GROUP TOPOLOGIES ON THE COMPLEX NUMBERS WITH SPECIAL CONVERGENCE II

Nobuyuki Murase and Haruto Ohta

Received November 17, 1998

Abstract

Let $(\mathbb{C},+$) be the additive group of complex numbers and $z \in \mathbb{C} \backslash \mathbb{R}$ with $|z|>1$. For each $k \in N$, let $I_{k}^{\prime}(z)$ be the set of all complex numbers of a form $\alpha_{1} z^{k_{1}}+\alpha_{2} z^{k_{2}}+\cdots+$ $\alpha_{n} z^{k_{n}}$, where $\alpha_{i} \in \mathbb{Z}, k_{i} \in N(i=1,2, \cdots, n), k \leq k_{1}<k_{2}<\cdots<k_{n}$ and $n \in N$. We prove that $\inf \left\{|w|: w \in I_{k}^{\prime}(z)\right\} \rightarrow \infty(k \rightarrow \infty)$ if and only if z is an algebraic integer with degree 2. In this case, we can easily define a metrizable group topology τ on $(\mathbb{C},+$) such that the sequence $\left\{z^{n}: n \in N\right\}$ converges to 0 in the topo logical group $(\mathbb{C},+, \tau)$.

We use the same notation as in [2]. Let $(\mathbb{C},+$) be the additive group of complex numbers. For each $z \in \mathbb{C}$ and each $k \in N$, let $I_{k}^{\prime}(z)$ be the set of all complex numbers w which can be written as a form

$$
w=\alpha_{1} z^{k_{1}}+\alpha_{2} z^{k_{2}}+\cdots+\alpha_{n} z^{k_{n}},
$$

where $\alpha_{i} \in \mathbb{Z}, k_{i} \in N(i=1,2, \cdots, n), k \leq k_{1}<k_{2}<\cdots<k_{n}$ and $n \in N$. In the previous paper [3], we proved that for every $z \in \mathbb{C}$ with $|z|>1$, there exists a metrizable group topology τ on $(\mathbb{C},+)$ such that τ is coarser than the Euclidean topology and the sequence $\left\{z^{n}: n \in N\right\}$ converges to 0 in the topological group ($\left.\mathbb{C},+, \tau\right)$. In particular, if z satisfies that

$$
\begin{equation*}
\inf \left\{|w|: w \in I_{k}^{\prime}(z) \backslash\{0\}\right\} \rightarrow \infty \quad(k \rightarrow \infty), \tag{1}
\end{equation*}
$$

then such a topology can easily be obtained by simply taking the family $\mathcal{B}(z)=\left\{u+U_{k}\right.$: $u \in \mathbb{C}, k \in N\}$ as a base, where $U_{k}=\bigcup_{w \in I_{k}^{\prime}(z)}\left\{u \in \mathbb{C}:|u-w|<1 / 2^{k}\right\}$ for each $k \in N$. The main purpose of this paper is to determine a complex number z satisfying (1) by proving the following thorem:

Theorem 1. Let $z \in \mathbb{C} \backslash \mathbb{R}$ with $|z|>1$. Then, z satisfies (1) if and only if z is an algebraic integer with degree 2 , i.e., $z^{2}+\alpha z+\beta=0$ for some $\alpha, \beta \in \mathbb{Z}$.

The authors proved in [3] that a real number z satisfies (1) if and onl y if $z \in \mathbb{Z}$, but they had been unable to determine such a complex number z. For $z \in \mathbb{C} \backslash \mathbb{R}$ with $|z|>1$ and satisfying (1), the topology on $(\mathbb{C},+$) generated by the base $\mathcal{B}(z)$ is called the simple topology induced by z and is denoted by $\tau^{\prime}(z)$.

To prove Theorem 1, we need some notation and a lemma. As usual, let $\mathbb{Z}[x]$ denote the set of all polynomials with integral coefficients and $r \mathbb{Z}=\{r n: n \in \mathbb{Z}\}$ for each $r \in \mathbb{R}$. Further, let $\mathbb{Z}_{0}[x]$ be the subset of $\mathbb{Z}[x]$ consisting of all polynomials such that the coefficient of the term with the maximum degree is 1 . For a set $A, \sharp A$ denotes the cardinality of A.

