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Abstract. Let X2 be a nowhere-zero C1 complex vector �eld in R2. A necessary condition

for the local integrability of X2 which belongs to a certain class of non-solvable operators is

investigated.

1. Introduction

Let Xn be a nowhere-zero C1 complex vector �eld de�ned near a point P in Rn. We
shall say thatXn is locally integrable at P if there exist a neighborhood 
 of P and functions

ui(i = 1; 2; :::; n � 1) satisfying Xnui = 0 in 
 such that du1 ^ du2 ^ � � � ^ dun�1(P) 6= 0.

In [2] and [3], Lewy showed the holomorphic extension of the solutions to homogeneous

�rst-order partial di�erential equations Xnu = 0 (n = 3 and 4) and proposed a problem
whether Xn is locally integrable. These papers assumed a new aspect to the concept of

holomorphic hull.

So far, it is known that Xn is locally integrable at P if Xn is real-analytic or locally

solvable at P (see Treves [12]); on the other hand Nirenberg [7] gave a non-solvable vector
�eld in R2 which has no local integrability

�
That vector �eld in fact has the property that

X2u = 0 admits no even non-trivial solutions near the origin (see also [6])
�
. It is an open

problem to obtain a necessary and su�cient condition for local integrability of Xn, though
there are several partial results mainly when n = 2([1], [5], [8], [10], [11], for instance).

In this paper, we investigate the case when n = 2. The equation X2u = 0 near P is
transformed into that of the form

Lu �
�
@t + ia(t; x)@x

�
u = 0

near the origin in R2, where a(t; x) is a real-valued C1 function. Our problem is to seek a

necessary and su�cient condition for Lu = 0 to have a solution near the origin such that
@xu 6= 0. We know that L is locally integrable at the origin if a(t; x) is real-analytic with
respect to x or the function t ! a(t; x) does not change sign in ft; (t; x) 2 Og for every x

by taking a neighborhood O of the origin. No one has obtained a necessary and su�cient
condition yet when the function t ! a(t; x) changes sign in ft; (t; x) 2 Og for some x by

taking any neighborhood O of the origin, except for the particular case of Mizohata type
vector �elds.

In x2 our results are stated. Our main theorem (Theorem 3) is prove d in x3. In x4, the
proof of Proposition 5 which concerns the existence of non-trivial solutions is given. In x5,

it is proved that the example given in x2 satis�es the required conditions.
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2. Results

The de�nition of Mizohata type is as follows:

De�nition. X2 is called a Mizohata type vector �eld if the following conditions hold:

(i) X2(0) and �X2(0) are C-linearly dependent.
(ii) X2(0) and [X2(0); �X2(0)] are C-linearly independent.

Remark. L is a Mizohata type vector �eld if a(0; 0) = 0 and at(0; 0) 6= 0.

Treves [10] (see also Sj�ostrand [8]) proved the following theorem:

Theorem 1. Let X2 be a Mizohata type vector �eld. X2 is locally integrable at the
origin if and only if there is a change of local coordinates such that X2 becomes a (suitable

non-vanishing C1 function) multiple of the Mizohata operator @x1 + ix1@x2 .

This is a beautiful result; it does not seem, however, to be really useful for deciding
whether L is locally integrable or not. We present a necessary condition which is given by

an estimate.
For a function f(t; x), denote by fe(t; x) the even part of f(t; x) with respect to t and

by fo(t; x) the odd one. In [5] we remarked that the form of supae(t; x) a�ects the local

integrability: Let ta(t; x) > 0 for t 6= 0. In case of sup ae(t; x) = ;, L is locally integrable
at the origin. If sup ae(t; x) 6= ;, there is a di�erential operator L which has no local

integrability at the origin and the property that supae(t; x) \ U contains an open disc for
every neighborhood U of the origin.

