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Abstract. In this paper, the class of pseudo-commutative po-semigroups is studied. It

is noted that pseudo-commutative po-semigroups are special weakly commutative po-

semigroups. We will show that a pseudo-commutative po-semigroup can be decomposed

into a semilattice of Archimedean po-semigroups and such decomposition may not be

unique.

By a po-semigroup, we mean a semigroup S endowed with a partial order \� " such

that the multiplication of S is compatible with \ � ", that is, a � b implies that xa � xb

and ax � bx for all x 2 S. Po-semigroups with a greatest elements e are called poe-

semigroups. Poe-semigroups were �rstly studied by Kehayopulu in [5], [12] and [8]. We

call a po-semigroup S weakly commutative if for all x; y 2 S, there exists a positive integer

n 2 N such that (xy)n � yax for some element a 2 S. It was announced by Kehayopulu

in [11] that a po-semigroup is weakly commutative if and only if for every x 2 S, N(x) =

fy 2 Sjxn 2 (ySy] for some n 2 Ng. Although her result is very close to the form

N(x) = fy 2 S j xn 2 ySy for some n 2 Ng, for every x 2 S, obtained by Petrich in [17],

the proof is not the same since the partial order \� " implemented on S is mathematically

di�erent from \ 2 ". She also proved in [12] that a poe-semigroup S is weakly commutative

if and only if N(x) = fy 2 Sjxk � yey; for some k 2 Ng, for all x 2 S. Her results were

later on re-obtained and reproved by Jing and Chen in [2].

In this paper, we investigate a special subclass of the class of weakly commutative po-

semigroups, namely, the class of pseudo-commutative po-semigroups as this class of po-

semigroups has some interesting properties of its own. By a right pseudo-commutative po-

semigroup, we mean an ordered semigroup S such that (xy)n � xy� for all x; y 2 S and some

positive integers n and �. Left pseudo-commutative po-semigroup can be dually de�ned.

It is clear that the left pseudo-commutative po-semigroup is the dual of the right pseudo-

commutative po-semigroup. The right (left) pseudo-commutative po-semigroup will be

called the pseudo-commutative po-semigroup if no possible ambiguity arises. We will show

that a pseudo-commutative po-semigroup can be expressed as a semilattice of Archimedean

po-semigroups and such semilattice decompositions may not be unique.

For terminologies and de�nitions not given in this paper, the reader is referred to Petrich

[17] and Kehayopulu [12], [15]. Throughout this paper, unless otherwise stated, S is always

a po-semigroup (S; �;�).

To start with, we �rst notice that pseudo-commutative po-semigroups are special weakly

commutative po-semigroups. We now cite an example in [3] to show that there exist weakly

commutative po-semigroups which are not pseudo-commutative.
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Example 1 ([3]) Let S = fa; b; c; dg be a set with the following Cayley table and Hasse

diagram

� a b c d

a a a a a

b a b b a

c a c c a

d a a a d c

b

a

d

Then (S; �;�) is a po-semigroup. (For the method of checking, the reader is referred to

Kehayopulu in [7], [13] and [14] ). Since (bc)n = b in the above table, for all n 2 N , we have

b = (bc)n 6� c�b = c and (bc)n = b 6� cb� for all positive integers n and �. Hence S is not

pseudo-commutative. On the other hand, S is weakly commutative since (xy)n � ytx for

some t 2 S, for instance, (bc)n = b � cab = a, where a is not in the subsemigroup generated

by fb; cg. This example thus illustrates that the class of pseudo-commutative po-semigroups

is indeed a proper subclass of the class of weakly commutative po-semigroups.

There are also some other proper subclasses of weakly commutative po-semigroups such

as the classes of cyclic commutative po-semigroups, strictly cyclic-commutative po-semigroups

and weakly cyclic commutative po-semigroups etc (cf. [3]). The relationships among these

subclasses of weakly commutative po-semigroups, including the pseudo-commutative po-

semigroups have recently been described by the authors in [3]. We now study the semilat-

tice decomposition of pseudo-commutative po-semigroups so that the structure of this kind

of po-semigroups can be further investigated and described. We point out here again that

a pseudo-commutative po-semigroup is even not necessarily a weakly cyclic commutative

po-semigroup. The following is an example of pseudo-commutative po-semigroup which is

not weakly cyclic.

