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Abstract. Let X be a completely regular space. We denote by Cb(X) the Banach

space of all real-valued bounded continuous functions on X endowed with the supremun-

norm. In this paper we prove some characterisations of weakly compact operators from

Cb(X) into a Banach space E which are continuous with respect to �t; �� ; �� ; �s and �g ,

strict topologies. We also prove that (Cb(X); �i); i = t; �; p; s; g has the Dunford-Pettis

property.

1. Preliminary result and notation. ThroughoutX denotes a completely regular Haus-
dor� space, Cb(X) the space of all bounded real-valued continuous functions de�ned on
X. M(X) the Banach space dual of Cb(X) with the supremum norm k � k; tp will de-
note the topology of pointwise convergence on X. In Cb(X) has also been de�ned the so
called strict topologies denoted by ��; �� ; �t; �p; �g ; �s; which yield as dual very impor-
tant subspaces of M(X) commounly encountered in topological measure theory: the spaces
M�;M� ;Mt;Mp;Mg and Ms of �-additive, � -additive, tight, perfect, Grothendieck and
separable Baire measures [12].

E always will denote a Banach space. Ba(X) and Ba?(X) will stand for the �-algebra
and algebra of Baire in X. Let A be an algebra of subsets of X and let m : A ! E a �nitely
additive vector measure. We say that m is strongly additive if the serie

P
m(An) converges

for each mutually disjoint sequence fAng of elements of A. The set function from A to R
de�ned by

k m k (A) = supfj x0 �m j (A) : x0 2 BE0g

is called the semivariation of m. If k m k (X) is �nite m is said to be of bounded semivari-
ation. Let ba(A; E) denote the space of all vector measures m : A ! E of bounded semi-
variation. It is well known that ba(A; E) is a Banach space with the norm m!k m k (X)
[5].

The following theorem can be proved very similar to the case when X is a compact
Hausdor� space ([5], [1], [4]).

Theorem 1.1. Let T : Cb(X) ! E be a bounded operator. Then there exists a unique

�netely, additive vector measure m : Ba? ! E00 of bounded semivariation such that:

1. For every x0 2 E0, x0 �m 2M(X)
2. The mapping from E0 into M(X) de�ned by x0 ! x0�m is �(E0; E)��(M(X); Cb(X))-

continuous.
3. T (f) =

R
f dm for every f 2 Cb(X)
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4. k T k=km k (X)

Conversely, if m : Ba? ! E00 is a �netely additive vector measure of bounded semivari-

ation which satis�es 1 y 2, then 3 de�nies a bounded linear operator T : Cb(X) ! E that
satis�es 4.

We will use freely the following results:

Theorem 1.2. Carath�eodory-Hahn-Kluvanek Extension Theorem

Let F be algebra of subsets of X, � the �-algebra generated by F. Then any of the

following statements about a weakly countably additive vector measure m : F ! E implies
the others:

1. m has a unique countably additive extension m : �! E

2. There exist a �nite, no negative, countably additive scalar measure � : F ! R such
that m� �

3. m is strongly additive.

4. m(F) is a relatively weakly compact subset of E.

In fact the control measure � can be taken of the form x0 � m for some x0 2 E0 ([5,
IX.2.Th.2 (Rybakov)]).

Lemma 1.3. [7] Let K a compact Haussdor� space, if H � C(K) is tp-compact, then H

is tp-sequentially compact.

2. Operators and Strict Topologies. If F and E are Banach spaces, an operator T :
F ! E is said to be weakly compact if T send bounded sets in F into relatively weakly
compact subset of E. In particular we will consider operators T : Cb(X)! E.

Similarly to [5] we have the following result.

Theorem 2.1. Let T : Cb(X) ! E be a �� continuous linear operator with representing
measure m. Then T is weakly compact if and only if m takes its values in E and is strongly

additive.

Proof: It is well known that if T is weakly compact, T 00 is also weakly compact. By the
construction of m, ([4]), it represents the operator

T = T 00 j B

where B = B(X;Ba?) the space of uniform limits of Ba?-simple functions. Then, in fact,
m takes its values in E.

