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TRANSLATABLE RADII OF AN OPERATOR IN THE DIRECTION OF

ANOTHER OPERATOR

KALLOL PAUL
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Abstract. We introduce translatable radii of an operator corresponding to the norm

in the direction of another operator and generalise an inequality developed by Fujii and

Prasanna[2], namely, supkxk=1kTx� (Tx; x)xk � wT .

Introduction.

Let T and A be bounded linear operators on a complex Hilbert space H with the inner
product (,). Consider the generalized eigenvalue problem Tx = �Ax; x 2 H, where � is

called the eigenvalue of the above equation and x the corresponding eigenvector. Mikhlin
[4] has studied this problem in a way similar to the problem Tx = �x.
The nonnegative functional S(x) = kTx � (Tx; x)xk gives the deviation of a unit vector x

from being an eigenvector . Bjorck and Thomee have shown [1] that

supkxk=1fkTxk
2
� j (Tx; x) j

2
g1=2 = RT

for a normal operator T whereRT is the radius of the smallest circle containing the spectrum

of T.
Garske [3] improved the result to obtain the inequality

supkxk=1fkTxk
2
� j (Tx; x) j

2
g1=2 � RT

which was later improved by Fujii and Prasanna [2].

Translatable radii of an operator in the direction of another operator.

If 0 does not belong to approximate point spectrum of A let

MA(T ) = supkxk=1fkTxk
2
�
j (Tx;Ax) j

2

(Ax;Ax)
g1=2

i.e. MA(T ) = supkxk=1fkTx�
(Tx;Ax)

(Ax;Ax)
Axkg

Also if 0 62W (A) then let

M̂A(T ) = supkxk=1fkTx�
(Tx; x)

(Ax; x)
Axkg

Clearly MA(T ) = MA(T + �A) and M̂A(T ) = M̂A(T + �A) so that both are translation
invariant in the sense of A. We de�ne MA(T ) and M̂A(T ) as the translatable radii of T in

the direction of A.Geometrically Tx �
(Tx;Ax)

(Ax;Ax)
Ax is the vector perpendicular from Tx to

Ax and Tx�
(Tx;x)

(Ax;x)
Ax is a vector perpendicular to x.
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Let WA(T ) = f
(Tx;Ax)

(Ax;Ax)
: kxk = 1g and ŴA(T ) = f

(Tx;x)

(Ax;x)
: kxk = 1g. Clearly WA(T ) is con-

vex. Examples can be given to show that ŴA(T ) need not be convex. LetmA(T ) (resp: m̂A(T ) )

denote the radius of the smallest circle containing the set WA(T ) (resp: ŴA(T ) ). Also let
j WA(T ) j= supfj z j: z 2WA(T )g and j ŴA(T ) j= supfj z j: z 2 ŴA(T )g.

Main Result. Fujii and Prasanna [2] proved that for any bounded linear operator T

supkxk=1kTx� (Tx; x)xk � wT

In this paper we generalize the result to prove that

if 0 62 W (A) then M̂A(T ) �MA(T ) � mA(T )=kA
�1k:

To prove this we need the following lemmas.

Lemma 1.

mA(T ) = minz j WA(T � zA) j= minz jWA(T )� z j

m̂A(T ) = minz j ŴA(T � zA) j= minz j ŴA(T )� z j

Proof. The proof is clear from the de�nitions.

Lemma2. kTk � kT � zAk 8z 2 C i� there exists a sequence fxng of unit vectors such

that (A�Txn; xn)! 0 and kTxnk ! kTk.
Proof. We prove the necessary part only, su�cient part follows easily.

Let us consider the set W0(A) = f� 2 C=9fxng � H; kxnk = 1 3 (Txn; Axn) ! � and
kTxnk ! kTk g, which is non-empty, closed and convex.
Let us �rst assume that kAk � 1. If possible let 0 62W0(A) . Then as W0(A) is closed and

convex by rotating T suitably we can assume that Re W0(A) > � > 0.
Let M = fx 2 H=kxk = 1 and Re (Tx;Ax) � �/2g and � = supx2MkTxk. Clearly � < kTk.

Let z0 = min f �; (kTk��)=kAkg. Now if x 2M, then k(T�z0A)xk � kTxk+ j z0 j kAxk <
� + f(kTk� �)=kAkgkAk= kTk and if x 62M , then let Tx = (a+ ib)Ax+ y, where (Ax; y)
= 0.

