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ABSTRACT. Let X2 be a nowhere-zero C'* complex vector field in R2. A necessary condition
for the local integrability of X2 which belongs to a certain class of non-solvable operators is
investigated.

1. INTRODUCTION

Let X,, be a nowhere-zero C'°° complex vector field defined near a point P in R”. We
shall say that X, is locally integrable at P if there exist a neighborhood 2 of P and functions
ui(i =1,2,...,n — 1) satisfying X,,u; = 0 in Q such that dus Adus A-- - Adu,_1(P) # 0.

In [2] and [3], Lewy showed the holomorphic extension of the solutions to homogeneous
first-order partial differential equations X,u = 0 (n = 3 and 4) and proposed a problem
whether X, is locally integrable. These papers assumed a new aspect to the concept of
holomorphic hull.

So far, it is known that X, is locally integrable at P if X, is real-analytic or locally
solvable at P (see Treves [12]); on the other hand Nirenberg [7] gave a non-solvable vector
field in R? which has no local integrability That vector field in fact has the property that
Xou = 0 admits no even non-trivial solutioys near the origin (see also [6])) It is an open
problem to obtain a necessary and sufficient condition for local integrability of X,,, though
there are several partial results mainly when n = 2([1], [5], [8], [10], [11], for instance).

In this paper, we investigate the case when n = 2. The equation Xyu = 0 near P is
transformed into that of the form

Lu= 7{‘ + ia(tqw)&r)u =0

near the origin in R?, where a(t, z) is’a real-valued C* function. Our problem is to seek a
necessary and sufficient condition for Lu = 0 to have a solution near the origin such that
9,u # 0. We know that L is locally integrable at the origin if a(¢, 2) is real-analytic with
respect to z or the function ¢ = a(t,z) does not change sign in {¢; (¢,z) € O} for every =
by taking a neighborhood O of the origin. No one has obtained a necessary and sufficient
condition yet when the function t — a(t, ) changes sign in {t; (f,2) € O} for some = by
taking any neighborhood O of the origin, except for the particular case of Mizohata type
vector fields.

In §2 our results are stated. Our main theorem (Theorem 3) is prove d in §3. In §4, the
proof of Proposition 5 which concerns the existence of non-trivial solutions is given. In §5,
it is proved that the example given in §2 satisfies the required conditions.
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2. RESULTS
The definition of Mizohata type is as follows:

Definition. X3 is called a Mizohata type vector field if the following conditions hold:
(i) X2(0) and X5(0) are C-linearly dependent.
(ii) X2(0) and [X5(0), X2(0)] are C-linearly independent.

Remark. L is a Mizohata type vector field if a(0,0) = 0 and «,(0,0) # 0.
Treves [10] (see also Sjéstrand [8]) proved the following theorem:

Theorem 1. Let Xy be a Mizohata type vector field. X, is locally integrable at the
origin if and only if there is a change of local coordinates such that Xy becomes a (suitable
non-vanishing C* function) multiple of the Mizohata operator O,, + ix10,,.

This is a beautiful result; it does not seem, however, to be really useful for deciding
whether L is locally integrable or not. We present a necessary condition which is given by
an estimate.

For a function f(t, ), denote by f.(t,2) the even part of f(¢,2) with respect to ¢ and
by fo(t,z) the odd one. In [5] we remarked that the form of supa.(f, z) affects the local
integrability: Let ta(t,z) > 0 for t # 0. In case of supa.(t,z) = @), L is locally integrable
at the origin. If supa.(t,z) # 0, there is a differential operator L which has no local
integrability at the origin and the property that supa.(¢, ) N U contains an open disc for
every neighborhood U of the origin.

Now we shall require the following assumption:

(a.0): a(0,x) vanishes identically.
(a.1): There is a neighborhood w of the origin such that

(a.1.1) tao(t,z) >0 in {t£0}Nw
and

(a.1.2) ae(t,z) >0 in w.

First we have the following

Lemma 2. ([5]). Assue (a.1.1). Then there exist a neighborhood Q. of the origin and a
function w(t,x) € C1(£y,) such that

w Qw

min /%lf Rew,,inf In ’wx) >0 and 72 + ia(t, w)&v)w =0 in Q.

Set

m(w, Q) = min ff Re w,, inf Im 'lUr)
Yo Qo

for a function w and a neighborhood §2,, satisfying Lemma 2. Then our main result is stated
in the following form:

Theorem 3. Assume (a.()) and (a.l). Let w and Q,, be any one of the pairs of a function
and a neighborhood satisfying Lemma 2. Assume that Lu = 0 has a C' solution near the
origin such that u,(0) # 0. Then, there exists a positive constant Ty which is independent of
w and Q. such that, for any sitnply connected domain D contained in (0,Ty) % (=T, T )Ny
with piecewise smooth boundary 0D, the inequality
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m(w, Qy,) // ae dtdr < sup |w| - |0D|
D oD

holds, where |0D)| denotes the length of the boundary 8D.