Moreover:

m(Ba?) = fT (�A) : A 2 Ba?g

and since �A 2 BB, the unit ball B, it follows that the range of m is weakly compact.
Also, since x0 �m 2M� for every x0 2 E0, it follows from Theorem 1.2 that m is strongly

additive.
Conversely, if m is strongly additive, and since m represents the operator T : B ! E00

(see [4] or [5]), it follows that T is weakly compact and then its restriction T is also weakly
compact (considered as an operator from Cb(X) to E00).

Now since T (BCb(X)) is �(E
00; E000)-compact it easily follows that it is �(E;E0)-compact

and then T is a weakly compact operator. �

Lemma 2.2. Let E be normed space and E0 its dual. If F locally convex topological vector
space and T : F ! E is lineal, then T is continuous if and only if fx0 � T : x0 2 BE0g is

equicontinuous.
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Proof: If T is continuous, given � > 0 there exists a 0-neighborhood U in F such that if
f 2 U then k T (f) k� �.

On the other hand if x0 2 BE0 it follows that

j x0 � T (f) j�k T (f) k� �

uniformly for x0 2 BE0 .
Conversely, if fx0 � T : x0 2 BE0g is equicontinuous; and (fi) is a net en F converging to

zero then; x0 � T (fi)! 0 uniformly in BE0 . Thus

k T (fi) k= supfj x0 � T (fi) j: x
0 2 BE0g ! 0

which implies that T is continuous. �

The following results which appears in [1], [2] and [3] follow easily from Lemma 2.2 and
the corresponding characterization of �z-equicontinuos subsets of Mz for z = t; �; p; s and
� ([12]).

We write:

k m k? (A) = supfj x0 �m j? (A) : x
0 2 BE0g

for A � X.

Corollary 2.3. Let T : Cb(X) ! E be a bounded linear operator and m its representing
measure. The following are equivalent:

1. T is �t-continuous.
2. (8� > 0)(9K � X; K compact )(km k? (X nK) � �)

Corollary 2.4. Let T : Cb(X) ! E be a bounded linear operator and m its representing
measure. The following are equivalent:

1. T is ��-continuous.
2. fn # 0) T (fn)! 0

Corollary 2.5. Let T : Cb(X) ! E be a bounded linear operator and m its representing
measure. The following are equivalent:

1. T is �� -continuous.
2. f� # 0) T (f�)! 0

Corollary 2.6. Let T : Cb(X) ! E be a bounded linear operator and m its representing
measure. The following are equivalent:

1. T is �s-continuous.

2. For each partition of unity (f�)�2I in Cb(X) and every � > 0 there exists a �nite
subset F � I such that j x0 �m j (1�

P
�2F f�) < � for each x0 2 BE0

Corollary 2.7. Let T : Cb(X) ! E be a bounded linear operator and m its representing
measure. The following are equivalent:

1. T is �p-continuous.
2. For each continuous map f from X onto a separable metric space Y and every

� > 0 there exists a compact K � Y such that j x0 �m j (X n f�1(K)) < � for every
x0 2 BE0 .

In addition it is worth mentioning that the following results holds

Theorem 2.8. Let T : Cb(X) ! E be a weakly compact operator and m its representing

measure. For z = � or s, T is �z-continuos if and only if x0 �m 2Mz for every x0 2 E0.
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Proof: Clearly if T is �z-continuos, then x0 �m 2Mz(X) for every x0 2 E0.

Conversely, suppose x0 �m 2Mz for every x
0 2 E0. Now since T is weakly compact T 0 is

also weakly compact. Then fx0 �m : x0 2 BE0g is �(M(X); Cb(X)
00
)-compact. Now, since

Mz is a subspace of M(X), then fx0 �m : x0 2 BE0g will also be �(Mz; Cb(X))-compact.
But, �� and �s are Mackey; then fx0 �m : x0 2 BE0g is �z-equicontinuos and by 2.2 T it
follows that T is �z continuos. �

3. The Dunford Pettis Property in (Cb(X); �z). If F is locally convex Hausdor� topo-
logical vector space, then F is said to have the Dunford Pettis property (DP) if for every
Banach space E and every continuous operator T : F ! E which send bounded sets into
relatively weakly compact subset of E, it sends absolutely convex and weakly compact
subsets of F into relatively compact subsets of E.

