erential values '
0

m(1),  
0

m(1); 0 � m � N are necessary to obtain d�(1)(z1; 1)=dz1jz1=1.
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One can easily calculate these values by di�erentiating (3.20) and (3.17) in z and then
letting z ! 1.

d

dz
'(z)jz=1 = N

�1(z)

�
 N (0)((

d

dz
F (z))�+

d

dz
E(z))� (

d

dz
N (z))'(z)

�
z=1

and

d

dz
 (z)jz=1 = G�12a (z)

�
(
d

dz
A2(z))'(z) +A2(z)(

d

dz
'(z)) + (

d

dz
H2(z))'(0)

+(
d

dz
G2b(z)) (0) �(

d

dz
G2a(z)) (z)

�
z=1

:

6. Conclusions

In this paper, we have presented a service schedule of the Bernoulli-Threshold service

schedule for a polling system consisting of two-parallel queues and single server. This service
schedule is more exible because only by simply choosing the threshold values N and the

probabilities p1; p2 for the queues Q1; Q2, one can easily assign a higher priority to a queue,
for example, a higher priority to the real-time tra�c over the non-real-time tra�c. Hence
it can be used for meeting the quality of various service requirements by di�erent type of

tra�c. For this model, we have carried out the analysis of the system performance and
derived the generating functions of the joint stationary distribution of the queue lengths at

the service completion instants. Furthermore, we also have determined the Laplace-Stieltjes
transforms of waiting times for both queues, and obtained their mean waiting times. Uti-
lizing these results, we can determine other performances of the system, for example, the

optimal threshold values. As have been seen, our model includes those studied by Lee and
Sengupta[15], and Boxma and Down[4] as the special cases. This generalizes the known

results about polling systems with two queues and signal server.

Acknowledgement. The authors would like to thank the referee for valuable com-
ments towards the improvement of this paper.
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