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ABsTRACT. Let X and Y be (CUN) spaces satisfying the condition (p) of S. Nakanishi. The
space L£(X;Y) consisting of all continuous linear mappings of X into Y can be treated as
a (UCs-N) space under the condition that: each component space (Xp,pm) of X is locally

compact and X, ;Ct Xyt for each m € N and Y, ; Yo.41 for each n € N. The main

result of this paper is to show that a mapping of two-variables in (CUB) spaces is continuously
differentiable if and only if its partial derivatives are continuous.

1. Introduction. In [5], Prof. S. Nakanishi showed that the analogy of Dieudonné
results [1, VIIL, 1, 2, 4, 5, 7, 14] in the Banach space also holds in the (CUB) space satisfying
the condition (p). In this paper, we study Dieudonné results as a continuation of [5].

In [5], Nakanishi showed that the space £(X;Y") consisting of all continuous linear map-
pings of X into Y can be treated as a (CUN) space when X is a locally compact normed
space and Y is a (CUN) space satisfying (p). In Section 3, it is shown that, if X and ¥’
are (CUN) spaces satisfying (p), then the space £(X;Y") can be treated as a (UCs-N) space
under the condition that: each component space (X, pm) of X is locally compact and
X, ; X1 for each m € N and Y, ; Y, 41 for each n € N. In Section 4 , we study the
continuous differentiability for a mapping in (CUB) spaces. It may be defined as the conti-
nuity of the derivative in each component space. We study the continuous differentiability
for a mapping of two-variables in (CUB) spaces.

2. Preliminaries. Let us recall the definition of (CUN) spaces and the condition (p)
([5])- Let X be a real or complex vector space, and X,(n = 0,1,---) a sequence of vector
subspaces of X such that:

(Iy U X.,=X.

(I1) 3(:? C X, if and only if n £ m.
Suppose that in each X, there is defined a norm p,, in such a way that

(IIT) if n < m, then p,(x) 2 pm(x) for every z € X,,.

For such a collection X,, and p,(n = 0,1,---), we define neighborhoods on X as follows:
Corresponding to » € X and ¢ > 0, a neighborhood V(x,n,¢) of x is defined by

Viz,n,e)={y € X, :pn(z —y) <=}
for every n with » € X,, and only for such n. In particular, we denote the neighborhood

V(z,n,1/2™) by V(z,n,m) etc., and a neighborhood V(z,n,m) in which the third index is
m is said to be of rank m.
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The space X endowed with these neighborhoods and ranks becomes a ranked vector
space. Such a ranked vector space X is called a ranked countable union space of normed
spaces, or simply a (CUN) space. Each normed space (X,,,p,.) is called a component space
of the (CUN) space X.

(IV) Each component space (X, py) is complete.

The (CUN) space satisfying the condition (IV) is called a ranked countable union space of
Banach spaces, or simply a (CUB) space.

For a (CUN) space (X; {(X,,.p.)}), we consider the following condition (p).

(p) For every n, every bounded set in the normed space (X,,,p,) is relatively compact
as a subset of the normed space (X, pm) for every m > n.

Other fundamental terminologies and notations for ranked spaces are referred to [2],[3]

and [5].

Lemma 1. Let (X;{(Xm,pm)}). (Y;{(Yn,qn)}) be (CUN) spaces satisfying (p). Let f
be a continuous wapping into Y of au r-open set A in X. Suppose that B(C A) is an open
set in (X,,,pm). Then, if xq € B, there are an open ball U of center zq in (X,,, py,) with
U C B and ann € N such that:

(1) The image f(U) is contained in Y,,.
(2) f is continuous in U as a mapping of (U, py,) into (Yy,, q,).

Proof. Since AN X,,, 11 is openin (X, 41, Pm+1), thereis an open ball V(zg,m+1,2¢") C
AN X4, of center zyg. There is an open ball V(zg,m,2) C BNV (xg,m + 1,2’) of center
x9. Put U = V(x9,m,e). By (p), the closure U is compact in (Xont1,Pm+1). Then, by
[5, Proposition 3], there is an n such that f(U) C Y, and f is continuous as a mapping of
(U, pm+1) into (Y, qn). Therefore, f(U) C Y, and f is continuous as a mapping of (U, p,)
into (Yo, qn).