So; k(T � z0A)xk
2

= f(a� z0)
2
+ b2gkAxk

2
+ kyk

2

= kTxk
2
+ (z0

2 � 2az0kAxk
2
) + z0

2(kAxk
2
� 1)

< kTxk
2
; for Re(Tx;Ax) = akAxk

2
> �=2 > z0=2 and kAxk � 1

Thus in all cases, k(T � z0A)xk
2
< kTk

2
so that kTk � kT �z0Ak - This is a contradiction.

Hence there exists a sequence fxng of unit vectors such that (Txn; Axn)! 0 and kTxnk !
kTk.

Next let kAk > 1. Then let B = A=kAk. Proceeding as above we can �nd a sequence fyng
of unit vectors such that (Tyn; Byn) ! 0 and kTynk ! kTk. So kTk � kT � z(A=kAk)k

forall z 2 C i� there exists a sequence fyng of unit vectors such that ((A
�T=kAk)yn; yn)! 0

and kTynk ! kTk.

Hence for any bounded linear operator A, kTk � kT � zAk forall z 2 C i� there exists a se-
quence fxng of unit vectors such that (A�Txn; xn)! 0 and kTxnk ! kTk. This completes
the proof of Lemma 2.

Lemma 3, stated below, is a generalization of a result by S.Prasanna [6] , namely , for any

bounded linear operator T , minzkT�zIk = supkxk=1fkTxk
2
� j (Tx; x) j

2
g
1=2

. This paper
is based on the result stated in Lemma 3. Detailed proofs of both Lemma 2 and Lemma 3

are given in [5].
Lemma 3. MA(T ) = minzkT � zAk .

Proof. We may assume the existence of MA(T ) = minz kT � zAk by limjzj!1 kT � zAk =
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+1. Since MA(T ) is translation invariant in the sense of A i.e., MA(T ) = MA(T � zA) for

all z in C, it su�ces to prove that if kTk � kT � zAk 8z 2 C then MA(T ) = kTk.

We have kTxk
2
� kTxk

2
�

j(Tx;Ax)j2

kAxk2
for all unit vectors x 2 H.

so that kTk �MA(T ).
Again by Lemma 2 there exists a sequence fxng of unit vectors such that (Txn; Axn)! 0

and kTxnk ! kTk.
Now

kTk
2

= lim
n!1

kTxnk
2

= lim
n!1

fkTxnk
2
�
j (Txn; Axn) j

2

kAxnk
2

g

� MA(T )
2

Thus kTk = MA(T ). This completes the proof of Lemma 3.
We now prove our main result in Theorem 1.

Theorem1. If 0 62W (A) then M̂A(T ) �MA(T ) � mA(T )=kA
�1k.

Proof. Since j(Tx;Ax)j
(Ax;Ax)

� kTkkA�1k for a unit vector x 2 H, we have j WA(T ) j� kTkkA�1k

for all operators T, so that

j WA(T � zA) j� kT � zAkkA�1k

for all z 2 C. Hence it follows from Lemma 1 and Lemma 3 that

mA(T ) �MA(T )kA
�1k:

Let Tx = (Tx;Ax)
(Ax;Ax)

Ax+ h and Tx = (Tx;x)

(Ax;x)
Ax+ ĥ , where (h;Ax) = 0 and (ĥ; x) = 0. Then

ĥ� h = f
(Tx;Ax)

(Ax;Ax)
�

(Tx; x)

(Ax; x)
gAx

As (h;Ax) = 0 we get

kĥk
2
= khk

2
+ fj

(Tx;Ax)

(Ax;Ax)
�

(Tx; x)

(Ax; x)
jg2kAxk

2

Thus kĥk � khk so that

supkxk=1fkTx�
(Tx; x)

(Ax; x)
Axkg � supkxk=1fkTx�

(Tx;Ax)

(Ax;Ax)
Axkg

i,e, M̂A(T ) �MA(T ). So

M̂A(T ) �MA(T ) � mA(T )=kA
�1k:

This completes the proof.

Theorem2. If 0 < c �j (Ax; x) j, for all unit vectors x 2 H, then M̂A(T ) � MA(T ) �
c m̂A(T ).

Proof. We have
j(Tx;x)j

j(Ax;x)j
� kTk=c for all unit vectors x 2 H, so that kTk � c j ŴA(T ) j for

all operators T. Hence

c: j ŴA(T � zA) j� kT � zAk
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for all z 2 C. Hence it follows from Lemma 1 and Lemma 3 that

c m̂A(T ) �MA(T ):

Since M̂A(T ) �MA(T ) , M̂A(T ) �MA(T ) � c m̂A(T ). This completes the proof.

Corollary. For A = I we get the inequality due to Fujii and Prasanna[2].
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