A NECESSARY CONDITION OF LOCAL INTEGRABILITY FOR A NOWHERE-ZERO COMPLEX VECTOR FIELD IN \mathbb{R}^{2}.

Haruki Ninomiya

Received November 6, 1997; revised July 24, 1998

Abstract

Let X_{2} be a nowhere-zero C^{∞} complex vector field in \mathbb{R}^{2}. A necessary condition for the local integrability of X_{2} which belongs to a certain class of non-solvable operators is investigated.

1. Introduction

Let X_{n} be a nowhere-zero C^{∞} complex vector field defined near a point P in \mathbb{R}^{n}. We shall say that X_{n} is locally integrable at P if there exist a neighborhood Ω of P and functions $u_{i}(i=1,2, \ldots, n-1)$ satisfying $X_{n} u_{i}=0$ in Ω such that $d u_{1} \wedge d u_{2} \wedge \cdots \wedge d u_{n-1}(\mathrm{P}) \neq 0$.

In [2] and [3], Lewy showed the holomorphic extension of the solutions to homogeneous first-order partial differential equations $X_{n} u=0(n=3$ and 4) and proposed a problem whether X_{n} is locally integrable. These papers assumed a new aspect to the concept of holomorphic hull.

So far, it is known that X_{n} is locally integrable at P if X_{n} is real-analytic or locally solvable at P (see Treves [12]); on the other hand Nirenberg [7] gave a non-solvable vector field in \mathbb{R}^{2} which has no local integrability That vector field in fact has the property that $X_{2} u=0$ admits no even non-trivial solutions near the origin (see also [6])). It is an open problem to obtain a necessary and sufficient condition for local integrability of X_{n}, though there are several partial results mainly when $n=2([1],[5],[8],[10],[11]$, for instance).

In this paper, we investigate the case when $n=2$. The equation $X_{2} u=0$ near P is transformed into that of the form

$$
\left.L u \equiv \partial_{t}+i a(t, x) \partial_{x}\right) u=0
$$

near the origin in \mathbb{R}^{2}, where $a(t, x)$ is a real-valued C^{∞} function. Our problem is to seek a necessary and sufficient condition for $L u=0$ to have a solution near the origin such that $\partial_{x} u \neq 0$. We know that L is locally integrable at the origin if $a(t, x)$ is real-analytic with respect to x or the function $t \rightarrow a(t, x)$ does not change sign in $\{t ;(t, x) \in \mathcal{O}\}$ for every x by taking a neighborhood \mathcal{O} of the origin. No one has obtained a necessary and sufficient condition yet when the function $t \rightarrow a(t, x)$ changes sign in $\{t ;(t, x) \in \mathcal{O}\}$ for some x by taking any neighborhood \mathcal{O} of the origin, except for the particular case of Mizohata type vector fields.

In $\S 2$ our results are stated. Our main theorem (Theorem 3) is prove d in $\S 3$. In $\S 4$, the proof of Proposition 5 which concerns the existence of non-trivial solutions is given. In $\S 5$, it is proved that the example given in $\S 2$ satisfies the required conditions.

[^0]
2. Results

The definition of Mizohata type is as follows:
Definition. X_{2} is called a Mizohata type vector field if the following conditions hold:
(i) $X_{2}(0)$ and $\bar{X}_{2}(0)$ are C-linearly dependent.
(ii) $X_{2}(0)$ and $\left[X_{2}(0), \bar{X}_{2}(0)\right]$ are C-linearly independent.

Remark. L is a Mizohata type vector field if $a(0,0)=0$ and $a_{t}(0,0) \neq 0$.
Treves [10] (see also Sjöstrand [8]) proved the following theorem:
Theorem 1. Let X_{2} be a Mizohata type vector field. X_{2} is locally integrable at the origin if and only if there is a change of local coordinates such that X_{2} becomes a (suitable non-vanishing C^{∞} function) multiple of the Mizohata operator $\partial_{x_{1}}+i x_{1} \partial_{x_{2}}$.

This is a beautiful result; it does not seem, however, to be really useful for deciding whether L is locally integrable or not. We present a necessary condition which is given by an estimate.

