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Abstract. Let X and Y be (CUN) spaces satisfying the condition (p) of S. Nakanishi. The

space L(X; Y ) consisting of all continuous linear mappings of X into Y can be treated as

a (UCs-N) space under the condition that: each component space (Xm; pm) of X is locally

compact and Xm $ Xm+1 for each m 2 N and Yn $ Yn+1 for each n 2 N . The main

result of this paper is to show that a mapping of two-variables in (CUB) spaces is continuously

di�erentiable if and only if its partial derivatives are continuous.

1. Introduction. In [5], Prof. S. Nakanishi showed that the analogy of Dieudonn�e
results [1, VIII, 1, 2, 4, 5, 7, 14] in the Banach space also holds in the (CUB) space satisfying
the condition (p). In this paper, we study Dieudonn�e results as a continuation of [5].

In [5], Nakanishi showed that the space L(X;Y ) consisting of all continuous linear map-
pings of X into Y can be treated as a (CUN) space when X is a locally compact normed
space and Y is a (CUN) space satisfying (p). In Section 3, it is shown that, if X and Y

are (CUN) spaces satisfying (p), then the space L(X;Y ) can be treated as a (UCs-N) space
under the condition that: each component space (Xm; pm) of X is locally compact and
Xm $ Xm+1 for each m 2 N and Yn $ Yn+1 for each n 2 N . In Section 4 , we study the
continuous di�erentiability for a mapping in (CUB) spaces. It may be de�ned as the conti-
nuity of the derivative in each component space. We study the continuous di�erentiability
for a mapping of two-variables in (CUB) spaces.

2. Preliminaries. Let us recall the de�nition of (CUN) spaces and the condition (p)
([5]). Let X be a real or complex vector space, and Xn(n = 0; 1; � � � ) a sequence of vector
subspaces of X such that:

( I )
1S
n=0

Xn = X.

(II) Xn � Xm if and only if n 5 m.

Suppose that in each Xn there is de�ned a norm pn in such a way that

(III) if n 5 m, then pn(x) = pm(x) for every x 2 Xn.

For such a collection Xn and pn(n = 0; 1; � � � ), we de�ne neighborhoods on X as follows:

Corresponding to x 2 X and " > 0, a neighborhood V (x; n; ") of x is de�ned by

V (x; n; ") = fy 2 Xn : pn(x� y) < "g

for every n with x 2 Xn and only for such n. In particular, we denote the neighborhood
V (x; n; 1=2m) by V (x; n;m) etc., and a neighborhood V (x; n;m) in which the third index is
m is said to be of rank m.
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The space X endowed with these neighborhoods and ranks becomes a ranked vector
space. Such a ranked vector space X is called a ranked countable union space of normed

spaces, or simply a (CUN) space. Each normed space (Xn; pn) is called a component space

of the (CUN) space X.

(IV) Each component space (Xn; pn) is complete.

The (CUN) space satisfying the condition (IV) is called a ranked countable union space of

Banach spaces, or simply a (CUB) space.
For a (CUN) space (X; f(Xn:pn)g), we consider the following condition (p).

(p) For every n, every bounded set in the normed space (Xn; pn) is relatively compact
as a subset of the normed space (Xm; pm) for every m > n.

Other fundamental terminologies and notations for ranked spaces are referred to [2],[3]
and [5].

Lemma 1. Let (X; f(Xm; pm)g), (Y ; f(Yn; qn)g) be (CUN) spaces satisfying (p). Let f
be a continuous mapping into Y of an r-open set A in X. Suppose that B(� A) is an open

set in (Xm; pm). Then, if x0 2 B, there are an open ball U of center x0 in (Xm; pm) with
U � B and an n 2 N such that:

(1) The image f(U) is contained in Yn.

(2) f is continuous in U as a mapping of (U; pm) into (Yn; qn).

