TRANSLATABLE RADII OF AN OPERATOR IN THE DIRECTION OF ANOTHER OPERATOR

KALLOL PAUL

Received March 19, 1998; revised October 2, 1998

Abstract

We introduce translatable radii of an operator corresponding to the norm in the direction of another operator and generalise an inequality developed by Fujii and Prasanna[2], namely, $\sup _{\|x\|=1}\|T x-(T x, x) x\| \geq w_{T}$.

Introduction.

Let T and A be bounded linear operators on a complex Hilbert space H with the inner product (,). Consider the generalized eigenvalue problem $T x=\lambda A x, x \in H$, where λ is called the eigenvalue of the above equation and x the corresponding eigenvector. Mikhlin [4] has studied this problem in a way similar to the problem $T x=\lambda x$.
The nonnegative functional $S(x)=\|T x-(T x, x) x\|$ gives the deviation of a unit vector x from being an eigenvector . Bjorck and Thomee have shown [1] that

$$
\sup _{\|x\|=1}\left\{\|T x\|^{2}-|(T x, x)|^{2}\right\}^{1 / 2}=R_{T}
$$

for a normal operator T where R_{T} is the radius of the smallest circle containing the spectrum of T.
Garske [3] improved the result to obtain the inequality

$$
\sup _{\|x\|=1}\left\{\|T x\|^{2}-|(T x, x)|^{2}\right\}^{1 / 2} \geq R_{T}
$$

which was later improved by Fujii and Prasanna [2].

Translatable radii of an operator in the direction of another operator.

If 0 does not belong to approximate point spectrum of A let

$$
\begin{aligned}
& M_{A}(T)
\end{aligned}=\sup _{\|x\|=1}\left\{\|T x\|^{2}-\frac{|(T x, A x)|^{2}}{(A x, A x)}\right\}^{1 / 2}, ~ i n=\sup _{\|x\|=1}\left\{\left\|T x-\frac{(T x, A x)}{(A x, A x)} A x\right\|\right\}
$$

Also if $0 \notin \overline{W(A)}$ then let

$$
\hat{M}_{A}(T)=\sup _{\|x\|=1}\left\{\left\|T x-\frac{(T x, x)}{(A x, x)} A x\right\|\right\}
$$

Clearly $M_{A}(T)=M_{A}(T+\lambda A)$ and $\hat{M}_{A}(T)=\hat{M}_{A}(T+\lambda A)$ so that both are translation invariant in the sense of A . We define $M_{A}(T)$ and $M_{A}(T)$ as the translatable radii of T in the direction of A.Geometrically $T x-\frac{(T x, A x)}{(A x, A x)} A x$ is the vector perpendicular from $T x$ to $A x$ and $T x-\frac{(T x, x)}{(A x, x)} A x$ is a vector perpendicular to x.

[^0]Let $W_{A}(T)=\left\{\frac{(T x, A x)}{(A x, A x)}:\|x\|=1\right\}$ and $\hat{W}_{A}(T)=\left\{\frac{(T x, x)}{(A x, x)}:\|x\|=1\right\}$. Clearly $W_{A}(T)$ is convex. Examples can be given to show that $\hat{W}_{A}(T)$ need not be convex. Let $m_{A}(T)\left(\right.$ resp. $\left.\hat{m}_{A}(T)\right)$ denote the radius of the smallest circle containing the set $W_{A}(T)$ (resp. $\left.\hat{W}_{A}(T)\right)$. Also let $\left|W_{A}(T)\right|=\sup \left\{|z|: z \in W_{A}(T)\right\}$ and $\left|\hat{W}_{A}(T)\right|=\sup \left\{|z|: z \in \hat{W}_{A}(T)\right\}$.
Main Result. Fujii and Prasanna [2] proved that for any bounded linear operator T

$$
\sup _{\|x\|=1}\|T x-(T x, x) x\| \geq w_{T}
$$

In this paper we generalize the result to prove that

$$
\text { if } 0 \notin \overline{W(A)} \text { then } \hat{M}_{A}(T) \geq M_{A}(T) \geq m_{A}(T) /\left\|A^{-1}\right\|
$$

To prove this we need the following lemmas.
Lemma 1.

$$
\begin{aligned}
& m_{A}(T)=\min _{z}\left|W_{A}(T-z A)\right|=\min _{z}\left|W_{A}(T)-z\right| \\
& \hat{m}_{A}(T)=\min _{z}\left|\hat{W}_{A}(T-z A)\right|=\min _{z}\left|\hat{W}_{A}(T)-z\right|
\end{aligned}
$$