In what follows we will discuss the Dunford Pettis property for (Cb(X); �z) for z =
t; �; p; s; g. In [8] Khurana proved the result for z = t and in [10] Khurana and Vielma
proved it for z = � and p, in both cases using measure theoretic aproaches. Our main
contribution is to prove it for z = s and g. In any case we present a di�erent proof for
z = t; � and p, for the sake of completness.

Theorem 3.1. (Cb(X); �t) has the Dunford-Pettis property.

Proof: Let T : Cb(X) ! E be a �t-continuous operator which is weakly compact and let
H � Cb(X) an absolutely convex and �(Cb(X);Mt)-compact.

Let ffng be a sequence in H. Since �t � ��, the representing measure m of T has a
positive control measure � 2Mt. Now, since every tight Baire measure can be extended to
a compact-regular Borel measure, we always assume that this extension has been made.

Since ffng is norm-bounded there exists an L > 0 such that k fn k� L=2 for every n 2N.
Also for � > 0, there exists a � > 0 such that �(F ) < � implies that k m k (F ) < �=3L.

Now by Corollary 2.3, there exists a compact subset K � X such that k m k (X nK) <
�=3L.

Since H is tp-compact by Lemma 1.3 ffng has a subsequence, denoted by ffng, such
that fn(x)! f(x) for every x 2 K.

Now, by Egoro�'s Theorem, there exists a F� 2 Ba(X) contained in K such that ffng
is uniformly Cauchy in K n F� and �(F�) < �.

Let n0 2 N be such that, for n;m � n0, we have that

supfk fn(x)� fm(x) k: x 2 K n F�g < �=3M

with M = k m k (X).

Then it follows that for n;m � n0

j x0 � T (fn)� x0 � T (fm) j

�j
R
XnK

(fn � fm)d(x
0 �m) j + j

R
KnF�

(fn � fm)d(x
0 �m) j + j

R
F�
(fn � fm)d(x

0 �m) j

� L k m k (X nK) + supfk fn � fm k: x 2 K n F�gM + L k m k (F�)

< �=3 + �=3 + �=3 = �

for every x0 2 BE0 .

If we take � = 1 we obtain a subsequence of ffng, said ff1ng and n1 2 N such that for
n;m � n1

kx0 � T (f1n)� x0 � T (f1m)k < 1

for every x0 2 BE0 .
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Inductively, we obtain ffkng, a subsequence of ffk�1n g, for k = 2; 3; : : : and nk 2 N such
that for n;m � nk

kx0 � T (fkn)� x0 � T (fkm)k < 1=k

for every x0 2 BE0 .

The sequence fgng de�ned for gn = fnn is a subsequence of ffng norm-convergent in E

and the result follows. �

We need a de�nition and a lemma before we state the next theorem.

If A is a set of real-valued measurable functions on a �nite measure space (
;�; �), A is
said to have the separation property with respect to � if

f; g 2 A; f = g ae(�) then f(x) = g(x); on 


Lemma 3.2. If A is tp-compact, convex and has the separation property with respect to �;
then tp = t� in A where t� is the topology of �-convergence and tp is metrizable ( [12, 6.13.])

Theorem 3.3. (Cb(X); �� ) has the Dunford-Pettis property.

Proof: Let T : Cb(X) ! E be a �� -continuous operator which is weakly compact and let
H � Cb(X) an absolutely convex and �(Cb(X);M� )-compact.

Let ffng be a sequence in H. Since �� � �� , the representing measure m of T has a
positive control measure � 2 M� . Now, since every � -additive measure can be uniquely
extend to a Borel measure, we always assume that this extension has been made.

Since ffng is norm-bounded there exists an L > 0 such that k fn k� L=2 for every
n 2 N. Also, given � > 0, there exists a � > 0 such that if �(F ) < � it follows that
k m k (F ) < �=3L. Now, since every � -additive measure has a non empty support we call
F = sop(�). It is clear that F is closed, and �(F ) = �(X).

Now, since H is tp-compact it follows that the set HF = ff j F : f 2 Hg is tp-compact
and convex in Cb(F ).

We claim that HF has the separation property with respect to �F (�F (B) = �(B \ F )
where B is Borel in X).