For a function $f(t, x)$, denote by $f_{e}(t, x)$ the even part of $f(t, x)$ with respect to t and by $f_{o}(t, x)$ the odd one. In [5] we remarked that the form of $\sup a_{e}(t, x)$ affects the local integrability: Let $t a(t, x)>0$ for $t \neq 0$. In case of $\sup a_{e}(t, x)=\emptyset, L$ is locally integrable at the origin. If $\sup a_{e}(t, x) \neq \emptyset$, there is a differential operator L which has no local integrability at the origin and the property that $\sup a_{e}(t, x) \cap U$ contains an open disc for every neighborhood U of the origin.

Now we shall require the following assumption:
(a.0): $a(0, x)$ vanishes identically.
(a.1): There is a neighborhood ω of the origin such that

$$
\begin{equation*}
t a_{o}(t, x)>0 \quad \text { in } \quad\{t \neq 0\} \cap \omega \tag{a.1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{e}(t, x) \geq 0 \quad \text { in } \quad \omega \tag{a.1.2}
\end{equation*}
$$

First we have the following
Lemma 2. ([5]). Assume (a.1.1). Then there exist a neighborhood Ω_{w} of the origin and a function $w(t, x) \in C^{1}\left(\Omega_{w}\right)$ such that

$$
\left.\left.\min \inf _{\delta_{w}} R e w_{x}, \inf _{\Omega_{w}} \operatorname{Im} w_{x}\right)>0 \quad \text { and } \quad \partial_{t}+i a_{o}(t, x) \partial_{x}\right) w=0 \text { in } \Omega_{w} \text {. }
$$

Set

$$
\left.m\left(w, \Omega_{w}\right)=\min \quad i \not \beta_{2} \operatorname{Re} w_{x}, \inf _{\Omega_{w}} \operatorname{Im} w_{x}\right)
$$

for a function w and a neighborhood Ω_{w} satisfying Lemma 2. Then our main result is stated in the following form:
Theorem 3. Assume (a.0) and (a.1). Let w and Ω_{w} be any one of the pairs of a function and a neighborhood satisfying Lemma 2. Assume that $L u=0$ has a C^{1} solution near the origin such that $u_{x}(0) \neq 0$. Then, there exists a positive constant T_{0} which is independent of w and Ω_{w} such that, for any simply connected domain D contained in $\left(0, T_{0}\right) \times\left(-T_{0}, T_{0}\right) \cap \Omega_{w}$ with piecewise smooth boundary ∂D, the inequality

$$
m\left(w, \Omega_{w}\right) \iint_{D} a_{e} d t d x \leq \sup _{\partial D}|w| \cdot|\partial D|
$$

holds, where $|\partial D|$ denotes the length of the boundary ∂D.

To give an example, set $a_{0}(t, x)=2 t$. Then

$$
w=(1-i)\left(t^{2}+i x\right) \quad \text { and } \quad \Omega_{w}=\mathbb{R}^{2}
$$

satisfy Lemma 2. Since $|w|=\left\{2\left(t^{4}+x^{2}\right)\right\}^{\frac{1}{2}}$, we have $m\left(w, \Omega_{w}\right)=1$. Taking a positive integer N_{0} such that $N_{0}^{-1}<T_{0}$, for every integer p satisfying $p>N_{0}$, we have

$$
\iint_{D} a_{e}(t, x) d t d x \leq 8 p^{-2}
$$

for $D=\left(0, \frac{1}{p}\right) \times\left(0, \frac{1}{p}\right)$. Therefore we obtain the following
Corollary 4. Let $a_{o}(t, x)=2 t$. Assume (a.1.2) and the following condition:
(b) There exist positive constants c, d, and a monotonously increasing sequence $\left\{p_{n}\right\}$ of positive integers such that

$$
\begin{equation*}
\iint_{D\left(p_{k}\right)} a_{e}(t, x) d t d x>\frac{9}{\left(p_{k}+d\right)\left(p_{k}+c\right)} \tag{2.1}
\end{equation*}
$$

for every sufficiently large k, where $D\left(p_{k}\right)=\left(0, \frac{1}{p_{k}}\right) \times\left(0, \frac{1}{p_{k}}\right)$. Then L is not locally integrable at the origin.