Now we shall require the following assumption:

(a.0): a(0; x) vanishes identically.
(a.1): There is a neighborhood ! of the origin such that

(a.1.1) tao(t; x) > 0 in ft 6= 0g \ !

and

(a.1.2) ae(t; x) � 0 in !:

First we have the following

Lemma 2. ([5]). Assume (a.1.1). Then there exist a neighborhood 
w of the origin and a
function w(t; x) 2 C1(
w) such that

min
�
inf

w

Rewx; inf

w

Im wx

�
> 0 and

�
@t + iao(t; x)@x

�
w = 0 in 
w:

Set
m(w;
w) = min

�
inf

w

Re wx; inf

w

Im wx

�
for a function w and a neighborhood
w satisfying Lemma 2. Then our main result is stated
in the following form:

Theorem 3. Assume (a.0) and (a.1). Let w and 
w be any one of the pairs of a function

and a neighborhood satisfying Lemma 2. Assume that Lu = 0 has a C1 solution near the
origin such that ux(0) 6= 0. Then, there exists a positive constant T0 which is independent of
w and
w such that, for any simply connected domainD contained in (0; T0)�(�T0; T0)\
w

with piecewise smooth boundary @D, the inequality
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m(w;
w)

ZZ
D

ae dtdx � sup
@D

jwj � j@Dj

holds, where j@Dj denotes the length of the boundary @D.

To give an example, set a0(t; x) = 2t. Then

w = (1� i)(t2 + ix) and 
w = R2

satisfy Lemma 2. Since jwj = f2(t4 + x2)g
1

2 , we have m(w;
w) = 1. Taking a positive

integer N0 such that N�1
0 < T0, for every integer p satisfying p > N0, we have

ZZ
D

ae(t; x) dtdx � 8p�2

for D =
�
0; 1

p

�
�

�
0; 1

p

�
. Therefore we obtain the following

Corollary 4. Let ao(t; x) = 2t. Assume (a.1.2) and the following condition:

(b) There exist positive constants c; d, and a monotonously increasing sequence fpng of
positive integers such that

(2.1)

ZZ
D(pk)

ae(t; x) dtdx >
9

(pk + d)(pk + c)

for every su�ciently large k, where D(pk) =
�
0; 1

pk

�
�

�
0; 1

pk

�
. Then L is not locally

integrable at the origin.

Let us give an example:

Example. (This is obtained by modifying an example of Nirenberg [7](p.8).)

Let n and p be arbitrary positive integers. Set an;p = 1
(n+p�1)(n+p)

. It is noted thatP
1

n=1 an;p = p�1 and a1;p =
1

p(p+1)
. Let Bn;p be the non-overlapping open disc in the (t; x)

plane with center (t; x) =
�
1
p
� (a1;p + a2;p + :::+ an�1;p +

an;p
2
); 1

p+1
+ 1

2p(p+1)

�
and radius

an;p
2
, and Cn;p the closed disc in the (t; x) plane with radius

an;p
4

and the same center as
Bn;p.

Let fn;p be a C1 function having the following properties:

(i) 0 � fn;p �
64�18

�(n+p+1)2
.

(ii) fn;p vanishes outside of Bn;p and equals 64�18
�(n+p+1)2

inside of Cn;p.

Let us de�ne the C1o function r(t; x) as follows:

(iii) r(�t; x) = r(t; x).
(iv) r(t; x) = fn;p in Bn;p.

(v) r(t; x) vanishes out side of the union of all the Bn;p.

Set ae(t; x) = r(t; x). Then the condition (b) in Corollary 4 is satis�ed.

Concerning on the existence of non-constant solutions for Lu = 0 near the origin, we

incidentally obtain the following necessary condition:
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Proposition 5. Assume (a.1) and (a.2). Let w and 
w be any one of the pairs of a

function and a neighborhood satisfying Lemma 1. Assume that the Lu = 0 has a non-
constant C1 solution near the origin. Then, for any small positive constant ", there exist a

real value x0 in (�"; ")\ [
w \ t = 0] and a positive value Tx0 , which satis�es (�Tx0 ; Tx0 )�
(�Tx0 + x0; Tx0 + x0) � 
w; such that, for any simply connected domain D contained in
(0; Tx0)� (�Tx0 + x0; Tx0 + x0) with piecewise smooth boundary @D, the inequality

m(w;
w)

ZZ
D

ae dtdx � sup
@D

jwj � j@Dj

holds.

This can be proved in the similar way as in the proof of Theorem 3.

3. Proof of Theorem 3

Multiplying u by a suitable constant ei�, where � is a real number, we can assume that

Re(ei�ue)x(0; 0) and Im(ei�ue)x(0; 0) are positive. So we can assume that Re@xue(0; 0) � �

and Im@xue(0; 0) � � are positive.

