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Abstract. Let (C ; +) be the additive group of complex numbers and z 2 C nRwith jzj > 1.

For each k 2 N , let I0

k
(z) be the set of all complex numbers of a form �1z

k1 + �2z
k2 + � � �+

�nz
kn , where �i 2 Z, ki 2 N (i = 1; 2; � � � ; n), k � k1 < k2 < � � � < kn and n 2 N . We prove

that inffjwj : w 2 I0

k
(z)g ! 1 (k ! 1) if and only if z is an algebraic integer with degree

2. In this case, we can easily de�ne a metrizable group topology � on (C ; +) such that the

sequence fzn : n 2 Ng converges to 0 in the topo logical group (C ; +; �).

We use the same notation as in [2]. Let (C ;+) be the additive group of complex numbers.
For each z 2 C and each k 2 N , let I 0k(z) be the set of all complex numbers w which can

be written as a form

w = �1z
k1 + �2z

k2 + � � � + �nz
kn ;

where �i 2 Z, ki 2 N (i = 1; 2; � � � ; n), k � k1 < k2 < � � � < kn and n 2 N . In the previous

paper [3], we proved that for every z 2 C with jzj > 1 , there exists a metrizable group
topology � on (C ;+) such that � is coarser than the Euclidean topology and the sequence

fzn : n 2 Ng converges to 0 in the topological group (C ;+; �). In particular, if z satis�es
that

(1) inffjwj : w 2 I 0k(z) n f0gg ! 1 (k!1);

then such a topology can easily be obtained by simply taking the family B(z) = fu+ Uk :
u 2 C ; k 2 Ng as a base, where Uk =

S
w2I0

k
(z)fu 2 C : ju�wj < 1=2kg for each k 2 N . The

main purpose of this paper is to determine a complex number z satisfying (1) by proving

the following thorem:

Theorem 1. Let z 2 C nR with jzj > 1. Then, z satis�es (1) if and only if z is an algebraic

integer with degree 2, i.e., z2 + �z + � = 0 for some �; � 2Z.

The authors proved in [3] that a real number z satis�es (1) if and onl y if z 2 Z, but
they had been unable to determine such a complex number z. For z 2 C n R with jzj > 1
and satisfying (1), the topology on (C ;+) generated by the base B(z) is called the simple

topology induced by z and is denoted by � 0(z).

To prove Theorem 1, we need some notation and a lemma. As usual, let Z[x] denote
the set of all polynomials with integral coe�cients and rZ= frn : n 2 Zg for each r 2 R.
Further, letZ0[x] be the subset ofZ[x] consisting of all polynomials such that the coe�cient
of the term with the maximum degree is 1. For a set A, ]A denotes the cardinality of A.
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Lemma 2. Let z 2 C n R with jzj > 1. Assume that z is not an algebraic integer with

degree 2. Then, there exists f(x) 2 Z[x] such that 0 < jf(z)j < 1.

Proof. First, we consider the case that z is not an algebraic number with degree 2. In this
case, z is either an transcendental number or an algebraic number with degree � 3. Fix
n 2 N with jzj � n and let � = 25. Let L be the set of all complex numbers w of the form

w = z3 + a1z
2 + a2z + a3;

where ai 2 Z(i = 1; 2; 3), ja1j � �n, ja2j � �n2 and ja3j � �n3. Then, L contains no same
elements, because z is neither an algebraic number with degree 2 nor a real number. Hence,

we have that

(2) ]L = (2�n+ 1)(2�n2 + 1)(2�n3 + 1) > 8�3n6 = 218n6:

On the other hand, jwj � n3 + �n3 + �n3 + �n3 = (1 + 3�)n3 for each w 2 L, and hence, L
is included in a square S with an edge of length 2(1 + 3�)n3. Now, we decompose S into

16(1 + 3�)2n6 many small squares with an edge o f length 1=2. Note that 16(1 + 3�)2n6 <
24(4�)2n6 = 218n6. This combined with (2) implies that at least one of the small squares
contains two distinct elements w;w0 2 L. Since 0 < jw � w0j < 1, this means that there is

f(x) 2Z[x] such that 0 < jf(z)j < 1.