Example 2 (cf. [3]) Let S = fa; b; c; dg be a set with Cayley table and Hasse diagram

shown below:

� a b c d

a b b c c

b b b c c

c c c c c

d c c c c

�a

b

c

d

Then, by using the method of Kehayopulu ([13], [14]), we can verify that S is a po-

semigroup. (The checking is omitted). Clearly S is pseudo-commutative but not weakly

3-cyclic commutative because (adb)n = c 6� b = ba. Thus the class of weakly cyclic com-

mutative po-semigroups and the class of pseudo-commutative po-semigroups are di�erent

sub-classes of the class of weakly commutative po-semigroups.

To study the semilattice decomposition of pseudo-commutative po-semigroups, we recall

the following de�nitions and notations.

De�nition 3 (cf. [12]). A subsemigroup F of a po-semigroup S is called a �lter of S if
the following conditions are satis�ed:

(i) a; b 2 S and ab 2 F =) a 2 F and b 2 F ;

(ii) a 2 F and c 2 S; c � a =) c 2 F .
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Remark:

We note that the above de�nition of �lter is only applied for po-semigroups. However, we

would like to point out that this de�nition is di�erent from the previous one given by Petrich

in [17], as for algebraic semigroups, the condition (ii) is not required. Thus, the word \�lter"

that we are dealing with in this paper is only the \order �lter", not the \algebraic �lter".

Notation 4 We denote the smallest �lter containing an element x of a po-semigroup S by

N(x) and call it the principal �lter generated by x.

De�nition 5. A subset T of a po-semigroup S is called Archimedean if for each a; b 2 T

there exists a positive integer n such that an � �b� for some �; � 2 T (cf. [11], [15]).

De�nition 6. A congruence � on a po-semigroup S is called a semilattice congruence if

and only if for all x; y 2 S; xy�yx and x2�x. (cf. [6]).

Notation 7 Let S be a po-semigroup. De�ne N = f(x; y) 2 S � SjN(x) = N(y)g. Then

it is well known that the relation N is a semilattice congruence on the po-semigroup S (cf.

[6]).

Notation 8 Let SC(S) be the collection of all semilattice congruences de�ned above on a

po-semigroup S. For any � 2 SC(S), denote the congruence class of x 2 S by (x)�. De�ne

\�" by (x)� � (y)� () (x)� = (xy)� on the quotient semigroup S=� = f(x)�jx 2 Sg.

Then, it is well known that (x)� is a subsemigroup of S and [(S=�; �;�)] is again a po-

semigroup [9].

By using the above de�nitions and notations, Kehayopulu gave the following characteri-

zation for the semilattice congruence classes of a po-semigroup S.

Lemma 9 (cf. [15]). Let � be a semilattice congruence on a po-semigroup S. Then a
�-congruence class (a)� is Archimedean for all a 2 S if and only if for all a 2 S and all
y 2 (a)� =) there exists some n 2 N such that yn � �a� for some �; � 2 (a)�.

The following lemma describes the principal �lters in a pseudo-commutative po-semigroup

S. The idea of proof follows from [16].

Lemma 10. Let S be a pseudo-commutative po-semigroup. Then for each x 2 S;N(x) =

fa 2 S j 9k 2 N : xk � �a� for some �; � 2 Sg.

Proof: Let x 2 S and T := fa 2 S j 9k 2 N : xk � �a� for some �; � 2 Sg.

We �rst show that T is a �lter of S containing x. Clearly, � 6= T � S since x3 � xxx; so

x 2 T . Now, we verify the following:

(i) T is subsemigroup of S. In fact, let a; b 2 T , then, by the de�nition of T , we have

xn � �1; a�1, for some �1; �1 2 S; and xm � �2b�2 for some �2; �2 2 S, where n;m 2 N .

Since S is pseudo-commutative,
�
(�1a)�1

�k
� �1(�1a)

k for some k 2 N . Similarly, we have
�
�2(b�2)

�`
� (b�2)�

`

2. Then we have

xnk = (xn)k � (�1a�1)
k � �1(�1a)

k = �1(�1a)
k�1�1a:

This implies that xnk � �1�
0
1a; where �

0
1 = (�1a)

k�1�1 2 S: (for k = 1; �01 = (�1a)
��1 =

�1 2 S): Similarly, we have

xm` � (�2b�2)
` � b�2�

`

2 = b� 02; �2 = �2�
` 2 S:
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Thus, xnk+m` = xmkxm` � �1�
0
1(ab)�

0
2; with �1�

0
1; �

0
2 2 S and nk+m` 2 N . This shows

that ab 2 T . Hence, T is a subsemigroup of S.