Proof. The proof is clear from the definitions.
Lemma2. $\|T\| \leq\|T-z A\| \forall z \in C$ iff there exists a sequence $\left\{x_{n}\right\}$ of unit vectors such that $\left(A^{*} T x_{n}, x_{n}\right) \rightarrow 0$ and $\left\|T x_{n}\right\| \rightarrow\|T\|$.
Proof. We prove the necessary part only, sufficient part follows easily.
Let us consider the set $W_{0}(A)=\left\{\lambda \in C / \exists\left\{x_{n}\right\} \subset H,\left\|x_{n}\right\|=1 \ni\left(T x_{n}, A x_{n}\right) \rightarrow \lambda\right.$ and $\left.\left\|T x_{n}\right\| \rightarrow\|T\|\right\}$, which is non-empty, closed and convex.
Let us first assume that $\|A\| \leq 1$. If possible let $0 \notin W_{0}(A)$. Then as $W_{0}(A)$ is closed and convex by rotating T suitably we can assume that $\operatorname{Re} W_{0}(A)>\eta>0$.
Let $\mathrm{M}=\{x \in H /\|x\|=1$ and $\operatorname{Re}(T x, A x) \leq \eta / 2\}$ and $\beta=\sup _{x \in M}\|T x\|$. Clearly $\beta<\|T\|$. Let $z_{0}=\min \{\eta,(\|T\|-\beta) /\|A\|\}$. Now if $x \in \mathrm{M}$, then $\left\|\left(T-z_{0} A\right) x\right\| \leq\|T x\|+\left|z_{0}\right|\|A x\|<$ $\beta+\{(\|T\|-\beta) /\|A\|\}\|A\|=\|T\|$ and if $x \notin M$, then let $T x=(a+i b) A x+y$, where $(A x, y)$ $=0$.

$$
\text { So, } \begin{aligned}
\left\|\left(T-z_{0} A\right) x\right\|^{2} & =\left\{\left(a-z_{0}\right)^{2}+b^{2}\right\}\|A x\|^{2}+\|y\|^{2} \\
& =\|T x\|^{2}+\left(z_{0}^{2}-2 a z_{0}\|A x\|^{2}\right)+z_{0}^{2}\left(\|A x\|^{2}-1\right) \\
& <\|T x\|^{2}, \text { for } \operatorname{Re}(T x, A x)=a\|A x\|^{2}>\eta / 2>z_{0} / 2 \text { and }\|A x\| \leq 1
\end{aligned}
$$

Thus in all cases, $\left\|\left(T-z_{0} A\right) x\right\|^{2}<\|T\|^{2}$ so that $\|T\| \geq\left\|T-z_{0} A\right\|$ - This is a contradiction. Hence there exists a sequence $\left\{x_{n}\right\}$ of unit vectors such that $\left(T x_{n}, A x_{n}\right) \rightarrow 0$ and $\left\|T x_{n}\right\| \rightarrow$ $\|T\|$.
Next let $\|A\|>1$. Then let $B=A /\|A\|$. Proceeding as above we can find a sequence $\left\{y_{n}\right\}$ of unit vectors such that $\left(T y_{n}, B y_{n}\right) \rightarrow 0$ and $\left\|T y_{n}\right\| \rightarrow\|T\|$. So $\|T\| \leq\|T-z(A /\|A\|)\|$ forall $\mathrm{z} \in \mathrm{C}$ iff there exists a sequence $\left\{y_{n}\right\}$ of unit vectors such that $\left(\left(A^{*} T /\|A\|\right) y_{n}, y_{n}\right) \rightarrow 0$ and $\left\|T y_{n}\right\| \rightarrow\|T\|$.
Hence for any bounded linear operator $\mathrm{A},\|T\| \leq\|T-z A\|$ forall $\mathrm{z} \in \mathrm{C}$ iff there exists a sequence $\left\{x_{n}\right\}$ of unit vectors such that $\left(A^{*} T x_{n}, x_{n}\right) \rightarrow 0$ and $\left\|T x_{n}\right\| \rightarrow\|T\|$. This completes the proof of Lemma 2.

Lemma 3, stated below, is a generalization of a result by S.Prasanna [6], namely, for any bounded linear operator T , $\min _{z}\|T-z I\|=\sup _{\|x\|=1}\left\{\|T x\|^{2}-|(T x, x)|^{2}\right\}^{1 / 2}$. This paper is based on the result stated in Lemma 3. Detailed proofs of both Lemma 2 and Lemma 3 are given in [5].
Lemma 3. $M_{A}(T)=\min _{z}\|T-z A\|$.
Proof. We may assume the existence of $M_{A}(T)=\min _{z}\|T-z A\|$ by $\lim _{|z| \rightarrow \infty}\|T-z A\|=$
$+\infty$. Since $M_{A}(T)$ is translation invariant in the sense of A i.e., $M_{A}(T)=M_{A}(T-z A)$ for all z in C , it suffices to prove that if $\|T\| \leq\|T-z A\| \forall z \in \mathrm{C}$ then $M_{A}(T)=\|T\|$. We have $\|T x\|^{2} \geq\|T x\|^{2}-\frac{|(T x, A x)|^{2}}{\|A x\|^{2}}$ for all unit vectors $\mathrm{x} \in \mathrm{H}$. so that $\|T\| \geq M_{A}(T)$.
Again by Lemma 2 there exists a sequence $\left\{x_{n}\right\}$ of unit vectors such that $\left(T x_{n}, A x_{n}\right) \rightarrow 0$ and $\left\|T x_{n}\right\| \rightarrow\|T\|$.
Now

$$
\begin{aligned}
\|T\|^{2} & =\lim _{n \rightarrow \infty}\left\|T x_{n}\right\|^{2} \\
& =\lim _{n \rightarrow \infty}\left\{\left\|T x_{n}\right\|^{2}-\frac{\left|\left(T x_{n}, A x_{n}\right)\right|^{2}}{\left\|A x_{n}\right\|^{2}}\right\} \\
& \leq M_{A}(T)^{2}
\end{aligned}
$$