In fact, if f; g belong to H and f j F = g j F ae(�F ) we let bF = fx 2 X : f(x) = g(x)g;
bF is closed in X and �( bF ) = �(X). Then F � bF and that implies that f = g on F .
Therefore by Lemma 3.2 (Cb(F ); tp) is metrizable.

Now since H is tp-compact, then any sequence ffng in H has a tp-accumulation point f .
Then f j F is a tp-accumulation point of ffn j Fg. Therefore there exists a subsequence,
that we call ffn j Fg again, which convergs to f j F pointwise.

By Egoro�'s Theorem, there exists a F� 2 Bo(X) contained in F such that ffng is
uniformly Cauchy in F n F� and �(F�) < �.

Let n0 2 N be such that, for every n;m � n0

supfk fn(x)� fm(x) k: x 2 F n F�g < �=2M

with M =k m k (X).

To show that fT (fn)g is norm-convergent we follow a similar procedure as Theorem 3.3.

Then fT (fn)g converge in E and the theorem follows. �

Theorem 3.4. (Cb(X); �p) has the Dunford-Pettis property.

Proof: Let T : Cb(X)! E be a �p-continuous operator which is weakly compact operator
and H � Cb(X) absolutely convex and �(Cb(X);Mp)-compact.

Again the representing measure of T has a positive control measure � 2Mp.
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Again since ffng 2 H is norm bounded sequence with k fn k� L=2 for some L > 0, then
ffng has a tp-accumulation point f 2 H since H is tp-compact. Also given � > 0, there
exists a � > 0 so that �(F ) < � implies that k m k (F ) < �=2L.

Now by a well known result of Fremlim, [6] ffng has a subsequence, denoted again by
ffng, which converges pointwise to f �-almost everywhere.

Let Y � X with �(Y ) = �(X) and fn(x)! f(x) for every x 2 Y . By Egoro�'s Theorem,
there is an F� 2 Ba(X) contained in Y such that ffng is uniformly Cauchy in Y n F� and
�(F�) < �.

To show that fT (fn)g is norm convergent we follow a similar procedure as Theorem 3.3.
�

Theorem 3.5. (Cb(X); �s) has the Dunford-Pettis property.

Proof: Let T : Cb(X) ! E be �s-continuous operator which is weakly compact and
H � Cb(X) absolutely convex and �(Cb(X);Ms)-compact.

Again the representing measure m of the operator T has a positive control measure
� 2Ms. Since ffng in H is a norm bounded sequence with , k fn k� L=2 for some L > 0
then ffng has a tp-accumulation point f 2 H since H is tp-compact.

Also given � > 0, there is a � > 0 so that �(F ) < � implies k m k (F ) < �=2L.

Let us de�ne a continuous pseudometric on X as follows

d(x; y) =

1X

n=1

1

2n
j fn(x)� fn(y) j

And let Y � X, a zero-set d-closed and d-separable subset of X such that �(X) = �(Y )
([12]) with fxn : n 2Ng d-dense en Y .

By an standard diagonalization procedure we can found a subsequence of ffng, called
again ffng, such that fn(xi)! f(xi) for every xi 2 fx1; x2; : : : g.

We claim that in fact fn(x) ! f(x) for every x 2 Y . Let � > 0, and take i 2 N such
that d(xi; x) < �=3 and j f(xi)� f(x) j< �=3 then it follows that j fn(xi) � fn(x) j< � for
every n 2N.

Let n(i) 2N such that j fn(xi)� f(xi) j< �=3 if n � n(i). Then if n � n(i) we get

j fn(x)� f(x) j�j fn(x)� fn(xi) j + j fn(xi)� f(xi) j + j f(xi)� f(x) j< �

As in previous theoremwe invoke Egoro�'s Theorem and coclude that fT (fn)g converges
in E. �

In the next theorem we answer positevely a question posted by Wheeler in [12, 15.11.].

Theorem 3.6. (Cb(X); �g) has the Dunford-Pettis property.

Proof: Let T : Cb(X)! E be a �g-continuous weakly compact operator and letH � Cb(X)
be absolutely convex and �(Cb(X);Mg)-compact.

Now since H is tp-compact and �g is the �nnest locally convex topology on Cb(X)
agreeing with tp on absolutely convex and tp-compact sets, we get that H is �g-compact.
Now since T is �g-continuos we obtain that T (H) is norm-compact in E. �
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