[^0]Lemma 2. Let $z \in \mathbb{C} \backslash \mathbb{R}$ with $|z|>1$. Assume that z is not an algebraic integer with degree 2. Then, there exists $f(x) \in \mathbb{Z}[x]$ such that $0<|f(z)|<1$.

Proof. First, we consider the case that z is not an algebraic number with degree 2. In this case, z is either an transcendental number or an algebraic number with degree ≥ 3. Fix $n \in N$ with $|z| \leq n$ and let $\delta=2^{5}$. Let L be the set of all complex numbers w of the form

$$
w=z^{3}+a_{1} z^{2}+a_{2} z+a_{3},
$$

where $a_{i} \in \mathbb{Z}(i=1,2,3),\left|a_{1}\right| \leq \delta n,\left|a_{2}\right| \leq \delta n^{2}$ and $\left|a_{3}\right| \leq \delta n^{3}$. Then, L contains no same elements, because z is neither an algebraic number with degree 2 nor a real number. Hence, we have that

$$
\begin{equation*}
\sharp L=(2 \delta n+1)\left(2 \delta n^{2}+1\right)\left(2 \delta n^{3}+1\right)>8 \delta^{3} n^{6}=2^{18} n^{6} . \tag{2}
\end{equation*}
$$

On the other hand, $|w| \leq n^{3}+\delta n^{3}+\delta n^{3}+\delta n^{3}=(1+3 \delta) n^{3}$ for each $w \in L$, and hence, L is included in a square S with an edge of length $2(1+3 \delta) n^{3}$. Now, we decompose S into $16(1+3 \delta)^{2} n^{6}$ many small squares with an edge of length $1 / 2$. Note that $16(1+3 \delta)^{2} n^{6}<$ $2^{4}(4 \delta)^{2} n^{6}=2^{18} n^{6}$. This combined with (2) implies that at least one of the small squares contains two distinct elements $w, w^{\prime} \in L$. Since $0<\left|w-w^{\prime}\right|<1$, this means that there is $f(x) \in \mathbb{Z}[x]$ such that $0<|f(z)|<1$.

Next, we consider the case that z is an algebraic number with degree 2. Since z is not an algebraic integer, there exist $a_{0}, a_{1}, a_{2} \in \mathbb{Z}$ such that

$$
\begin{equation*}
a_{0} z^{2}+a_{1} z+a_{2}=0 \tag{3}
\end{equation*}
$$

where $a_{0} \geq 2$ and the greatest common divisor $\left(a_{0}, a_{1}, a_{2}\right)=1$. If $d=\left(a_{0}, a_{1}\right) \geq 2$, then $a_{0} / d, a_{1} / d \in \mathbb{Z}$, but $a_{2} / d \notin \mathbb{Z}$ because $\left(a_{0}, a_{1}, a_{2}\right)=1$. Define $f(x)=\left(a_{0} / d\right) x^{2}+\left(a_{1} / d\right) x+c$, where c is the smallest integer greater than a_{2} / d. Then, $0<|f(z)|=\left|\left(a_{2} / d\right)-c\right|<1$, because $\left(a_{0} / d\right) z^{2}+\left(a_{1} / d\right) z+\left(a_{2} / d\right)=0$ by (3).. Thus, we need only consider the case that $\left(a_{0}, a_{1}\right)=1$. In this case, suppose on the contrary that there is no $f(x) \in \mathbb{Z}[x]$ such that $0<|f(z)|<1$. Then, we have the following claim:

Claim. If $g(x) \in \mathbb{Z}_{0}[x]$ and $0<|\operatorname{Re}(g(z))|<1 / 2$ and $\operatorname{Im}(g(z)) \neq 0$, then there is $h(x) \in$ $\mathbb{Z}_{0}[x]$ such that $0<|\operatorname{Re}(h(z))|<1 / 2$ and $0<|\operatorname{Im}(h(z))|<|\operatorname{Im}(g(z))|$.
Proof. Since $\operatorname{Re}(g(z)) \neq 0$ and $\operatorname{Im}(g(x)) \neq 0, g(z)^{2} \notin \mathbb{R}$, and hence, we can write $g(z)^{2}=$ $\beta+\gamma i$ for some $\beta \in \mathbb{R}$ and $\gamma \in \mathbb{R} \backslash\{0\}$. Since $\left(g(z)^{2}-\beta\right)^{2}=-\gamma^{2}$,

$$
\begin{equation*}
g(z)^{4}-2 \beta g(z)^{2}+\beta^{2}+\gamma^{2}=0 \tag{4}
\end{equation*}
$$

If $\beta \in(1 / 2) \mathbb{Z}$, then $\beta^{2}+\gamma^{2} \notin \mathbb{Z}$, because z is not an algebraic integer. Let $f(x)=$ $g(x)^{4}-2 \beta g(x)^{2}+c$, where c is the smallest integer greater tha $\mathrm{n} \beta^{2}+\gamma^{2}$. Then, $0<$ $|f(z)|=\left|c-\left(\beta^{2}+\gamma^{2}\right)\right|<1$ by (4), which contradicts our assumption. Hence, we have $\beta \notin(1 / 2) \mathbb{Z}$, which implies that $0<|\beta-\alpha|<1 / 2$ for some $\alpha \in \mathbb{Z}$. Let $h(x)=g(x)^{2}-\alpha$. Since $\operatorname{Re}(h(z))=\beta-\alpha$, we have $0<|\operatorname{Re}(h(z))|<1 / 2$. Since $\operatorname{Im}\left(g(z)^{2}\right) \neq 0$ and $|\operatorname{Re}(g(z))|<1 / 2$, we have

$$
0<|\operatorname{Im}(h(z))|=\left|\operatorname{Im}\left(g(z)^{2}\right)\right|=2|\operatorname{Re}(g(z))| \cdot|\operatorname{Im}(g(z))|<|\operatorname{Im}(g(z))|
$$

This completes the proof.

Let us return to the proof of Lemma 2. Note that

$$
\begin{equation*}
z=\frac{-a_{1} \pm \sqrt{D}}{2 a_{0}}, \quad \text { where } D<0 \tag{5}
\end{equation*}
$$

by (3). Since $\left(a_{0}, a_{1}\right)=1$, there is $k \in \mathbb{Z}$ such that $0<\left|\left(-a_{1} / 2 a_{0}\right)-k\right|<1 / 2$. Define $g_{1}(x)=x-k \in \mathbb{Z}_{0}[x]$. Then, $\operatorname{Re}\left(g_{1}(z)\right)=\left(-a_{1} / 2 a_{0}\right)-k$ by (5). Hence, $0<\left|\operatorname{Re}\left(g_{1}(z)\right)\right|<$ $1 / 2$ and $\operatorname{Im}\left(g_{1}(z)\right)=\operatorname{Im}(z) \neq 0$. By Claim, we can inductively define a sequence $\left\{g_{i}(x)\right.$: $i \in N\} \subseteq \mathbb{Z}_{0}[x]$ such that $0<\left|\operatorname{Re}\left(g_{i}(z)\right)\right|<1 / 2$ and $0<\left|\operatorname{Im}\left(g_{i+1}(z)\right)\right|<\left|\operatorname{Im}\left(g_{i}(z)\right)\right|$ for each $i \in N$. Thus, we can find distinct $i, j \in N$ such that $0<\left|g_{i}(z)-g_{j}(z)\right|<1$. Since $f(x)=g_{i}(x)-g_{j}(x) \in \mathbb{Z}[x]$, this contradicts our assumption.