Next, we consider the case that z is an algebraic number with degree 2. Since z is not

an algebraic integer, there exist a0; a1; a2 2Zsuch tha t

(3) a0z
2 + a1z + a2 = 0;

where a0 � 2 and the greatest common divisor (a0; a1; a2) = 1. If d = (a0; a1) � 2, then
a0=d; a1=d 2Z, but a2=d 62Zbecause (a0; a1; a2) = 1. De�ne f(x) = (a0=d)x

2+(a1=d)x+c,

where c is the smallest integer greater than a2=d. Then, 0 < jf(z)j = j(a2=d) � cj < 1,
because (a0=d)z

2 + (a1=d)z + (a2=d) = 0 by (3) .. Thus, we need only consider the case
that (a0; a1) = 1. In this case, suppose on the contrary that there is no f(x) 2 Z[x] such
that 0 < jf(z)j < 1. Then, we have the following claim:

Claim. If g(x) 2 Z0[x] and 0 < jRe(g(z))j < 1=2 and Im(g(z)) 6= 0, then there is h(x) 2
Z0[x] such that 0 < jRe(h(z))j < 1=2 and 0 < j Im(h(z))j < j Im(g(z))j.

Proof. Since Re(g(z)) 6= 0 and Im(g(x)) 6= 0, g(z)2 62 R, and hence, we can write g(z)2 =
� + 
i for some � 2 R and 
 2 R n f0g. Since (g(z)2 � �)2 = �
2,

(4) g(z)4 � 2�g(z)2 + �2 + 
2 = 0:

If � 2 (1=2)Z, then �2 + 
2 62 Z, because z is not an algebraic integer. Let f(x) =
g(x)4 � 2�g(x)2 + c, where c is the smallest integer greater tha n �2 + 
2. Then, 0 <

jf(z)j = jc � (�2 + 
2)j < 1 by (4), which contradicts our assumption. Hence, we have
� 62 (1=2)Z, which implies that 0 < j���j < 1=2 for some � 2Z. Let h(x) = g(x)2��. Since
Re(h(z)) = ���, we have 0 < jRe(h(z))j < 1=2. Since Im(g(z)2) 6= 0 and jRe(g(z))j < 1=2,

we have

0 < j Im(h(z))j = j Im(g(z)2)j = 2jRe(g(z))j � j Im(g(z))j < j Im(g(z))j:

This completes the proof. �
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Let us return to the proof of Lemma 2. Note that

(5) z =
�a1 �

p
D

2a0
; where D < 0

by (3). Since (a0; a1) = 1, there is k 2 Z such that 0 < j(�a1=2a0)� kj < 1=2. De�ne
g1(x) = x� k 2 Z0[x]. Then, Re(g1(z)) = (�a1=2a0)� k by (5). Hence, 0 < jRe(g1(z))j <
1=2 and Im(g1(z)) = Im(z) 6= 0. By Claim, we can inductively de�ne a sequence fgi(x) :
i 2 Ng � Z0[x] such that 0 < jRe(gi(z))j < 1=2 and 0 < j Im(gi+1(z))j < j Im(gi(z))j for
each i 2 N . Thus, we can �nd distinct i; j 2 N such that 0 < jgi(z) � gj(z)j < 1. Since
f(x) = gi(x)� gj(x) 2 Z[x], this contradicts our assumption. �

Let z 2 C nR be an algebraic integer with degree 2. Then, z is contained in the imaginary
quadratic �eld K = Q(

p
m), wher e m is a negative square free integer. As is well known,

the ring aK of algebraic integers in K is a lat tice, i.e., a free Z-module of rank 2 whose
basis are 1 and u, where u = (1 +

p
m)=2 if m � 1 (mod 4) and u =

p
m if m � 2 or 3

(mod 4).