Let us set � = min(�; �). Since uo(0; x) = 0, we see that @xuo(0; x) = 0. From this and
@tuo(0; x) = 0, there is a positive constant T such that

Lu = 0 in UT = (�T; T )� (�T; T ) and M = max
�
sup
UT

j@tuoj; sup
UT

j@xuoj
�
�

�

4
:

There exists a positive constant T1 such that

Re @xue >
�

2
; Im@xue >

�

2
in UT1 = (�T1; T1)� (�T1; T1):

Set T0 = min(T; T1) and v = 2u
�
. Then we have

inf
UTo

@xRe ve �
�

2
�
2

�
= 1 and inf

UTo

@x Im ve �
�

2
�
2

�
= 1:

And we also have

max
�
sup
UT o

j@tvoj; sup
UT o

j@xvoj
�
�

2M

�
<

1

2
:

Since Lv = 2
�
Lu = 0, we have

(3.1)
�
@t + iao(t; x)@x

�
v = �iae(t; x)@xve:

Hence we have the following:

Lemma 6. For any simply connected domain D contained in (0; T0)� (�T0; T0)\
w with

piecewise smooth boundary,

(3.2) i

ZZ
D

aewx@xve dtdx =

Z
@D

w@tvodt+w@xvo dx:

Proof. By (3.1),

�wxf(@t + iao@x)vog = iaewx@xve:
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And hence we have

(3.3)

ZZ
D

�wxf(@t + iao@x)vog dtdx =

ZZ
D

iaewx@xve dtdx:

The left-hand side of (3.3)

=

ZZ
D

�fwx@tvo �wt@xvog dtdx =

ZZ
D

dfw(t; x)dvo(t; x)g

=

Z
@D

w@tvo dt+ w@xvo dx;

which completes the proof of Lemma 6. �

By Lemma 6, we have

(3.4)

ZZ
D

[aefRe@xve Imwx + Im@xveRewxg] dtdx �

Z
@D

jw@tvo dt+w@xv;dxj:

Denote min
�
infUTo Re@xve; infUTo Im@xve

�
by mo, then we have

Re@xve Imwx + Im @xveRewx � m(w;
w) �m0 in D:

And so from (3.4), we have

m(w;
w) �m0

ZZ
D

ae(t; x) dtdx �

Z
@D

jw@tvo dt+ w@xvo dxj:

As we have remarked that m0 � 1 and M = max
�
supUT o j@tvoj; supUT o j@xvoj

�
� 1

2
, we

obtain the following inequality:

m(w;
w)

ZZ
D

ae dtdx � sup
@D

jwj � j@Dj;

which completes the proof of Theorem 3. �

4. Proof of Proposition 5

Suppose that Lu = 0 holds in a neighborhood U of the origin. We may assume that
U = UT2 = (�T2; T2)� (�T2; T2); where T2 is a positive constant such that T2 < ".

Now we have the following:

Lemma 7. There exists a real value x0 such that @xu(0; x0) 6= 0 and jx0j < ":

Proof. Assume that @xu(0; x0) vanishes in (�T2; T2). Since a(t; x) is positive in (0; T2) �
(�T2; T2) from the assumption (a.1), L is elliptic for t > 0. And hence u 2 C1 for t > 0.

Setting v = @xu, we have Lv+iaxv = 0 in (0; T2)�(�T2; T2). Since v(0; x) = 0 in (�T2; T2),
applying the uniqueness theorem (see [4] or [9]), v vanishes in [0; T2) � (�T2; T2). By

the assumption (a.1), a(t; x) is negative in (�T2; 0) � (�T2; T2). Applying the uniqueness
theorem to the equation Lv+iaxv = 0 in (�T2; 0)�(�T2; T2), v = 0 in (�T2; 0)�(�T2; T2).
Therefore v vanishes in (�T2; T2) � (�T2; T2). This implies that u is constant, which is a

contradiction. Hence we see Lemma 7 holds. �
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Take T2 such that UT2 � 
w, if necessary, we can assume that x0 in (�"; ")\ [
w\t = 0].