Let $z \in \mathbb{C} \backslash \mathbb{R}$ be an algebraic integer with degree 2 . Then, z is contained in the imaginary quadratic field $K=\mathbb{Q}(\sqrt{m})$, wher e m is a negative square free integer. As is well known, the ring ${ }_{K}$ of algebraic integers in K is a lat tice, i.e., a free \mathbb{Z}-module of rank 2 whose basis are 1 and u, where $u=(1+\sqrt{m}) / 2$ if $m \equiv 1(\bmod 4)$ and $u=\sqrt{m}$ if $m \equiv 2$ or 3 $(\bmod 4)$.

Proof of Theorem 1. Let $z \in \mathbb{C} \backslash \mathbb{R}$ with $|z|>1$. If z is an algebraic integer with degree 2 , then $f(z) \in_{K}$ for each $f(x) \in \mathbb{Z}[x]$, where ${ }_{K}$ is defined as above. Since K_{K} is a lattice, we have $\alpha=\min \{|f(z)|: f(z) \neq 0, f(x) \in \mathbb{Z}[x]\}>0$. For each $w \in I_{k}^{\prime}(z) \backslash\{0\}$, w can be written as $w=z^{k} f(z)$ for some $f(x) \in \mathbb{Z}[x]$, and thus,

$$
\begin{equation*}
|w|=|z|^{k}|f(z)| \geq|z|^{k} \alpha \tag{6}
\end{equation*}
$$

Hence, $\inf \left\{|w|: w \in I_{k}^{\prime}(z) \backslash\{0\}\right\}=|z|^{k} \alpha$, which implies that z satisfies (1). Conversely, assume that z is not an algebraic integer with degree 2. By Lemma 2, there is $f(x) \in \mathbb{Z}[x]$ such that $0<|f(z)|<1$. Let $k \in N$ be fixed. Then, $z^{k} f(z)^{n} \in I_{k}^{\prime}(z) \backslash\{0\}$ for each $n \in N$. Since $\left|z^{k} f(z)^{n}\right|=|z|^{k}|f(z)|^{n} \rightarrow 0(n \rightarrow \infty)$, we have

$$
\inf \left\{|w|: w \in I_{k}^{\prime}(z) \backslash\{0\}\right\}=0
$$

Hence, z fails to satisfy (1), which completes the proof.
Corollary 3. Assume that either $z \in \mathbb{Z}$ or z is an imaginary algebraic integer with degree 2 , and that $|z|>1$. Then, there exists a metrizable group topology τ on $(\mathbb{C},+)$ such that τ is coarser than the Euclidean topology and the sequence $\left\{\alpha^{n} z^{n}: n \in N\right\}$ coverges to 0 in the topological group $(\mathbb{C},+, \tau)$ for each $\alpha \in \mathbb{Z}$.

Proof. By Theorem 1, z satisfies (1). Hence, the simple topology $\tau^{\prime}(z)$ induced by z is a required topology; i nfact, $\left\{\alpha^{n} z^{n}: n \in N\right\}$ converges to 0 in $\left(\mathbb{C},+, \tau^{\prime}(z)\right)$ for each $\alpha \in Z$, because $\alpha^{n} z^{n} \in I_{k}^{\prime}(z)$ whenever $n \geq k$, for every $k, n \in N$.
Remark 1. It is open whether, for every two $z_{1}, z_{2} \in \mathbb{C}$ with $z_{1} \neq z_{2}$ and $\left|z_{i}\right|>1(i=1,2)$, there is a metrizable group topology τ on $(\mathbb{C},+)$ such that τ is coarser than the Euclidean topology and both $\left\{z_{1}^{n}: n \in N\right\}$ and $\left\{z_{2}^{n}: n \in N\right\}$ converge to 0 in $(\mathbb{C},+, \tau)$. In particular, the following question asked by Hattori [1] still remains open: Does there exist a metrizable group topology τ on $(\mathbb{R},+)$ such that τ is coarser than the Euclidean topology and both $\left\{2^{n}: n \in N\right\}$ and $\left\{3^{n}: n \in N\right\}$ converge to 0 in the topological group $(\mathbb{R},+, \tau)$?
Remark 2. Theorem 1 enables us to construct the simple topology $\tau^{\prime}(z)$ by a geometrical method. To show this, let $z \in \mathbb{C} \backslash \mathbb{R}$ be a complex number, with $|z|>1$, satisfying (1). Then, z is an algebraic integer with degree 2 by Theorem 1 . Let ${ }_{K}$ be the same as the one defined before the proof of Theorem 1 . Let $k \in N$ be fixed for a while. Since $I_{k}^{\prime}(z)$ is a subgroup
of ${ }_{K}, I_{k}^{\prime}(z)$ is also a lattice, a nd hence, the quotient topological group $T_{k}=\mathbb{C} / I_{k}^{\prime}(z)$ is homeomorphic to the torus. Let $h_{k}: \mathbb{C} \rightarrow T_{k}$ be the natural homomorphism. If we define $h_{k}: \mathbb{C} \rightarrow T_{k}$ for each $k \in N$, then we have a continuous homo morphism

