ON THE PERIOD OF ELEMENT OF BCI-ALGEBRAS

DAHUA LIN AND ZHAOMU CHEN

Received June 15, 1995

Abstract

In this paper, we study the period of element of BCI-algebras. First, some properties of P-semisimple BCI-algebras are generalized to general BCI-algebra. Finally, we give some characterizations of some BCI-algebras by them.

Let X be a BCI-algebra. For any $x, a \in X$, we denote

$$
a * x^{n}=(\ldots((a * x) * x) * \ldots) * x
$$

Definition. Let X be a BCI-algebra. For any $x \in X$, if there exists a leas natural number n such that $0 * x^{n}=0$, then n is called to be the period of x, and denote $\rho(x)=n$. If, for any natural number $n, 0 * x^{n} \neq 0$ then the period of x is called to be infinite and denote $\rho(x)=\infty$.

Obviously, $\rho(0)=1$.
Proposition 1. Let X be a P-semisimple $B C I$-algebra and $x \in X$. Then the period of x is equal to the period of x in the Abel group which is equivalent to X. ${ }^{[1]}$
Corollary 1. Let X be a P-semisimple BCI-algebra. Then, for any $x, y \in X$,
(1) $\rho(x)=\rho(0 * x)$;
(2) $\rho(x * y)=\rho(y * x)$;
(3) $\rho(x * y) \mid[\rho(x), \rho(y)]$, where $[\rho(x), \rho(y)]$ is the least common multiple of $\rho(x)$ and $\rho(y)$.
(4) $A=\{x \in X \mid \rho(x)<\infty\}$ is a close ideal of X (i.e. A is both an ideal and a subalgebra).

Proposition 2. Let X be a BCI-algebra. Then $f_{0}: x \mapsto 0 * x$, for any $x \in X$, is an endomorphism of X and $\operatorname{Im} f_{0}^{2}=\operatorname{Im} f_{0}=\{x \in X \mid x=0 *(0 * x)\}$. ${ }^{[4]}$

It is easy to obtain that $\operatorname{Im} f_{0}$ is the greastest P-semisimple BCI-subalgebra and we have
Proposition 3. Let X be a BCI-algebra. Then the following are equivalent:
(1) X is a P-semisimple BCI-algebra;
(2) $X=\operatorname{Im} f_{0}$;
(3) f_{0} is an automorphism;
(4) $f_{0}^{2}=1_{X}\left(1_{X}\right.$ is a unite map of $\left.X\right)$.

Definition. Let X be a BCI-algebra and $x \in X$. If $y \leq x$ implies $y=x$ then x is called to be a minimal element of X. Obviously, 0 is a minimal element of X.

Proposition 4. Let X be a BCI-algebra. Then X is a P-semisimple iff every element of X is a minimal element.

Proof. First, we prove the necessity.

[^0]For any $x \in X$, if $y \leq x$, then $y * x=0$ and $0=0 *(y * x)=(0 * y) *(0 * x)$, i.e., $0 * y \leq 0 * x$. On the other hand, $0 * y \geq 0 * x$ since $y \leq x$. Hence $0 * y=0 * x$. By Proposition 3, $x=y$. So x is a minimal element of X.

Now we prove the sufficiency. If every element of X is a minimal element of X then, for any $x \in X, 0 *(0 * x)=x$ since $0 *(0 * x) \leq x$. So X is P-semisimple.
Corollary 2. Let X is a BCI-algebra. Then X is a BCK-algebra iff X has and only has a minimal element 0 .

Corollary 3. Let X be a BCI-algebra. If $y \leq x$ then $0 * y=0 * x$.
Now we generalize Corollary of Proposition 1 to the general BCI-algebra.
Proposition 5. Let X be a BCI-algebra. Then, for any $x, y \in X$,
(1) $\rho(x)=\rho(0 * x)$;
(2) $\rho(x * y)=\rho(y * x)$;
(3) $\rho(x * y) \mid[\rho(x), \rho(y)]$.

Proof. (1) By the induction, it is easy to prove that

$$
0 *(0 * x)^{n}=0 *\left(0 * x^{n}\right), \quad \text { for any } n \in N
$$

So $\rho(x)=\rho(0 * x)$.
(2) By (1), we have $\rho(x * y)=\rho(0 *(x * y))$ and $\rho(y * x)=\rho(0 *(y * x))$. On the other hand, $0 * x, 0 * y \in \operatorname{Im} f_{0}$. By Corollary 1 ,

$$
\rho(0 *(x * y))=\rho((0 * x) *(0 * y))=\rho((0 * y) *(0 * x))=\rho(0 *(y * x)) .
$$

Thus $\rho(x * y)=\rho(y * x)$.
(3) By (1) and Corollary 1, $\rho(x * y)=\rho(0 *(x * y))=\rho((0 * x) *(0 * y))$ can integral divide $[\rho(0 * x), \rho(0 * y)]=[\rho(x), \rho(y)]$.
Proposition 6. Let X be a BCI-algebra. If $y \leq x$ then $\rho(y)=\rho(x)$.
Proof. By Corollary 3 and Proposition 5, if $y \leq x$ then $0 * y=0 * x$ and $\rho(y)=\rho(0 * y)=$ $\rho(0 * x)=\rho(x)$.

Theorem. Let X be a BCI-algebra and denote $A=\{x \in X \mid \rho(x)<\infty\}$. Then A is a close ideal of X and X / A is a P-semisimple BCI-algebra.