Proof. Since A\Xm+1 is open in (Xm+1; pm+1), there is an open ball V (x0;m+1; 2"0) �
A \Xm+1 of center x0. There is an open ball V (x0;m; ") � B \ V (x0;m + 1; "0) of center
x0. Put U = V (x0;m; "). By (p), the closure �U is compact in (Xm+1; pm+1). Then, by
[5, Proposition 3], there is an n such that f( �U) � Yn and f is continuous as a mapping of
( �U; pm+1) into (Yn; qn). Therefore, f(U) � Yn and f is continuous as a mapping of (U; pm)
into (Yn; qn).

3. The (UCs-N) space L(X;Y ). Let (X; f(Xm; pm)g) and (Y ; f(Yn; qn)g) be (CUN)
spaces satisfying (p), and each Xm be locally compact. We denote by L(X;Y ) the vector
space consisting of all continuous linear mappings of X into Y .

Lemma 2. (cf. [3, Proposition 9]) Let T be a linear mapping of X into Y . Then, T is

continuous if and only if the restriction of T to Xm is a continuous linear mapping of Xm

into Y for every m 2 N .

For T 2 L(X;Y ), by [5, Proposition 5], for every Xm, there is an n = n(m) such that:

(i) The image of Xm by T is contained in Yn.
(ii) T is a continuous linear mapping of (Xm; pm) into (Yn; qn).

We put
�(m;T ) = minfn : n satis�es (i) and (ii) for mg:

Obviously, this �(m;T ) is non-decreasing with respect to m. Further, �(m;T ) 5 n if and
only if the restriction of T to Xm is a continuous linear mapping of Xm into Yn for non-
negative integers m and n. For m;n 2 N , let us put

�p m
�n(T ) = supfqn(T (x)) : x 2 Xm; pm(x) 5 1g (which may be �nite or in�nite):

It is a norm on L(Xm;Yn), if n = �(m;T ).

Lemma 3. (1) If m 5 m0, then �p m
�n(T ) 5 �p m0

�n (T ) for T 2 L(X;Y ) and n = �(m0; T ).
(2) For each T 2 L(X;Y ) and m 2 N , if �(m;T ) 5 n 5 n0, then �p m

�n(T ) = �p m
�n0(T ).

Let us put

� = f� = fn(m)g : n(0) 5 n(1) 5 � � � ; where n(m) 2 N for each mg:
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For � = fn(m)g 2 � and �0 = fn0(m)g 2 �, de�ne � � �0 to mean that n(m) 5 n0(m) for
every m 2 N . Then, �, with this ordering �, is a directed set (see [3]). Corresponding to
each � 2 �, � = fn(m)g, de�ne a subset L�(X;Y ) of L(X;Y ) as follows.

L�(X;Y ) = fT 2 L(X;Y ) : �(m;T ) 5 n(m) for every m 2 Ng:

We have the following properties as [3, Proposition 10].

Proposition 1. (1) L�(X;Y ) is a vector subspace of L(X;Y ).
(2)

S
fL�(X;Y ) : � 2 �g = L(X;Y ).

(3) If � � �0, then L�(X;Y ) � L�0(X;Y ).
(4) In each L�(X;Y ), � = fn(m)g, �p m

�n(m)
is a semi-norm on L�(X;Y ) for each m.

(5) For any L�(X;Y ), L�0(X;Y ), there is a �00 with L�(X;Y )\L�0(X;Y ) = L�00(X;Y ).

Proposition 2. Suppose that Xm $ Xm+1 for each m 2 N and Yn $ Yn+1 for each

n 2 N . Then, if L�(X;Y ) � L�0(X;Y ), we have � � �0.