Multiplying u by a suitable constant and applying Lemma 7, we can assume that there is
a positive constant tx0 such that

Lu = 0 in Utx0 = (�tx0 ; tx0)� (�tx0 + x0; tx0 + x0);

max
�
sup
Utx0

j@tuoj; sup
Utx0

j@xuoj
�
�

1

2
;

min
�
inf
Utx0

Re @xue; inf
Utx0

Im @xue

�
� 1:

Take a positive constant Tx0 such that

�
� Tx0 ; Tx0 )� (�Tx0 + x0; Tx0 + x0

�
� 
w \ Utx0 :

Then we can derive the inequality:

m(w;
w)

ZZ
D

ae dtdx � sup
@D

jwj � j@Dj:

This ends the proof. �

5. Example

We shall show that the ae de�ned in Example satis�es the condition (b).

First we set c = 1; d = 2; and fpkg = f1; 2; : : : g. By putting pk = p, the left-hand side
of the inequality of (2.1)

�

1X
n=1

ZZ
Cn;p

ae dtdx+

1X
k=p+1

ZZ
C1;k

aedtdx

=

1X
n=1

�a2n;p

16
�

64 � 18

�(n+ p+ 1)2
+

1X
k=p+1

�a21;k

16
�

64 � 18

�(k + 2)2

=

1X
n=1

18 �

�
2

(n+ p � 1)(n+ p)(n+ p+ 1)

�2
+

1X
k=p+1

18 �

�
2

k(k + 1)(k + 2)

�2
:

Since

2

(n+ p� 1)(n+ p)(n+ p+ 1)
=

1

(n+ p � 1)(n+ p)
�

1

(n+ p+ 1)(n+ p)

=
1

n + p� 1
�

1

n + p
�

�
1

n + p
�

1

n+ p+ 1

�

=
1

n + p� 1
�

2

n + p
+

1

n+ p+ 1

and
2

k(k + 1)(k+ 2)
=

1

k
�

2

k + 1
+

1

k + 2
;
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we have

1X
n=1

18 �

�
2

(n + p� 1)(n+ p)(n+ p+ 1)

�2
+

1X
k=p+1

18 �

�
2

k(k + 1)(k + 2)

�2

=18

1X
n=1

�
1

(n+ p� 1)2
+

4

(n+ p)2
+

1

(n+ p+ 1)2
� 4

�
1

n + p� 1
�

1

n + p

�

+

�
1

n+ p� 1
�

1

n+ p+ 1

�
� 4

�
1

n+ p
�

1

n + p+ 1

��

+ 18

1X
k=p+1

�
1

k2
+

4

(k + 1)2
+

1

(k + 2)2
� 4

�
1

k
�

1

k + 1

�

�4

�
1

k + 1
�

1

k + 2

�
+

�
1

k
�

1

k + 2

��

=18

"
1X
n=1

�
1

(n+ p � 1)2
+

4

(n+ p)2
+

1

(n + p+ 1)2

�
�

4

p
+

�
1

p
+

1

p+ 1

�
�

4

p + 1

#

+ 18

2
4 1X
k=p+1

�
1

k2
+

4

(k + 1)2
+

1

(k + 2)2

�
�

4

p + 1
�

4

p+ 2
+

1

p+ 1
+

1

p+ 2

3
5

+ 18

"
1X
n=1

�
1

(n+ p� 1)2
+

4

(n+ p)2
+

1

(n+ p+ 1)2

�
�

3

p
�

3

p+ 1

#

+ 18

2
4 1X
k=p+1

�
1

k2
+

4

(k + 1)2
+

1

(k + 2)2

�
�

3

p + 1
�

3

p+ 2

3
5

=18

2
412 1X

k=p+2

1

n2
+

1

p2
+

6

(p+ 1)2
�

1

(p+ 2)2
�

3

p
�

6

p+ 1
�

3

p+ 2

3
5 :

Put

S(p) = 12

1X
n=p+2

1

n2
+

1

p2
+

6

(p+ 1)2
�

1

(p+ 2)2
�

3

p
�

6

p+ 1
�

3

p+ 2
:

Then we have only to prove

S(p) �
1

2(p+ 1)(p+ 2)
:

This proof will be given in the the following Lemma 8.