$$
h: \mathbb{C} \rightarrow T=\prod_{k \in N} T_{k}
$$

such that $h_{k}=\pi_{k} \circ h$ for each $k \in N$, where $\pi_{k}: T \rightarrow T_{k}$ is the projection. Let $\rho(z)$ be the relative topology on $h[\mathbb{C}]$ induced by the product topology on T. Since $z^{n} \in I_{k}^{\prime}(z)$ for each $k \leq n$, the sequence $\left\{h\left(z^{n}\right): n \in N\right\}$ co nverges to $h(0)$ with respect to the topology $\rho(z)$. Now, observe that condition (1) implies that h is a monomorphism. Moreover, it is not difficult to see that the map $h:\left(\mathbb{C}, \tau^{\prime}(z)\right) \rightarrow(h[\mathbb{C}], \rho(z))$ is a homeomorphism. Hence, we can consider that $\rho(z)=\tau^{\prime}(z)$.

For an integer $r \in \mathbb{Z}, I_{k}^{\prime}(r)$ coincides with the set of all integral multiples of r^{k}, i.e., $I_{k}^{\prime}(r)=r^{k} \mathbb{Z}$ for each $k \in N$. If $|r|>1$, then the topology $\tau_{\mathbb{R}}^{\prime}(r)$ on \mathbb{R} generated by a base $\left\{s+V_{k}: s \in \mathbb{R}, k \in N\right\}$, where $V_{k}=\bigcup_{n \in \mathbb{Z}}\left\{x \in \mathbb{R}:\left|x-r^{k} n\right|<1 / 2^{k}\right\}$, is also a metrizable group topology on \mathbb{R} such that $\tau_{\mathbb{R}}^{\prime}(r)$ is coarser than the Euclidean topology and the sequence $\left\{r^{n}: n \in N\right\}$ converges to 0 in the topological group $\left(\mathbb{R},+, \tau_{\mathbb{R}}^{\prime}(r)\right)$. The topology $\tau_{\mathbb{R}}^{\prime}(r)$ was first studied by Hattori [2] for $r=2$. Similarly to the above, $\tau_{\mathbb{R}}^{\prime}(r)$ is obtained as a relative topology induced by the product topology on the product of countably many circles $\left\{\mathbb{R} / r^{k} \mathbb{Z}: k \in N\right\}$.

References

1. Y. Hattori, Enlarging the convergence on the real line via metrizable group topolo gies, Lecture in the JAMS Annual Meeting at Kobe University, August 29, 1997.
2. Y. Hattori, A metrizable group topology on the real line with special convergences, preprint (1997).
3. N. Murase and H. Ohta, Group topologies on the complex numbers with special convergence, to appear in Math. Japonica.

Faculty of Education, Tokoha Gakuen University, 1-22-1 Sena, Shizuoka, 420-0911 Japan

Faculty of Education, Shizuoka University, Ohya, Shizuoka, 422-8529 Japan
E-mail: h-ohta@ed.shizuoka.ac.jp

[^0]: 1991 Mathematics Subject Classification. 54A20, 22A05.
 Key words and phrases. topological group, convergence, algebraic integer.