Proof. Put � = fn(m)g and �0 = fn0(m)g. Suppose the contrary, then there exists an m0

such that n(m0) > n0(m0). Let ft1; � � � ; tk(m)g be a basis of Xm for every m. Then, every
x 2 X can be written in the form x = �1t1 + �2t2 + � � � , where �j = 0 if j > k(m) for some
m. Let us take a y0 2 Yn(m0) such that y0 =2 Yn0(m0). Consider T 2 L(X;Y ) de�ned by

T (x) = �k(m0)y0 (x 2 X):

We will prove that T 2 L�(X;Y ), but T =2 L�0(X;Y ). If m < m0, then T (x) = 0 for every
x 2 Xm. If m = m0, then T (x) = �k(m0)y0 2 Yn(m0) for every x 2 Xm. Hence, we have
�(m;T ) 5 n(m) for every m. Thus, T 2 L�(X;Y ). On the other hand, T (tk(m0)) = y0 =2

Yn0(m0), so T =2 L�0(X;Y ).

Now, we will show that L(X;Y ) can be de�ned as a (UCs-N) space (cf.[6]). For each
� 2 �, � = fn(m)g and T 2 L�(X;Y ), let us put

�r�j (T ) =

jX
m=0

�p m
�n(m)(T ) (j 2 N):

Then, these �r�j are semi-norms on L�(X;Y ) and have the folowing properties.

Lemma 4. (1) If j 5 j0, then �r�j (T ) 5 �r�j0(T ) for T 2 L�(X;Y ).

(2) If � � �0, then �r�j (T ) = �r�
0

j (T ) for T 2 L�(X;Y ) and j 2 N .

(3) For T 2 L�(X;Y ), if �r�j (T ) = 0 for every j 2 N , then T = 0.

By Lemma 4(1), for each � 2 �, � = fn(m)g, we can de�ne the space L�(X;Y ) as a
(Cs-N) space determined by the countable system of semi-norms �r�j (j 2 N). In fact, let us
put

S(�; j) = fT 2 L�(X;Y ) : �r�j (T ) < 1=2jg (j 2 N);

and we have

U
�(T ) = fT + S(�; j) : j 2 Ng (T 2 L�(X;Y ));

U
�
j = fT + S(�; j) : T 2 L�(X;Y )g (j 2 N):

Then, the space L�(X;Y ) endowed with U�(T ) (T 2 L�(X;Y )) and U�j (j 2 N):

(L�(X;Y ); U�(T );U�j ) becomes a (Cs-N) space.
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Next, we de�ne the ranked space (L(X;Y );U(T );Uj) as the ranked union space of the

(Cs-N) spaces (L�(X;Y );U�(T );U�j ) (� 2 �), i.e., as the ranked space L(X;Y ) provided

with the family of the preneighborhoods of T : U(T ) (T 2 L(X;Y )) and the family of the
preneighborhoods of rank j: Uj (j 2 N), which are de�ned by

U(T ) =
[
fU

�(T ) : � 2 � for which T 2 L�(X;Y )g;

Uj =
[
fU

�
j : � 2 �g:

Then, by Propositions 2, 1 (5) and [3, Propositions 2 and 4], we have:

Theorem 1. Let (X; f(Xm; pm)g); (Y ; f(Yn; qn)g) be (CUB) spaces satisfying (p), and
each Xm be locally compact. Suppose that Xm $ Xm+1 for each m 2 N and Yn $ Yn+1 for

each n 2 N . Then, the following statements hold.

(1) The ranked space (L(X;Y );U(T );Uj) is a (UCs-N) space with component spaces

(L�(X;Y );U�(T );U�j ) (� 2 �).

(2) The ranked space (L(X;Y );U(T );Uj) is a ranked vector space satisfying Hausdor�'s

axioms (B) and (C) as well as (r-T1) and having the properties (M1), (M2) and (M3).

4. Continuous di�erentiability and partial derivatives. Let us recall the de�ni-
tions of di�erentiabilities and derivatives in [5], where we refer to [1] as for those in Banach
spaces.

Now, let (X; f(Xm; pm)g); (Y ; f(Yn; qn)g) be (CUB) spaces satisfying (p) (both real or
both complex), and each Xm be locally compact.