(ii) Let a; b 2 S such that ab 2 T . We want to show that a; b 2 T . Since xk � �(ab)� =

�a(bv);�; b� 2 S, we have a 2 T . Also, since xk � (�a)b� with �a; � 2 S, we have b 2 T by

the de�nition of T .

(iii) Let a 2 T such that a � b for some b 2 S. We need to show b 2 T . In fact,

since a 2 T , there exists k 2 N such that xk � �a� for some �; � 2 S. Since a � b,

xk � �a� � �b�; for some �; � 2 S. Thus b 2 T .

We now claim that T is the smallest �lter containing x. If our claim is established, then

T = N(x), by de�nition.

Let F be the �lter of S such that x 2 F . If a 2 T , then there exist some k 2 N such

that xk � �a� for some �; � 2 S. Since F is a �lter containing x; xk 2 F . Observe that

�a� 2 S and �a� � xk 2 F , so we have �a� 2 F .Consequently, a 2 F since F is a �lter.

Thus, our claim is established and hence T = N(x). Our proof is completed. �

Remark 1. The set T = N(x) in the proof of the above lemma can be re-written in the

following form: T = fa 2 Sj9k 2 N and 9�; � 2 N(x) : xk � �a�g. For, if a 2 T , then

there exists a k 2 N such that xk � �a� for some �; � 2 S. This implies that �a� 2 N(x)

by the de�nition of N(x). Since N(x) is a �lter, we have �; � 2 N(x). Now, we can easily

deduce that T = fa 2 Sj9k 2 N and 9�; � 2 N(x) : xk � �a�g.

Remark 2. It was announced by Kehayopulu that a po-semigroup S is weakly com-

mutative if and only if for each x 2 S;N(x) = fa 2 Sjxn 2 (aSa] for some n 2 Ng

(cf.[11]). As pseudo-commutative po-semigroups are special weakly commutative semi-

groups, their N(x) must be of the same form. Indeed, by Lemma 10, if the po-semigroup

S is pseudo-commutative then N(x) = fa 2 Sjxk 2 (SaS] for some k 2 Ng for every

x 2 S. Thus, xk1 � tay for some t; y 2 S. By the pseudo-commutativity of S, we

have xk1m1 �
�
(ta)y

�m1

� y�(ta) = (y�t)a or y(ta)� = (y(ta)��1t)a for some m1; � 2 N .

Hence, xkm1 2 (Sa]. Similarly, by xk2 � t(ay), we can prove that xk2m2 2 (aS]. Let

m = k1m1k2m2 2 N . Then, we have xm 2 (aSa]. In other words, N(x) = fa 2 Sj9m 2 N :

xm 2 (aSa]g, for every x 2 S. On the other hand, if a 2 S with xn 2 (aSa], then xn 2 (Sa]

and xn 2 (aS]. This leads to xn 2 (SaS].

Remark 3. The forms of N(x) for other subclasses of the class of weakly commutative

po-semigroups have been also obtained in [3].

The following lemma concerning the semilattice congruence N is useful in proving our

theorem for pseudo-commutative po-semigroups.

Lemma 11 (See [9]). For the semilattice congruence N = f(x; y) 2 S�SjN(x) = N(y)g

on a po-semigroup S, a � b implies (a; ab) 2 N .

By using lemma 9, lemma 10 and lemma 11, we obtain the following theorem.

Theorem 12. The pseudo-commutative po-semigroups can be expressed as semilattices of
some Archimedean po-semigroups.

Proof: It is known that the relation N is a semilattice congruence on S and (x)N is a

subsemigroup of S for every x 2 S. (See [9, the proof of the theorem]). We only need to

prove that (y)N is Archimedean for every y 2 S. For this purpose, we let b; x 2 (y)N : By

lemma 9, we need to show that there exist � 2 N and z; t 2 (y)N such that b� � zxt.