Let us give an example:
Example. (This is obtained by modifying an example of Nirenberg [7](p.8).)
Let n and p be arbitrary positive integers. Set $a_{n, p}=\frac{1}{(n+p-1)(n+p)}$. It is noted that $\sum_{n=1}^{\infty} a_{n, p}=p^{-1}$ and $a_{1, p}=\frac{1}{p(p+1)}$. Let $B_{n, p}$ be the non-overlapping open disc in the (t, x) plane with center $(t, x)=\left(\frac{1}{p}-\left(a_{1, p}+a_{2, p}+\ldots+a_{n-1, p}+\frac{a_{n, p}}{2}\right), \frac{1}{p+1}+\frac{1}{2 p(p+1)}\right)$ and radius $\frac{a_{n, p}}{2}$, and $C_{n, p}$ the closed disc in the (t, x) plane with radius $\frac{a_{n, p}}{4}$ and the same center as $B_{n, p}$.

Let $f_{n, p}$ be a C^{∞} function having the following properties:
(i) $0 \leq f_{n, p} \leq \frac{64 \cdot 18}{\pi(n+p+1)^{2}}$.
(ii) $f_{n, p}$ vanishes outside of $B_{n, p}$ and equals $\frac{64 \cdot 18}{\pi(n+p+1)^{2}}$ inside of $C_{n, p}$.

Let us define the C_{o}^{∞} function $r(t, x)$ as follows:
(iii) $r(-t, x)=r(t, x)$.
(iv) $r(t, x)=f_{n, p}$ in $B_{n, p}$.
(v) $r(t, x)$ vanishes out side of the union of all the $B_{n, p}$.

Set $a_{e}(t, x)=r(t, x)$. Then the condition (b) in Corollary 4 is satisfied.

Concerning on the existence of non-constant solutions for $L u=0$ near the origin, we incidentally obtain the following necessary condition:

Proposition 5. Assume (a.1) and (a.2). Let w and Ω_{w} be any one of the pairs of a function and a neighborhood satisfying Lemma 1. Assume that the $L u=0$ has a nonconstant C^{1} solution near the origin. Then, for any small positive constant ε, there exist a real value x_{0} in $(-\varepsilon, \varepsilon) \cap\left[\Omega_{w} \cap t=0\right]$ and a positive value $T_{x_{0}}$, which satisfies $\left(-T_{x_{0}}, T_{x_{0}}\right) \times$ $\left(-T_{x_{0}}+x_{0}, T_{x_{0}}+x_{0}\right) \subset \Omega_{w}$, such that, for any simply connected domain D contained in $\left(0, T_{x_{0}}\right) \times\left(-T_{x_{0}}+x_{0}, T_{x_{0}}+x_{0}\right)$ with piecewise smooth boundary ∂D, the inequality

$$
m\left(w, \Omega_{w}\right) \iint_{D} a_{e} d t d x \leq \sup _{\partial D}|w| \cdot|\partial D|
$$

holds.
This can be proved in the similar way as in the proof of Theorem 3.

3. Proof of Theorem 3

Multiplying u by a suitable constant $e^{i \theta}$, where θ is a real number, we can assume that $\operatorname{Re}\left(e^{i \theta} u_{e}\right)_{x}(0,0)$ and $\operatorname{Im}\left(e^{i \theta} u_{e}\right)_{x}(0,0)$ are positive. So we can assume that $\operatorname{Re} \partial_{x} u_{e}(0,0) \equiv \alpha$ and $\operatorname{Im} \partial_{x} u_{e}(0,0) \equiv \beta$ are positive.

Let us set $\delta=\min (\alpha, \beta)$. Since $u_{o}(0, x)=0$, we see that $\partial_{x} u_{o}(0, x)=0$. From this and $\partial_{t} u_{o}(0, x)=0$, there is a positive constant T such that

$$
\left.L u=0 \text { in } \quad U_{T}=(-T, T) \times(-T, T) \quad \text { and } \quad M=\max \sup _{U_{T}}\left|\partial_{t} u_{o}\right|, \sup _{U_{T}}\left|\partial_{x} u_{o}\right|\right) \leq \frac{\delta}{4} .
$$

There exists a positive constant T_{1} such that

$$
\operatorname{Re} \partial_{x} u_{e}>\frac{\delta}{2}, \quad \operatorname{Im} \partial_{x} u_{e}>\frac{\delta}{2} \quad \text { in } \quad U_{T_{1}}=\left(-T_{1}, T_{1}\right) \times\left(-T_{1}, T_{1}\right)
$$