To give an example, set ag(t,2) = 2¢. Then
w=(1—-4i)(t*+iz) and Q,=R?

satisfy Lemma 2. Since |w| = {2(#' + 22)}2, we have m(w,Q,,) = 1. Taking a positive
integer Ny such that Ny ! < Ty, for every integer p satisfying p > Ny, we have

// ae(t, ) dtde < 8p~?
%l

for D = (O, ;—)) X (0, 15) Therefore we obtain the following
Corollary 4. Let a,(t,z) = 2t. Assume (a.1.2) and the following condition:

(b) There exist positive constants c¢,d, and a monotonously increasing sequence {p,} of
positive integers such that

. . 9
(2.1 // ae(t, x) dtde > ———
) oy e et Dor 1 o)

for every sufficiently large k, where D(py) = (O ! ) X (O ! ) Then L is not locally

> Pr > Pr
integrable at the origin.

Let us give an example:

Example. (This is obtained by modifying an example of Nirenberg [7](p.8).)
Let n and p be arbitrary positive integers. Set a,, = m. It is noted that

Yoo ian, =p 'and ay, = —2—=. Let B, , be the non-overlapping open disc in the (¢,z)

plp+1)°
An,p 1 . o di11a
2p(p+1)> and radius

plane with center (¢, ) = (% —(arp+asp+ . Fan_1,+ =52), pﬁ +
, and Cy, p, the closed disc in the (¢,z) plane with radius a’;f"“ and the same center as

Uy p
2

B

n,p.
Let f,, be a C™ function having the following properties:
: ! 6418
(1) 0< fap £ gy
(ii) f,p vanishes outside of By, , and equals ,ﬂ% inside of C', p.
Let us define the C2° function r(t, ) as follows:
(i) r(—t,x) = r(t, x).
(iv) r(t,2) = fnp in By p.
(v) r(t, x) vanishes out side of the union of all the B,, ,,.
Set a.(t,x) = r(t,x). Then the condition (b) in Corollary 4 is satisfied.

Concerning on the existence of non-constant solutions for Lu = 0 near the origin, we
incidentally obtain the following necessary condition:



4 H. NINOMIYA

Proposition 5. Assume (a.l) and (a.2). Let w and €, be any one of the pairs of a
function and a neighborhood satisfying Lemma 1. Assume that the Lu = 0 has a non-
constant C' solution near the origin. Then, for any small positive constant ¢, there exist a
real value zy in (—¢,¢) N[Q, Nt = 0] and a positive value T, , which satisfies (=T, T, ) X
(=T», + x0, Ts, + xo) C Q. such that, for any simply connected domain D contained in
(0,T0y) X (=Toy + ®0, Ty + x0) with piecewise smooth boundary 8D, the inequality

m(w, Qy,) // ae dtdr < sup |w| - |0D|
D oD

holds.

This can be proved in the similar way as in the proof of Theorem 3.

3. Proor or THEOREM 3

Multiplying u by a suitable constant ¢'’, where 6 is a real number, we can assume that
Re(e'u.),(0,0) and Im(e'?u.),(0,0) are positive. So we can assume that Red,u.(0,0) = a
and Im 9, u.(0,0) = 3 are positive.

Let us set § = min(a, 8). Since u,(0, ) = 0, we see that 9,u,(0,z) = 0. From this and
O, (0,2) = 0, there is a positive constant 7" such that

IS

Ur Ur

Lu=0in Up=(-T.T)x (-T.7T) and M = InaX/'ﬁp |Oruo|, sup |0z u0|) <

There exists a positive constant T such that

0 .
R Imd,u, > - in L’Yj*l = (—Tl,Tl) X (—Tl,Tl).

Re O, u, >
e Opu 5

NN =Y

Set Ty = min(T,T}) and v = % Then we have

) )
inf 9,Rev, > --=-=1 and infd,Imv, > --~-=1.
Ur, 2 i 2

//TO

SN
SR N

And we also have

2M 1
max  up |9;v|, sup |9pvo|) < — < <.
i S ) 2
Since Lv = %Lu = 0, we have
(3.1) , + iao(t,;v)ax)v = —ia.(t, x)0pve.