Since b; x 2 (y)N ; (b; x) 2 N . This implies that N(b) = N(x). Since S is pseudo-

commutative and b 2 N(x), we have, by lemma 10,

xm � �b�0(1)
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for some m 2 N and �; �0 2 S. Since x 2 N(b) and N(b) is itself a subsemigroup,

xm+3 2 N(b). Thus, by lemma 10 again, there exists n 2 N; �; � 0 2 S such that

bn � �xm+3� 0:(2)

By (2) and lemma 11, we can easily deduce that (bn; bn�xm+3� 0) 2 N =) (b; b�x� 0) 2

N =) (x; b�x� 0) 2 N (since (b; x) 2 N and N 2 SC(S)). Consequently, we have:

� 0b�x 2 (x)N :(3)

Now, applying (1) and lemma 11 again, we immediately obtain (xm; xm�b�0) 2 N and so

(x; x�b�0) 2 N =) x�b�0 2 (x)N :(4)

Since b�xm+3; � 0 2 S and S is pseudo-commutative, there exists k 2 N such that

(b�xm+3� 0) � � 0(b�xm+3)k:(5)

Thus, by (2), we have bn+1 � b�xm+3� 0 =) (bn+1)k � (b�xm+3� 0)k and by (5), we obtain

(bn+1)k � � 0(bvxm+3)k:(6)

Applying (1) again, we deduce further that

xm+3 � x3�b�0

=) b�xm+3 � b�x3�b�0

=) (b�xm+3)k � (b�x3�b�0)k

=) � 0(b�xm+3)k � � 0(b�x3�b�0)k:

Now, using (6) and (7), we get (bn+1)k � � 0(b�x3�b�0)k =) b(n+1)k � � 0(b�x3�b�0)k�1

b�x3�b�0. By putting z = � 0(b�x3�b�0)k�1b�x and t = x�b�0, we have z; t 2 S and

b(n+1)k � zxt, where (n + 1)k 2 N . This shows that z; t 2 (y)N . Consequently, by (4),

we have t 2 (x)N = (y)N =) t 2 (y)N . It still remains to show that z 2 (y)N . For this

purpose, we consider the following cases:

(�) If k = 1, then z = � 0b�x. By using (3), we have z 2 (x)N = (y)N =) z 2 (y)N .

(�) If k 6= 1, then since z = � 0(b�x3�b�0)k�1b�x and N is a semilattice congruence on

S, we have

(z; � 0b�xx�b�0) 2 N :(7)

By using (3), (4) and noting that N 2 SC(S), we have

(� 0b0�xx�b�0; x) 2 N :(8)

Applying (8) and (9), it follows that (z; x) 2 N and hence z 2 (x)N = (y)N . The proof

is completed. �

Proposition 13. The semilattice congruence N on a po-semigroup S is the greatest semi-
lattice congruence on S such that (x)N is Archimedean for every x 2 S.

Proof: Let � be a semilattice congruence on S. Then it can be easily seen that (x)�
is an Archimedean subsemigroup of S, for all x 2 S. (Note : (x)� is not necessarily a

subsemigroup of S unless � is a semilattice congruence). Let (a; b) 2 �. Then, since

a; b 2 (b)�, by the Archimedean property of (b)�, there exist n 2 N;�; � 2 (b)� such that

an � �b�. Since an 2 N(a) and N(a) is a �lter of S, we have �b� 2 N(a). This leads to

b 2 N(a) so thatN(b) � N(a). Similarly, we have N(b) � N(a): ConsequentlyN(a) = N(b)
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and so (a; b) 2 N . This implies that N is the greatest semilattice congruence on S such

that (x)N is Archimedean for every x 2 S. �

In fact, in example 2, one can easily check that there are two semilattice congruences on

S and they are of the following forms (cf. [4]):

N = f(x; y) 2 S � SjN(x) = N(y)g = S � S

� = f(a; a); (b; b); (c; c); (d; d); (a; b); (b; a); (c; d); (d; c)g:

Clearly, � 6� N as � does not satisfy the condition given in lemma 11. Considering the

�-classes, we can see that (a)� = (b)� = fa; bg; (c)� = (d)� = fc; dg. Since a2 = b and b2 = b;

(a)� is Archimedean. Similarly, since d2 = c; c2 = c, (c)� is also Archimedean. Thus, apart

from N , the congruence � gives a semilattice decomposition of S into Archimedean semi-

groups. Hence, this example illustrates that the decomposition of a pseudo-commutative

po-semigroup into a semilattice of Archimedean po-semigroups is not necessarily unique.

Remark (cf. [4]) In the above example, it is clear that the semilattice congruence N =

f(x; y) 2 S � SjN(x) = N(y)g on S is not the least semilattice congruence on the po-

semigroup S.
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