Thus $\|T\|=M_{A}(T)$. This completes the proof of Lemma 3.
We now prove our main result in Theorem 1.
Theorem1. If $0 \notin \overline{W(A)}$ then $\hat{M}_{A}(T) \geq M_{A}(T) \geq m_{A}(T) /\left\|A^{-1}\right\|$.
Proof. Since $\frac{|(T x, A x)|}{(A x, A x)} \leq\|T\|\left\|A^{-1}\right\|$ for a unit vector $x \in H$, we have $\left|W_{A}(T)\right| \leq\|T\|\left\|A^{-1}\right\|$ for all operators T , so that

$$
\left|W_{A}(T-z A)\right| \leq\|T-z A\|\left\|A^{-1}\right\|
$$

for all $z \in C$. Hence it follows from Lemma 1 and Lemma 3 that

$$
m_{A}(T) \leq M_{A}(T)\left\|A^{-1}\right\|
$$

Let $T x=\frac{(T x, A x)}{(A x, A x)} A x+h$ and $T x=\frac{(T x, x)}{(A x, x)} A x+\hat{h}$, where $(h, A x)=0$ and $(\hat{h}, x)=0$. Then

$$
\hat{h}-h=\left\{\frac{(T x, A x)}{(A x, A x)}-\frac{(T x, x)}{(A x, x)}\right\} A x
$$

As $(h, A x)=0$ we get

$$
\|\hat{h}\|^{2}=\|h\|^{2}+\left\{\left|\frac{(T x, A x)}{(A x, A x)}-\frac{(T x, x)}{(A x, x)}\right|\right\}^{2}\|A x\|^{2}
$$

Thus $\|\hat{h}\| \geq\|h\|$ so that

$$
\sup _{\|x\|=1}\left\{\left\|T x-\frac{(T x, x)}{(A x, x)} A x\right\|\right\} \geq \sup _{\|x\|=1}\left\{\left\|T x-\frac{(T x, A x)}{(A x, A x)} A x\right\|\right\}
$$

i,e, $\hat{M}_{A}(T) \geq M_{A}(T)$. So

$$
\hat{M}_{A}(T) \geq M_{A}(T) \geq m_{A}(T) /\left\|A^{-1}\right\|
$$

This completes the proof.
Theorem2. If $0<c \leq|(A x, x)|$, for all unit vectors $x \in H$, then $\hat{M}_{A}(T) \geq M_{A}(T) \geq$ c $\hat{m}_{A}(T)$.

Proof. We have $\frac{|(T x, x)|}{(A x, x) \mid} \leq\|T\| / c$ for all unit vectors $\mathrm{x} \in \mathrm{H}$, so that $\|T\| \geq c\left|\hat{W}_{A}(T)\right|$ for all operators T. Hence

$$
\text { c. }\left|\hat{W}_{A}(T-z A)\right| \leq\|T-z A\|
$$

for all $z \in C$. Hence it follows from Lemma 1 and Lemma 3 that

$$
c \hat{m}_{A}(T) \leq M_{A}(T)
$$

Since $\hat{M}_{A}(T) \geq M_{A}(T), \hat{M}_{A}(T) \geq M_{A}(T) \geq c \hat{m}_{A}(T)$. This completes the proof.
Corollary. For $\mathrm{A}=\mathrm{I}$ we get the inequality due to Fujii and Prasanna[2].
Acknowledgement. The author thanks Dr.K.C.Das and Professor T.K.Mukherjee for their invaluable suggestions while preparing this paper. The author also thanks the referee for his comments.

References

1. G.Bjorck and V.Thomee, A property of bounded normal operators in Hilbert Space, Arkiv for Math., 4 (1963), 551-555.
2. M.Fujii and S.Prasanna, Translatable radii for operators, Mathematica Japonica, 26 (1981) 653-657.
3. G.Garske, An equality concerning the smallest disc that contains the spectrum of an operator, Proc. Amer. Math. Soc., 78 (1980), 529-532.
4. S.G.Mikhlin, Variational methods in mathematical physics, Pergamon Press.
5. K.Paul, Orthogonality on $\mathrm{B}(\mathrm{H}, \mathrm{H})$ and minimal-norm operator, sent for publication.
6. S.Prasanna, The norm of a derivation and the Bjorck-Thomee-Istratescu theorem, Mathematica Japonica, 26 (1981), 585-588.

C/O. K.C.Das
Department of Mathematics
Jadavpur University
Calcutta 700032
INDIA
e-mail: jumath@cal.vsnl.net.in

[^0]: 1991 Mathematics Subject Classification. Primary 47B44; 47A63 Secondary 47B15.
 Key words and phrases. Translatable radii.