De�nition 1. ([5, De�nition 2]) Let f be a mapping of an r-open set A � X into Y .
We will say that f is di�erentiable at t0 2 A if for every m with t0 2 Xm, there are a
neighborhoodB � A of t0 in (Xm; pm) and an n such that f(B) is contained in Yn, and f is
di�erentiable at t0 as a mapping of B into (Yn; qn). By [5, Lemma 7], the derivative of f at
t0 indicated above is uniquely determined as a linear mapping of (Xm; pm) into Y . Denote
the derivative by um. The mapping of X into Y de�ned by setting u(t) = um(t) whenever
t 2 Xm for every m with t0 2 Xm is said to be the derivative of f at t0. This is well-de�ned
by [5, Lemma 7]. The derivative is continuous linear as a mapping of X into Y , and written
f 0(t0) or Df(t0).

We de�ne the continuous di�erentiability for a mapping.

De�nition 2. (cf. [5, De�nition 5]) Let f be a mapping of an r-open set A � X into
Y , and di�erentiable in A. We will say that f is continuously di�ererntiable in A if the
derivative Df is continuous in A \ Xm as a mapping of A \ Xm into the (CUB) space
L(Xm;Y ) for each m with A \Xm 6= ;.

We remark that, f is continuously di�erentiable in A if and only if Df is continuous in
A as a mapping of A into L(Xm;Y ) for each m.

Proposition 3. Suppose that Xm $ Xm+1 for each m 2 N and Yn $ Yn+1 for each

n 2 N . Let f be a mapping of an r-open set A � X into Y , and di�erentiable in A. Then,

f is continuously di�erentiable in A if and only if Df is continuous in A as a mapping of A

into the (UCs-N) space L(X;Y ).

Proof. Supppose that f is continuously di�erentiable in A. Let x 2 A and r-limxi = x

in X, where xi 2 A. For each m, we have r-limDf(xi) = Df(x) in L(Xm;Y ). There is an
integer n(m) such that Df(x) and all Df(xi) belong to L(Xm;Yn(m)) and �p m

�n(m)
(Df(x)�

Df(xi))! 0 as i ! 1. Then, we have �(m;Df(x)) 5 n(m) and �(m;Df(xi)) 5 n(m) for
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each i. Without loss of generality, we may assume that n(0) 5 n(1) 5 � � � . Then, fn(m)g 2
�, which is written �. Hence, for each j, �r�j (Df(x)�Df(xi))! 0 as i!1. Consequently,

r-limDf(xi) = Df(x) in the (UCs-N) space (L(X;Y );U(T );Uj). Thus Df is continuous at
x 2 A. Conversely, suppose that Df is continuous in A as a mapping of A into the (UCs-N)
space L(X;Y ). Letm be a �xed integer, and let x 2 A and r-limxi = x in X, where xi 2 A.
Then, r-limDf(xi) = Df(x) in L(X;Y ). There exists a � = fn(m)g 2 � such that Df(x)
and all Df(xi) belong to L�(X;Y ) and r-limDf(xi) = Df(x) in the (Cs-N) space L�(X;Y ),
so Df(xi)! Df(x) in each of �r�j . Then, �p

m
�n(m)

(Df(x)�Df(xi))! 0 as i!1. Moreover,

�(m;Df(x)) 5 n(m) and �(m;Df(xi)) 5 n(m) for each i, so Df(x) and all Df(xi) belong to
L(Xm;Yn(m)). Thus, limDf(xi) = Df(x) in L(Xm;Yn(m)). Hence, r-limDf(xi) = Df(x)
in the (CUB) space L(Xm;Y ). Therefore, f is continuously di�erentiable in A.

Next, we study the partial derivatives. Let (Xi; f(Xim; pim)g) (i = 1; 2) and (Y ; f(Yn;
qn)g) be (CUB) spaces satisfying (p). The product space X = X1 �X2 becomes a (CUB)
space satisfying (p) (see [5, p.1173]). Let f be a mapping of A into Y . The partial di�eren-
tiabilities and the partial derivatives of f are similar to those in [1, p.172].