Set $T_{0}=\min \left(T, T_{1}\right)$ and $v=\frac{2 u}{\delta}$. Then we have

$$
\inf _{U_{T_{o}}} \partial_{x} \operatorname{Re} v_{e} \geq \frac{\delta}{2} \cdot \frac{2}{\delta}=1 \quad \text { and } \quad \inf _{U_{T_{o}}} \partial_{x} \operatorname{Im} v_{e} \geq \frac{\delta}{2} \cdot \frac{2}{\delta}=1
$$

And we also have

$$
\left.\max \sup _{U_{T o}}\left|\partial_{t} v_{o}\right|, \sup _{U_{T o}}\left|\partial_{x} v_{o}\right|\right) \leq \frac{2 M}{\delta}<\frac{1}{2} .
$$

Since $L v=\frac{2}{\delta} L u=0$, we have

$$
\begin{equation*}
\left.\partial_{t}+i a_{o}(t, x) \partial_{x}\right) v=-i a_{e}(t, x) \partial_{x} v_{e} \tag{3.1}
\end{equation*}
$$

Hence we have the following
Lemma 6. For any simply connected domain D contained in $\left(0, T_{0}\right) \times\left(-T_{0}, T_{0}\right) \cap \Omega_{w}$ with piecewise smooth boundary,

$$
\begin{equation*}
i \iint_{D} a_{e} w_{x} \partial_{x} v_{e} d t d x=\int_{\partial D} w \partial_{t} v_{o} d t+w \partial_{x} v_{o} d x . \tag{3.2}
\end{equation*}
$$

Proof. By (3.1),

$$
-w_{x}\left\{\left(\partial_{t}+i a_{o} \partial_{x}\right) v_{o}\right\}=i a_{e} w_{x} \partial_{x} v_{e}
$$

And hence we have

$$
\begin{equation*}
\iint_{D}-w_{x}\left\{\left(\partial_{t}+i a_{o} \partial_{x}\right) v_{o}\right\} d t d x=\iint_{D} i a_{e} w_{x} \partial_{x} v_{e} d t d x \tag{3.3}
\end{equation*}
$$

The left-hand side of (3.3)

$$
\begin{aligned}
=\iint_{D}-\left\{w_{x} \partial_{t} v_{o}-w_{t} \partial_{x} v_{o}\right\} d t d x & =\iint_{D} d\left\{w(t, x) d v_{o}(t, x)\right\} \\
& =\int_{\partial D} w \partial_{t} v_{o} d t+w \partial_{x} v_{o} d x
\end{aligned}
$$

which completes the proof of Lemma 6 .
By Lemma 6, we have

$$
\begin{equation*}
\iint_{D}\left[a_{e}\left\{\operatorname{Re} \partial_{x} v_{e} \operatorname{Im} w_{x}+\operatorname{Im} \partial_{x} v_{e} \operatorname{Re} w_{x}\right\}\right] d t d x \leq \int_{\partial D}\left|w \partial_{t} v_{o} d t+w \partial_{x} v, d x\right| \tag{3.4}
\end{equation*}
$$

Denote min $\left.\operatorname{iqf}_{U_{T_{o}}} \operatorname{Re} \partial_{x} v_{e}, \inf _{U_{T_{o}}} \operatorname{Im} \partial_{x} v_{e}\right)$ by m_{o}, then we have

$$
\operatorname{Re} \partial_{x} v_{e} \operatorname{Im} w_{x}+\operatorname{Im} \partial_{x} v_{e} \operatorname{Re} w_{x} \geq m\left(w, \Omega_{w}\right) \cdot m_{0} \text { in } D
$$

And so from (3.4), we have

$$
m\left(w, \Omega_{w}\right) \cdot m_{0} \iint_{D} a_{e}(t, x) d t d x \leq \int_{\partial D}\left|w \partial_{t} v_{o} d t+w \partial_{x} v_{o} d x\right|
$$

As we have remarked that $m_{0} \geq 1$ and $\left.M=\max \sup _{U_{T o}}\left|\partial_{t} v_{o}\right|, \sup _{U_{T o}}\left|\partial_{x} v_{o}\right|\right) \leq \frac{1}{2}$, we
obtain the following inequality:

$$
m\left(w, \Omega_{w}\right) \iint_{D} a_{e} d t d x \leq \sup _{\partial D}|w| \cdot|\partial D|
$$

which completes the proof of Theorem 3.

4. Proof of Proposition 5

Suppose that $L u=0$ holds in a neighborhood U of the origin. We may assume that $U=U_{T_{2}}=\left(-T_{2}, T_{2}\right) \times\left(-T_{2}, T_{2}\right)$, where T_{2} is a positive constant such that $T_{2}<\varepsilon$.