Lemma 8. For every positive integer p,

S(p) >
1

2(p+ 1)(p+ 2)
:

Proof. We shall show this by mathematical induction.
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First,

S(1) =12
�
3�2 + 4�2 + 5�2 + : : :

�
+ 1 +

3

2
�

1

9
� 3� 3� 1

=2
�
6f(1�2 + 2�2 + 3�2 + 4�2 + : : : )� 1�2 � 2�2g

�
�

9

2
�

1

9

=2

�
6

�
�2

6
� 1�

1

4

��
�

9

2
�

1

9

=2

�
�2 � 6�

3

2
�

9

4

�
�

1

9

=0:1196 : : : ;

which is grater than 1
12
. Hence

S(1) >
1

2 � 2 � 3
:

Next assume

S(p) >
1

2(p+ 1)(p+ 2)
:

Then

S(p+ 1)�
1

2(p+ 2)(p+ 3)

=12

1X
n=p+3

1

n2

+
1

(p+ 1)2
+

6

(p+ 2)2
�

1

(p+ 3)2
�

3

p+ 1
�

6

p+ 2
�

3

p+ 3
�

1

2(p+ 2)(p+ 3)

=12

(
1X

n=p+2

1

n2
�

1

(p+ 3)2

)

+
1

(p+ 1)2
+

6

(p+ 2)2
�

1

(p+ 3)2
�

3

p+ 1
�

6

p+ 2
�

3

p+ 3
�

1

2(p+ 2)(p+ 3)

>
1

2(p+ 1)(p+ 2)
+

3

p
+

6

p+ 1
+

3

p+ 2
+

1

(p+ 2)2
�

6

(p+ 1)2
�

1

p2

�
12

(p+ 3)2
+

1

(p+ 1)2
+

6

(p+ 2)2
�

1

(p+ 3)2
�

3

p+ 1

�
6

p+ 2
�

3

p+ 3
�

1

2(p+ 2)(p+ 3)

=
1

(p+ 1)(p+ 2)(p+ 3)
+

3

p(p+ 1)
+

6

(p+ 1)(p+ 2)
+

3

(p+ 2)(p+ 3)

+
7

(p+ 2)2
�

5

(p+ 1)2
�

1

p2
�

13

(p+ 3)2

=
A1

p(p+ 1)(p+ 2)(p+ 3)
+

A2

[p(p+ 1)(p+ 2)(p+ 3)]
2
;

where

A1 � p+ 3(p+ 2)(p+ 3) + 6p(p+ 3) + 3p(p+ 1) = 12p2 + 37p+ 18
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and

A2 �7fp(p+ 1)(p+ 3)g2 � 5fp(p+ 2)(p+ 3)g2 � f(p+ 1)(p+ 2)(p+ 3)g2

� 13fp(p+ 1)(p+ 2)g27p2(p2 + 4p+ 3)2 � 5p2(p2 + 5p+ 6)2

� 13p2(p2 + 3p+ 2)2 � (p3 + 6p2 + 11p+ 6)2

=7p2(p4 + 8p3 + 22p2 + 24p+ 9)� 5p2(p4 + 10p3 + 37p2 + 60p+ 36)

� 13p2(p4 + 6p3 + 13p2 + 12p+ 4)� (p6 + 12p5 + 58p4 + 144p3 + 193p2 + 132p+ 36)

=(7p6 + 56p5 + 154p4 + 168p3 + 63p2)� (5p6 + 50p5 + 185p4 + 300p3 + 180p2)

� (13p6 + 78p5 + 169p4 + 156p3 + 52p2)

� (p6 + 12p5 + 58p4 + 144p3 + 193p2 + 132p+ 36)

=� (12p6 + 84p5 + 258p4 + 432p3 + 362p2 + 132p+ 36):

Setting

S =
A1

p(p+ 1)(p+ 2)(p+ 3)
+

A2

[p(p+ 1)(p+ 2)(p+ 3)]
2
;

we have

S =
n
(12p2 + 37p+ 18)p(p+ 1)(p+ 2)(p+ 3)

� (12p6 + 84p5 + 258p4 + 432p3 + 362p2 + 132p+ 36)
o,

[p(p+ 1)(p+ 2)(p+ 3)]
2
:

And we see that the numerator of S

=(12p2 + 37p+ 18)p(p3 + 6p2 + 11p+ 6)

� (12p6 + 84p5 + 258p4 + 432p3 + 362p2 + 132p+ 36)

=p(12p5 + 72p4 + 132p3 + 72p2 + 37p4 + 222p3

+ 407p2 + 222p+ 18p3 + 108p2 + 198p+ 108)

� (12p6 + 84p5 + 258p4 + 432p3 + 362p2 + 132p+ 36)

=25p5 + 114p4 + 155p3 + 58p2 � 24p� 36 � 292:

This completes the proof. �
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