Hence we have the following:

Lemma 6. For any simply connected domain D contained in (0,Ty) x (—Ty,Ty) Ny with
piecewise smooth houndary,

(3.2) z// oWy 0y, dtdx :/ wOpvodt + wlyv, du.
‘ JJp oD

Proof. By (3.1),
—we{(0 + 1a,0, )vo} = ta,weOpve.
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And hence we have

(3.3) // —wo{(0 + 1a,0y v, } didw = // (e Wy Oy, dtda.
D D

The left-hand side of (3.3)

= // —{w, Oy — w0y, } didy = // d{w(t, x)dv,(t, )}
JJp JJp
= / wov, dt + wd, v, dx,
Jop

which completes the proof of Lemma 6. O

By Lemma 6, we have

(3.4) // [a.{Red, v Imw, + Im d,v.Rew, }] dtdz < / |wdyv, dt + wdyv du|.
D oD

Denote min /1f Ur, Red,v,, inf Ur, ImJ, Ue) by m,, then we have
Redpve Imw, + Im 9y v.Rew, > m(w,Qy) - mp in D.

And so from (3.4), we have

m(w, Q) - my // ae(t, x) dtde < / |wdiv, dt + wdpv, da).
D oD

supg. |0pv0]) < 5, we

As we have remarked that my > 1 and M = max Dy, |8tvo
obtain the following inequality:

m(w, Q) // a. dtdx < sup |w| - |0D|,
JJD oD

which completes the proof of Theorem 3. O

4. ProorF orF PROPOSITION 5

Suppose that Lu = 0 holds in a neighborhood U of the origin. We may assume that
U=Uyp, = (-T2, T2) x (=12, T), where T is a positive constant such that T5 < =.
Now we have the following:

Lemma 7. There exists a real value xg such that O, u(0,z¢) # 0 and |zo| < e.

Proof. Assume that 9,u(0, x9) vanishes in (=T5,T3). Since a(t, ) is positive in (0,T3) X
(=T»,T3) from the assumption (a.l), L is elliptic for ¢ > 0. And hence v € C* for ¢t > 0.
Setting v = 9, u, we have Lv+ia,v = 0in (0,13) x (=T, T2). Since v(0,z) = 0in (-1, T»),
applying the uniqueness theorem (see [4] or [9]), v vanishes in [0,7%) x (=T»,T3). By
the assumption (a.1), a(t, ) is negative in (—=T15,0) x (=13, T3). Applying the uniqueness
theorem to the equation Lu+ia,v = 0in (=T2,0) x (=T2,T3), v = 0in (=T5,0) x (=T, Ts).
Therefore v vanishes in (=T, T2) X (=T, T2). This implies that u is constant, which is a
contradiction. Hence we see Lemma 7 holds. O
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Take Ty such that Ur, C €, if necessary, we can assume that xy in (—z,2)N[Q, Nt = 0].
Multiplying u by a suitable constant and applying Lemma 7, we can assume that there is

a positive constant t,, such that

Lu=0inU;, = (=g tay) X (—tyy + @0, ey + o),

1
max ( sup |Oru,|, sup |8ruo|) < 3
; U

Uy, tag

min ( inf Re 9 u., inf Im avue) > 1.

J /
tag tag

Take a positive constant T, such that
/ TT@ ’ T.I‘g) X <_Tm + %o, TT@ + IO) C Qw N L’th .

Then we can derive the inequality:
m(w, Qy,) // a dtdz < sup |w| - |0D).
D ab

This ends the proof. O

5. EXAMPLE

We shall show that the a, defined in Example satisfies the condition (b).
First we set c = 1, d = 2, and {px} = {1,2,...}. By putting py = p, the left-hand side
of the inequality of (2.1)

>y a. dtdz + // acdtdz
Z.//C,W Z C1k

n=1 k=p+1

> may, 64-18 >, maj,  64-18
16 w(n+p+1)2 16 w(k+2)?

n=1 k=p+1
> 2 o0 9
2 2
=2 18 + 18 |— = | .
; [(n+p—1)(N+p)(n+p+1)] k;)H [k(k:+1)(k+2)]
Since
m+p—1)(n+p)n+p+1) (n+p—1)(n+p) (+p+1)(n+p)
I T T O T
“n+p—-1 n+4p n+p n+p+1
1 2 1
= - +
n+p—1 n4+p n+p+1
and

2 1 2 1

MEFD(E+2) k R+l Eg2
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we have

2

c=p+1

n=1

2

> 18 [(n—i—p—l)(n-i-l?)(n-l-p-l- 1)]2+kZ 18 [WH—)UH?)]