Now we have the following:
Lemma 7. There exists a real value x_{0} such that $\partial_{x} u\left(0, x_{0}\right) \neq 0$ and $\left|x_{0}\right|<\varepsilon$.
Proof. Assume that $\partial_{x} u\left(0, x_{0}\right)$ vanishes in $\left(-T_{2}, T_{2}\right)$. Since $a(t, x)$ is positive in $\left(0, T_{2}\right) \times$ $\left(-T_{2}, T_{2}\right)$ from the assumption (a.1), L is elliptic for $t>0$. And hence $u \in C^{\infty}$ for $t>0$. Setting $v=\partial_{x} u$, we have $L v+i a_{x} v=0$ in $\left(0, T_{2}\right) \times\left(-T_{2}, T_{2}\right)$. Since $v(0, x)=0$ in $\left(-T_{2}, T_{2}\right)$, applying the uniqueness theorem (see [4] or [9]), v vanishes in $\left[0, T_{2}\right) \times\left(-T_{2}, T_{2}\right)$. By the assumption (a.1), $a(t, x)$ is negative in $\left(-T_{2}, 0\right) \times\left(-T_{2}, T_{2}\right)$. Applying the uniqueness theorem to the equation $L v+i a_{x} v=0$ in $\left(-T_{2}, 0\right) \times\left(-T_{2}, T_{2}\right), v=0$ in $\left(-T_{2}, 0\right) \times\left(-T_{2}, T_{2}\right)$. Therefore v vanishes in $\left(-T_{2}, T_{2}\right) \times\left(-T_{2}, T_{2}\right)$. This implies that u is constant, which is a contradiction. Hence we see Lemma 7 holds.

Take T_{2} such that $U_{T_{2}} \subset \Omega_{w}$, if necessary, we can assume that x_{0} in $(-\varepsilon, \varepsilon) \cap\left[\Omega_{w} \cap t=0\right]$. Multiplying u by a suitable constant and applying Lemma 7, we can assume that there is a positive constant $t_{x_{0}}$ such that

$$
\begin{gathered}
L u=0 \text { in } U_{t_{x_{0}}}=\left(-t_{x_{0}}, t_{x_{0}}\right) \times\left(-t_{x_{0}}+x_{0}, t_{x_{0}}+x_{0}\right), \\
\quad \max \left(\sup _{U_{t_{x_{0}}}}\left|\partial_{t} u_{o}\right|, \sup _{U_{t_{x_{0}}}}\left|\partial_{x} u_{o}\right|\right) \leq \frac{1}{2} \\
\quad \min \left(\inf _{U_{t_{x_{0}}}} \operatorname{Re} \partial_{x} u_{e}, \inf _{U_{t_{x_{0}}}} \operatorname{Im} \partial_{x} u_{e}\right) \geq 1
\end{gathered}
$$

Take a positive constant $T_{x_{0}}$ such that

$$
\left.f T_{x_{0}}, T_{x_{0}}\right) \times\left(-T_{x_{0}}+x_{0}, T_{x_{0}}+x_{0}\right) \subset \Omega_{w} \cap U_{t_{x_{0}}}
$$

Then we can derive the inequality:

$$
m\left(w, \Omega_{w}\right) \iint_{D} a_{e} d t d x \leq \sup _{\partial D}|w| \cdot|\partial D|
$$

This ends the proof.

5. Example

We shall show that the a_{e} defined in Example satisfies the condition (b).
First we set $c=1, d=2$, and $\left\{p_{k}\right\}=\{1,2, \ldots\}$. By putting $p_{k}=p$, the left-hand side of the inequality of (2.1)

$$
\begin{aligned}
& \geq \sum_{n=1}^{\infty} \iint_{C_{n, p}} a_{e} d t d x+\sum_{k=p+1}^{\infty} \iint_{C_{1, k}} a_{e} d t d x \\
& =\sum_{n=1}^{\infty} \frac{\pi a_{n, p}^{2}}{16} \cdot \frac{64 \cdot 18}{\pi(n+p+1)^{2}}+\sum_{k=p+1}^{\infty} \frac{\pi a_{1, k}^{2}}{16} \cdot \frac{64 \cdot 18}{\pi(k+2)^{2}} \\
& =\sum_{n=1}^{\infty} 18 \cdot\left[\frac{2}{(n+p-1)(n+p)(n+p+1)}\right]^{2}+\sum_{k=p+1}^{\infty} 18 \cdot\left[\frac{2}{k(k+1)(k+2)}\right]^{2} .
\end{aligned}
$$