Proof. (i) Obviously, $0 \in A$. Suppose $x, y \in A$ and denote $n=\rho(x)$ and $m=\rho(y)$. By Proposition 5, $\rho(x * y) \mid[n, m]$. So $x * y \in A$ and A is a subalgebra of X.
(ii) If $x, y * x \in A$, by Proposition 5, then $\rho(x * y)=\rho(y * x)<\infty$ and $x * y \in A$. Thus, by (i), $0 * y=(x * y) * x \in A$ and $\rho(y)=\rho(0 * y)<\infty$, by Proposition 5. Hence $y \in A$ and A is an ideal of X.
(iii) By (i) and (ii), we have $A=A_{0}$. If $A_{0} * A_{x}=A_{0}$ then $A_{0 * x}=A_{0}$ and $0 * x \in A$. By Proposition 5, $x \in A=A_{0}$ and $A_{x}=A_{0}$. Thus X / A is P-semisimple.

Finally we use the period of element to give some characterizations of some BCI-algebras.
Proposition 7. If X is a BCI-algebra then X is a $B C K$-algebra iff $\rho(x)=1$ for any $x \in X$.
Proof. $\rho(x)=1 \Leftrightarrow 0 * x=0$.
By Proposition 7, we have
Proposition 8. If X is a BCI-algebra. Then X is a proper $B C I$-algebra iff there exists $x \in X$ such that $\rho(x)>1$.

Proposition 9. If X is a BCI-algebra. Then X is P-semisimple iff $\rho(x)>1$ for any $0 \neq x \in X$.

Proof. X is P-semisimple \Leftrightarrow The BCK-part of X is equal to $\{0\}$.
Proposition 10. If X is a BCI-algebra then X is associate iff $\rho(x)=2$ for any $0 \neq x \in X$.
Proof. X is associate $\Leftrightarrow 0 * x=x$ for any $x \in X \Leftrightarrow$ The BCK-part of X is equal to $\{0\}$ and $\rho(x)=2$, for any $0 \neq x \in X$.
Definition. ${ }^{[5]}$ BCK-algebra X is called to be quasi-associate, if $(x * y) * z \leq x *(y * z)$, for any $x, y, z \in X$.
Proposition 11. Let X be a BCI-algebra. Then X is quasi-associate iff $\rho(x) \leq 2$, for any $x \in X$.

Proof. (Necessity) If $x \in X$ then

$$
x=x *(x * x) \geq(x * x) * x=0 * x
$$

i.e., $(0 * x) * x=0$ and $\rho(x) \leq 2$.
(Sufficiency) For any $x, y, z \in X$, we have $((x * y) * z) *(x *(y * z))=((x * y) *(x *(y * z)) * z \leq$ $((y * z) * y) * z=(0 * z) * z=0$ since $\rho(z) \leq 2$. So $(x * y) * z \leq x *(y * z)$ and X is quasi-associate.

BCI-algebra X is said to be well in case every ideal of X is close.
Lemma. ${ }^{[6]}$ If A is an ideal of $B C I$-algebra X then A is close iff $0 * x \in A$ for any $x \in A$.
Proposition 12. Let X be a BCI-algebra. Then X is a well BCI-algebra iff $\rho(x)<\infty$ for any $x \in X$.
Proof. If X is a well BCI-algebra, then, for any $x \in X,\langle x\rangle$ is a close ideal of X and $0 * x \in\langle x\rangle$. So there exists $n \in N$ such that $(0 * x) * x^{n}=0$ and $\rho(x)<\infty$. On the contrary, for any $A \triangleleft X$ and $x \in A$, denote $\rho(x)=n$, i.e., $0 * x^{n}=0$, we have $0 * x \in A$. Thus A is close and X is a well BCI-algebra.
$B C I$-algebra $X \neq\{0\}$ is said to be simple if X has no non-trivial ideal.
Obviously, simple BCI-algebras are well BCI-algebras. So $\rho(x)<\infty$ for any $x \in X$.
Proposition 13. If X is a simple BCI-algebra then $\rho(x)=\rho(y)$, for any $x, y \in X \backslash\{0\}$.
Proof. If $x, y \notin\{0\}$ then $X=<x>=<y>$ since X is a simple. On the other hand, the P-radical P of X is an ideal of X. So $P=\{0\}$ or $P=X$ since X is simple, i.e., X is P-semisimple or X is a BCK-algebra.
(i) If X is a BCK-algebra then $\rho(x)=\rho(y)=1$.
(ii) If X is P-semisimple then, for any $0 \neq x \in X$ and $y \in X=<x>$ there exists $m \in N$ such that $y * x^{m}=0$. Thus $0 * y=0 * x^{m}$ and $0 * y^{n}=0 * x^{m n}=0$, where $n=\rho(x)$. Hence $\rho(y) \leq n=\rho(x)$. Similarly, $\rho(x) \leq \rho(y)$ and $\rho(x)=\rho(y)$.

References

1. Lin Dahua, The period of element in BCI-algebras, J. Fujian Normal University, Vol.7, No. 3 (1991), 5-9.
2. Lin Yuanhong, BCI-algebra generated by minimal elements, J. Fujian Forest college Vol.10, No. 2 (1990), 137-145.
3. Wang Huaxiong, BCK-algebras generated by atoms, J. Fujian Normal Vol.3, No. 3 (1987), 30-35.
4. Chen Zhaomu and Wang Huaxiong, P-endomorphism of BCI-algebras, J. Fujian Normal University Vol.7, No. 3 (1991), 1-4.
5. Changahang Xi, On a class of BCI-algebras, Math. Japonica Vol.35, No.1 (1990), 13-17.
6. Chen Zhaomu, The direct product theory of well BCI-algebras, J. Fujian Normal University Vol.3, No. 2 (1987), 17-28.

Department of Mathematics, Fuzhou Normal College, Fuzhou, Fujian 350007
Department of Mathematics, Fuzhou Normal College, Fuzhou, Fujian 350007

[^0]: Key words and phrases. BCI-algebra, the period of element.