Proof of Theorem 1. Let z 2 C nR with jzj > 1. If z is an algebraic integer with degree 2,

then f(z) 2 aK for each f(x) 2 Z[x], where aK is de�ned as above. Since aK is a lattice,
we have � = minfjf(z)j : f(z) 6= 0; f(x) 2 Z[x]g > 0. For each w 2 I 0k(z) n f0g, w can be

written as w = zkf(z) for some f(x) 2 Z[x], and thus,

(6) jwj = jzjkjf(z)j � jzjk�:

Hence, inffjwj : w 2 I 0k(z) n f0gg = jzjk�, which implies that z satis�es (1). Conversely,

assume that z is not an algebraic integer with degree 2. By Lemma 2, there is f(x) 2Z[x]
such that 0 < jf(z)j < 1. Let k 2 N be �xed. Then, zkf(z)n 2 I 0k(z) n f0g for each n 2 N .

Since jzkf(z)nj = jzjkjf(z)jn ! 0 (n!1), we have

inffjwj : w 2 I 0k(z) n f0gg = 0:

Hence, z fails to satisfy (1), which completes the proof. �

Corollary 3. Assume that either z 2Zor z is an imaginary algebraic integer with degree

2, and that jzj > 1. Then, there exists a metrizable group topology � on (C ;+) such that

� is coarser than the Euclidean topology and the sequence f�nzn : n 2 Ng coverges to 0 in

the topological group (C ;+; � ) for each � 2Z.
Proof. By Theorem 1, z satis�es (1). Hence, the simple topology � 0(z) induced by z is a

required topology; i nfact, f�nzn : n 2 Ng converges to 0 in (C ;+; � 0 (z)) for each � 2 Z,
because �nzn 2 I 0k(z) whenever n � k, for every k; n 2 N . �

Remark 1. It is open whether, for every two z1; z2 2 C with z1 6= z2 and jzij > 1 (i = 1; 2),
there is a metrizable group topology � on (C ;+) such that � is coarser than the Euclidean

topology and both fzn1 : n 2 Ng and fzn2 : n 2 Ng converge to 0 in (C ;+; �). In particular,
the following question asked by Hattori [1] still remains open: Does there exist a metrizable
group topology � on (R;+) such that � is coarser than the Euclidean topology and both

f2n : n 2 Ng and f3n : n 2 Ng converge to 0 in the topological group (R;+; �)?

Remark 2. Theorem 1 enables us to construct the simple topology � 0(z) by a geometrical
method. To show this, let z 2 C nR be a complex number, with jzj > 1, satisfying (1). Then,
z is an algebraic integer with degree 2 by Theorem 1. Let aK be the same as the one de�ned

before the proof of Theorem 1. Let k 2 N be �xed for a while. Since I 0k(z) is a subgroup
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of aK , I
0

k(z) is also a lattice, a nd hence, the quotient topological group Tk = C =I 0k (z) is

homeomorphic to the torus. Let hk : C ! Tk be the natural homomorphism. If we de�ne
hk : C ! Tk for each k 2 N , then we have a continuous homo morphism

h : C ! T =
Y

k2N

Tk

such that hk = �k � h for each k 2 N , where �k : T ! Tk is the projection. Let �(z) be
the relative topology on h[C ] induced by the product topology on T . Since zn 2 I 0k(z) for
each k � n, the sequence fh(zn) : n 2 Ng co nverges to h(0) with respect to the topology

�(z). Now, observe that condition (1) implies that h is a monomorphism. Moreover, it is
not di�cult to see that the map h : (C ; � 0 (z))! (h[C ]; �(z)) is a homeomorphism. Hence,

we can consider that �(z) = � 0(z).
For an integer r 2 Z, I 0k(r) coincides with the set of all integral multiples of rk, i.e.,

I 0k(r) = rkZ for each k 2 N . If jrj > 1, then the topology � 0
R
(r) on R generated by a

base fs + Vk : s 2 R; k 2 Ng, where Vk =
S
n2Z fx 2 R : jx � rknj < 1=2kg, is also a

metrizable group topology on R such that � 0
R
(r) is coarser than the Euclidean topology

and the sequence frn : n 2 Ng converges to 0 in the topological group (R;+; � 0
R
(r)). The

topology � 0
R
(r) was �rst studied by Hattori [2] for r = 2. Similarly to the above, � 0

R
(r) is

obtained as a relative topology induced by the product topology on the product of countably

many circles fR=rkZ: k 2 Ng.
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