Since

$$
\begin{aligned}
\frac{2}{(n+p-1)(n+p)(n+p+1)} & =\frac{1}{(n+p-1)(n+p)}-\frac{1}{(n+p+1)(n+p)} \\
& =\frac{1}{n+p-1}-\frac{1}{n+p}-\left\{\frac{1}{n+p}-\frac{1}{n+p+1}\right\} \\
& =\frac{1}{n+p-1}-\frac{2}{n+p}+\frac{1}{n+p+1}
\end{aligned}
$$

and

$$
\frac{2}{k(k+1)(k+2)}=\frac{1}{k}-\frac{2}{k+1}+\frac{1}{k+2},
$$

we have

$$
\begin{aligned}
& \sum_{n=1}^{\infty} 18 \cdot\left[\frac{2}{(n+p-1)(n+p)(n+p+1)}\right]^{2}+\sum_{k=p+1}^{\infty} 18 \cdot\left[\frac{2}{k(k+1)(k+2)}\right]^{2} \\
= & 18 \sum_{n=1}^{\infty}\left[\frac{1}{(n+p-1)^{2}}+\frac{4}{(n+p)^{2}}+\frac{1}{(n+p+1)^{2}}-4\left\{\frac{1}{n+p-1}-\frac{1}{n+p}\right\}\right. \\
& \left.+\left\{\frac{1}{n+p-1}-\frac{1}{n+p+1}\right\}-4\left\{\frac{1}{n+p}-\frac{1}{n+p+1}\right\}\right] \\
& +18 \sum_{k=p+1}^{\infty}\left[\frac{1}{k^{2}}+\frac{4}{(k+1)^{2}}+\frac{1}{(k+2)^{2}}-4\left\{\frac{1}{k}-\frac{1}{k+1}\right\}\right. \\
& \left.-4\left\{\frac{1}{k+1}-\frac{1}{k+2}\right\}+\left\{\frac{1}{k}-\frac{1}{k+2}\right\}\right] \\
= & {\left[\sum_{n=1}^{\infty}\left\{\frac{1}{(n+p-1)^{2}}+\frac{4}{(n+p)^{2}}+\frac{1}{(n+p+1)^{2}}\right\}-\frac{4}{p}+\left\{\frac{1}{p}+\frac{1}{p+1}\right\}-\frac{4}{p+1}\right] } \\
& +18\left[\sum_{k=p+1}^{\infty}\left\{\frac{1}{k^{2}}+\frac{4}{(k+1)^{2}}+\frac{1}{(k+2)^{2}}\right\}-\frac{4}{p+1}-\frac{4}{p+2}+\frac{1}{p+1}+\frac{1}{p+2}\right] \\
& +18\left[\sum_{n=1}^{\infty}\left\{\frac{1}{(n+p-1)^{2}}+\frac{4}{(n+p)^{2}}+\frac{1}{(n+p+1)^{2}}\right\}-\frac{3}{p}-\frac{3}{p+1}\right] \\
& +18\left[\sum_{k=p+1}^{\infty}\left\{\frac{1}{k^{2}}+\frac{4}{(k+1)^{2}}+\frac{1}{(k+2)^{2}}\right\}-\frac{3}{p+1}-\frac{3}{p+2}\right] \\
= & {\left[12 \sum_{k=p+2}^{\infty} \frac{1}{n^{2}}+\frac{1}{p^{2}}+\frac{6}{(p+1)^{2}}-\frac{1}{(p+2)^{2}}-\frac{3}{p}-\frac{6}{p+1}-\frac{3}{p+2}\right] }
\end{aligned}
$$

Put

$$
S(p)=12 \sum_{n=p+2}^{\infty} \frac{1}{n^{2}}+\frac{1}{p^{2}}+\frac{6}{(p+1)^{2}}-\frac{1}{(p+2)^{2}}-\frac{3}{p}-\frac{6}{p+1}-\frac{3}{p+2}
$$

Then we have only to prove

$$
S(p) \geq \frac{1}{2(p+1)(p+2)}
$$

This proof will be given in the the following Lemma 8.
Lemma 8. For every positive integer p,

$$
S(p)>\frac{1}{2(p+1)(p+2)}
$$

Proof. We shall show this by mathematical induction.