Theorem 2. Suppose that each Xim(i = 1; 2) is locally compact. Let f be a continuous

mapping of an r-open set A � X into Y . The mapping f is continuously di�erentiable in

A if and only if f is di�ererntiable at each point with respect to the �rst and the second

variable, and for each m, the mappings D1f and D2f are continuous in A as a mapping

of A into L(X1m;Y ) and L(X2m;Y ), respectively. Then, at each point (x1; x2) 2 A, the

derivative of f is given by

Df(x1; x2) � (t1; t2) = D1f(x1; x2) � t1 +D2f(x1; x2) � t2:

Proof. The \if "part is proved as follows. Let us take an (a1; a2) 2 A. Let m 2 N with
(a1; a2) 2 X1m �X2m. There are open neighborhoods Ii of ai in (Xim; pim) with Ii � Aaj

and ni such that:

(1) The image faj (Ii) � Yni
.

(2) faj is continuous in Ii as a mapping of Ii into (Yni
; qni

).
(3) faj is di�erentiable at ai 2 Ii as a mapping of Ii into (Yni

; qni
),

for i = 1; 2 and j = 2; 1, respectively (Aaj and faj are referred to [1]). By Lemma 1, there
are an open ball V of center (a1; a2) in X1m �X2m and an n3 such that V � A \ (I1 � I2)
and f is continuous in V as a mapping of V into Yn3 . Since Dif is continuous in A as a
mapping of A into L(Xim;Y ), by Lemma 1, there are an open ball W of center (a1; a2) in
X1m �X2m and an n4 such that W � A \ (X1m �X2m) and Dif is continuous in W as a
mapping of W into L(Xim;Yn4 ), for i = 1; 2. Put U = V \W and n0 = maxfn1; n2; n3; n4g.
Then, f is di�erentiable at each point in U with respect to the �rst and the second variable,
as a mapping of U into a Banach space Yn0 , and Dif is continuous in U as a mapping of
U into L(Xim;Yn0), for i = 1; 2. By [1, (8.9.1)], f is continuously di�erentiable in U as a
mapping of U into (Yn0 ; qn0) and

Df(a1; a2) � (t1; t2) = D1f(a1; a2) � t1 +D2f(a1; a2) � t2
�
(t1; t2) 2 X1m �X2m

�
:

For each (t1; t2) 2 X1 � X2, there is an m such that (a1; a2); (t1; t2) 2 X1m �X2m so that
this equality holds. Since (a1; a2) 2 A is arbitrary, f is di�erentiable in A and the required
equality holds. Moreover, Df is continuous in U as a mapping of U into L(Xm;Y ) for each
m. Since (a1; a2) 2 A is arbitrary, Df is continuous in A as a mapping of A into L(Xm;Y )
for each m. Hence, f is continuously di�erentiable in A. Similarly, the \only if "part is
proved by [1, (8.9.1)].
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Proposition 4. Let (X; f(Xm; pm)g); (Y ; f(Yn; qn)g) be (CUB) spaces satisfying (p).
Let I = [�; �] � R be a compact interval, f a continuous mapping of I � A into Y , where

A � X is r-open. Then, the mapping g which is de�ned by g(z) =
R �
�
f(�; z)d� is continuous

in A.

The proof is similar to that of [1, (8.11.1)].

Proposition 5. (Leibniz's rule)With the same assumptions as in Proposition 4, suppose

in addition that each Xm is locally compact, and f is continuously di�erentiable in I � A

with respect to the second variable. Then, g is continuously di�erentiable in A, and

Dg(z) =

Z �

�

D2f(�; z)d�:

Proof. Let us take a z0 2 A. Let m 2 N with z0 2 Xm. Then, there are an open
neighborhood U � A of z0 in (Xm; pm) and an n such that for each � 2 I, D2f is continuous
at (�; z0) on I � U in the usual sense as a mapping of I � U into L(Xm;Yn). As in [1,
(8.11.2)], g is di�erentiable at z0 and we have

Dg(z0) =

Z �

�

D2f(�; z0)d�:

Moreover, by Proposition 4, Dg is continuous in A.
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