= 4 1 1
—4
Z_:[n+p—l +(n+p)2+(nr+p+l)2 {N,+p—1

1 1 1
—4 —
{n—}—p—l n—i—p—l—l} {n—i—p n—}—p—l—l}]

4 1 1 1
1 —4 - - —
+ SL%:H[ (k+1)2+(~+2)2 {k k+1}

JoLot 1
kE+1 k42 ko k42

1
n+p

13 i{ 1 Lt 1 } 4+{1+ } 4
N — (n+p—-12 (n+p)? nm+p+1)? p p p+1 p+1
+18 f: ECUI SIS S U S S -

B2 (k+1)2  (B+2)? p+1 p+2 p+1 p—|—2J

/c:p+l

3
p+

- 4 1 3
+18 + + -co
Z { n—i—p—1)2 (n+p)? (n+p+ 1)2} P

> 4 1 3 3
18 Z { (k+1)2 +(k—|—2)2}_p—|—1_p+2}

1

(i Ll, 6 13 6 s
[ e et (p+1)% (p+2)2 p p+1 p+2J'
Put
6 1 3 6 3
p-l?Z S — - — - .
(p+1) C(p+2?2 p p+l p+2

n= p+2

Then we have only to prove

1
SW 2 s Ty

This proof will be given in the the following Lemma 8.
Lemma 8. For every positive integer p,

1

S rEaE)

Proof. We shall show this by mathematical induction.

-~




8 H. NINOMIYA

First,
2 O 3 1
S(1)=1zzf +47%+5 +...)+1+;—§—3—3—1
. . 1
:2[{(1—2+2—2+3—2+4—2+...)—1—2—2—2}]—2—5
2 1 1
ofe(Z -ty -2t
6 4 2 9
3 9 1
2(r2—6-2-2)-=
(#-6-3-7)-3
=0.1196
which is grater than % Hence
1 .
S()>2-2-3
Next assumne )
Sp)> ——.
() 2(p+ 1)(p+2)
Then
Sp+1) !
p - -
2(p+2)(p+3)
= 1
=12 —
> =
n=p+3
+ 1 + 6 B 1 3 6 3 1
p+1)?  (p+2? (P+3)? p+1 p+2 p+3 2(p+2)(p+3)
= 1 1
=12 R —
{n—XP‘:FZ “/2 ([) + 3)2
+ 1 + 6 B 1 3 6 3 1
p+1)?  (p+2? (P+3)? p+1 p+2 p+3 2(p+2)(p+3)
UM WU SRR S S A
2p+1(p+2) p p+1l p+2 (p+2)2 (p+1)2? p?
_ 12 + 1 + 6 _ 1 _ 3
(p+3)?  (p+1)? (p+2)? (+3)? p+l
6 3 1
p+2 p+3 2p+2)(p+3)
1 3 6 3
= + + —+—
(p+Dp+2)(p+3) pp+1)  E+LE+2)  (P+2)(p+3)
n 7 _ 5 _i_ 13
(p+2)2 (p+1)2 p* (p+3)?
_ Ay 4 Ay
pp+D(p+2)(p+3)  phpo+Dp+2)p+3)
where

A =p+3(p+2)(p+3)+6p(p+3)+3pp+1)=12p* + 37p + 18
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and

A =T{p(p+1)(p+ 3P = 5{pp +2)(p+ 3} = {(p+ D(p+ 2)(p+3)}?
= 13{p(p+ D)(p+2) 7" (p* + 4p +3)* = 5p* (p* + 5p + 6)°
— 13p*(p” + 3p+2)* — (p* + 6p* + 11p +6)*
=7p? (p* + 8p® + 22p? + 24p 4+ 9) — 5p%(p* + 10p® + 37p? 4 60p + 36)
— 13p*(p* 4 6p° + 13p” 4+ 12p + 4) — (p° + 12p° + 58p* + 144p® 4 193p? + 132p + 36)
=(7p® + 56p° + 154p* + 168p” + 63p*) — (5p° + 50p° + 185p* + 300p* + 180p?)
— (13p% + 78p° + 169p* + 156p° + 52p?)
— (p® 4 12p° 4 58p* + 144p® +193p® 4 132p + 36)
= — (12p° + 84p° + 258p" + 432p® + 362p + 132p + 36).
Setting
5 A, . N Ay N
pe+D)p+2)p+3)  [plp+ Dp+2)(p+3)°

we have
$ ={(120* + 37p +18)p(p + D(p+2)(p +3)

— (12p° 4 84p° 4 258p* + 432p” + 362p? + 132p + 36)}/ P+ 1D)(p+2)p+3)°.

And we see that the numerator of S

=(12p? + 37p + 18)p(p* + 6p” + 11p + 6)

— (12p° + 84p° + 258p" + 432p* + 362p” + 132p + 36)
=p(12p° + 72p* + 132p” 4 72p* + 37p" + 222p*

+407p? 4 222p + 18p” + 108p? + 198p + 108)

— (12p° + 84p° + 258p" + 432p* + 362p” + 132p + 36)
=25p° + 114p* + 155p* + 58p* — 24p — 36 > 292.

This completes the proof. O
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