First,

$$
\begin{aligned}
S(1) & \left.=123 f^{-2}+4^{-2}+5^{-2}+\ldots\right)+1+\frac{3}{2}-\frac{1}{9}-3-3-1 \\
& =2\left[6\left\{\left(1^{-2}+2^{-2}+3^{-2}+4^{-2}+\ldots\right)-1^{-2}-2^{-2}\right\}\right]-\frac{9}{2}-\frac{1}{9} \\
& =2\left[6\left(\frac{\pi^{2}}{6}-1-\frac{1}{4}\right)\right]-\frac{9}{2}-\frac{1}{9} \\
& =2\left(\pi^{2}-6-\frac{3}{2}-\frac{9}{4}\right)-\frac{1}{9} \\
& =0.1196 \ldots,
\end{aligned}
$$

which is grater than $\frac{1}{12}$. Hence

$$
S(1)>\frac{1}{2 \cdot 2 \cdot 3}
$$

Next assume

$$
S(p)>\frac{1}{2(p+1)(p+2)}
$$

Then

$$
\begin{aligned}
& S(p+1)-\frac{1}{2(p+2)(p+3)} \\
&= 12 \sum_{n=p+3}^{\infty} \frac{1}{n^{2}} \\
&+\frac{1}{(p+1)^{2}}+\frac{6}{(p+2)^{2}}-\frac{1}{(p+3)^{2}}-\frac{3}{p+1}-\frac{6}{p+2}-\frac{3}{p+3}-\frac{1}{2(p+2)(p+3)} \\
&= 12\left\{\sum_{n=p+2}^{\infty} \frac{1}{n^{2}}-\frac{1}{(p+3)^{2}}\right\} \\
&+\frac{1}{(p+1)^{2}}+\frac{6}{(p+2)^{2}}-\frac{1}{(p+3)^{2}}-\frac{3}{p+1}-\frac{6}{p+2}-\frac{3}{p+3}-\frac{6}{2(p+2)(p+3)} \\
&> \frac{1}{2(p+1)(p+2)}+\frac{3}{p}+\frac{6}{p+1}+\frac{3}{p+2}+\frac{1}{(p+2)^{2}}-\frac{6}{(p+1)^{2}}-\frac{1}{p^{2}} \\
&-\frac{12}{(p+3)^{2}}+\frac{1}{(p+1)^{2}}+\frac{6}{(p+2)^{2}}-\frac{1}{(p+3)^{2}}-\frac{3}{p+1} \\
&-\frac{6}{p+2}-\frac{3}{p+3}-\frac{1}{2(p+2)(p+3)} \\
&= \frac{1}{(p+1)(p+2)(p+3)}+\frac{3}{p(p+1)}+\frac{1}{(p+1)(p+2)}+\frac{6}{(p+2)(p+3)} \\
&+\frac{7}{(p+2)^{2}}-\frac{5}{(p+1)^{2}}-\frac{1}{p^{2}}-\frac{13}{(p+3)^{2}} \\
&= \frac{A_{1}}{p(p+1)(p+2)(p+3)}+\frac{3}{[p(p+1)(p+2)(p+3)]^{2}},
\end{aligned}
$$

where

$$
A_{1} \equiv p+3(p+2)(p+3)+6 p(p+3)+3 p(p+1)=12 p^{2}+37 p+18
$$

and

$$
\begin{aligned}
A_{2} \equiv & 7\{p(p+1)(p+3)\}^{2}-5\{p(p+2)(p+3)\}^{2}-\{(p+1)(p+2)(p+3)\}^{2} \\
& -13\{p(p+1)(p+2)\}^{2} 7 p^{2}\left(p^{2}+4 p+3\right)^{2}-5 p^{2}\left(p^{2}+5 p+6\right)^{2} \\
& -13 p^{2}\left(p^{2}+3 p+2\right)^{2}-\left(p^{3}+6 p^{2}+11 p+6\right)^{2} \\
= & 7 p^{2}\left(p^{4}+8 p^{3}+22 p^{2}+24 p+9\right)-5 p^{2}\left(p^{4}+10 p^{3}+37 p^{2}+60 p+36\right) \\
& -13 p^{2}\left(p^{4}+6 p^{3}+13 p^{2}+12 p+4\right)-\left(p^{6}+12 p^{5}+58 p^{4}+144 p^{3}+193 p^{2}+132 p+36\right) \\
= & \left(7 p^{6}+56 p^{5}+154 p^{4}+168 p^{3}+63 p^{2}\right)-\left(5 p^{6}+50 p^{5}+185 p^{4}+300 p^{3}+180 p^{2}\right) \\
& -\left(13 p^{6}+78 p^{5}+169 p^{4}+156 p^{3}+52 p^{2}\right) \\
& -\left(p^{6}+12 p^{5}+58 p^{4}+144 p^{3}+193 p^{2}+132 p+36\right) \\
= & -\left(12 p^{6}+84 p^{5}+258 p^{4}+432 p^{3}+362 p^{2}+132 p+36\right) .
\end{aligned}
$$

Setting

$$
S=\frac{A_{1}}{p(p+1)(p+2)(p+3)}+\frac{A_{2}}{[p(p+1)(p+2)(p+3)]^{2}},
$$

we have

$$
\begin{aligned}
S= & \left\{\left(12 p^{2}+37 p+18\right) p(p+1)(p+2)(p+3)\right. \\
& \left.-\left(12 p^{6}+84 p^{5}+258 p^{4}+432 p^{3}+362 p^{2}+132 p+36\right)\right\} /[p(p+1)(p+2)(p+3)]^{2} .
\end{aligned}
$$

And we see that the numerator of S

$$
\begin{aligned}
= & \left(12 p^{2}+37 p+18\right) p\left(p^{3}+6 p^{2}+11 p+6\right) \\
& -\left(12 p^{6}+84 p^{5}+258 p^{4}+432 p^{3}+362 p^{2}+132 p+36\right) \\
= & p\left(12 p^{5}+72 p^{4}+132 p^{3}+72 p^{2}+37 p^{4}+222 p^{3}\right. \\
& \left.+407 p^{2}+222 p+18 p^{3}+108 p^{2}+198 p+108\right) \\
& -\left(12 p^{6}+84 p^{5}+258 p^{4}+432 p^{3}+362 p^{2}+132 p+36\right) \\
= & 25 p^{5}+114 p^{4}+155 p^{3}+58 p^{2}-24 p-36 \geq 292 .
\end{aligned}
$$

This completes the proof.

References

1. H.Jacobowitz \& F.Treves, Non-Realizable CR Structures, Invent.Math. 66 (1982), 569-609.
2. H.Lewy, On the local character of the solutions of an atypical linear partial differential equation in three variables and a related theorem for regular functions of two complex variables, Ann. Math. 64 (1956), 514-522.
3. H.Lewy, On hulls of holomorphy, Comm. Pure Apply. Math. 13 (1960), 587-591.
4. H.Ninomiya, Some Remarks on the Uniqueness in the Cauchy Problem for a First-Order Partial Differential Equation in Two Variables, Memo. Osaka Institute of Tech. Series A 19(2) (1975), 83-92.
5. H.Ninomiya, On local integrability conditions for nowhere-zero complex vector fields, J. Math. Kyoto Univ. 33(4) (1993), 899-908.
6. H.Ninomiya, A note on the Nirenberg example, Funkcialaj Ekvacioj (Serio Internacia) 39(3) (1996), 339-402.
7. L.Nirenberg, Lectures on linear partial differential equations, Reg. Conf. Series in Math. $\mathbf{1 7}$ A.M.S. (1973).
8. J.Sjöstrand, Note on a paper of F.Treves, Duke Math.J. 47(3) (1981), 601-608.
9. M.Strauss \& F.Treves, First-Order Linear PDEs and Uniqueness in the Cauchy problem, J.Differential Equations 15 (1974), 195-209.
10. F.Treves, Remarks about certain first-order linear PDE in two variables, Comm. in Partial Differential Equations 15 (1980), 381-425.
11. F.Treves, On the local integrability and local solvability of systems of vector fields, Acta Math. 151 (1983), 1-38.
12. F.Treves, Approximation and representation of functions and distributions annihilated by a system of complex vector fields, École Polytechnique Centre de Mathématiques (1981).

Department of mathematics, Osaka Institute of Technology, 5-16-1 Ohmiya, Asahi-ku, Osaka 535 , JAPAN
E-mail: ninomiya@ge.oit.ac.jp

[^0]: 1997 Mathematics Subject Classification. 35A,35C,35F.