3. The (UCs-N) space L£(X;Y). Let (X;{(Xm,pm)}) and (Y;{(Y,,qn)}) be (CUN)
spaces satisfying (p), and each X, be locally compact. We denote by £(X;Y") the vector
space consisting of all continuous linear mappings of X into Y.

Lemma 2. (cf. [3, Proposition 9]) Let T be a linear mapping of X into Y. Then, T is
continuous if and only if the restriction of T to X,, is a continuous linear mapping of X,,
into'Y for every m € N.

For T € L(X;Y), by [5, Proposition 5], for every X,,, there is an n = n(m) such that:

(i) The image of X, by T is contained in Y.
(ii) T is a continuous linear mapping of (X,,,, p,) into (Y, qn).

We put

£{m,T) = min{n : n satisfies (i) and (ii) for m}.

Obviously, this x(m,T) is non-decreasing with respect to m. Further, x(m,T) < n if and
only if the restriction of T' to X, is a continuous linear mapping of X,,,, into Y,, for non-
negative integers m and n. For m.n € N, let us put

P AT) = sup{qn(T(z)) : # € Xm,pm(2) £ 1} (which may be finite or infinite).
It is a norm on L{(X,,;Y5), if n 2 w(m,T).
Lemma 3. (1) If m </, then p™ (T ) <pm (

—II

) for T E L{X;Y) and n 2 s(m/,T).
(2) For each T € L(X;Y) andm € L\/ ifr(m, T)Sn<n

, then p™(T) 2 > pmA(T).
Let us put
Y={x={n(m)}:n(0) En(l) < -, where n(m) € N for each m}.
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For A = {n(m)} € ¥ and X = {n/(m)} € X, define A < X to mean that n(m) < n/(m) for
every m € N. Then, ¥, with this ordering <, is a directed set (see [3]). Corresponding to
each A € £, A = {n(m)}, define a subset L (X;Y) of L(X;Y) as follows.

Li(X;Y)={T € L(X;Y) : 6(m,T) < n(m) for every m € N}.

We have the following properties as [3, Proposition 10].

Proposition 1. (1) Ly(X;Y) is a vector subspace of L{X;Y).

2) U{LA(X:Y): A e ¥} = £(X:Y).

(3) If A < XN, then Ly(X;Y) C La(X;Y).

(4) In each L\(X;Y), A = {n(m)}, Py 15 @ semi-norm on Lx(X; Y') for each m.

(5) For any L\(X;Y), Ly(X;Y), thereis a A with Ly(X;Y)N Ly (X Y) = Ly (X Y).

Proposition 2. Suppose that X, ; Xqq for each m € N and Y, ; Y, 41 for each
n € N. Then, if L\(X;Y) C Ly (X;Y), we have A < X',

Proof. Put A = {n(m)} and X’ = {n/(m)}. Suppose the contrary, then there exists an m’
such that n(m’) > n'(m'). Let {t1,--- ,ty(m)} be a basis of X, for every m. Then, every
x € X can be written in the form « = &ty + &ty + - -+, where {; = 0if j > k(m) for some
m. Let us take a yg € Y, ;) such that yo € Y,/ (,,). Consider T' € £(X;Y) defined by

T(x) = &k (mn Yo (z € X).

We will prove that T € Ly(X;Y), but T ¢ Ly(X:;Y). If m < m/, then T(x) = 0 for every
v € Xpp. If m 2w/, then T(x) = &myyo € Yo(me) for every o € X,,,. Hence, we have
k(m,T) £ n(m) for every m. Thus, T € Ly(X:Y). On the other hand, T(t;(,)) = yo ¢
}/n’(m’)v so T Q_f L,\/(X; YY).

Now, we will show that £(X;Y) can be defined as a (UCs-N) space (cf.[6]). For each
A€ X, A={n(m)} and T € L (X;Y), let us put

J
F]/\(T) = Z p—wf'l,(m.)(T) (] € ZV)'
m=0

Then, these Fj\ are semi-norms on Ly(X;Y) and have the folowing properties.

Lemma 4. (1) If j < j', then fl)‘(T) < f])‘, (T) for T € L\(X:;Y).

(2) If X < X, then fj‘(T) > f])»‘/ (T) for T € L\(X:;Y) and j € N.

(3) For T € Ly(X,;Y), if FJ/-\(T) =0 for every j € N, then T = 0.

By Lemma 4(1), for each A € X, A\ = {n(m)}, we can define the space L (X;Y) as a
(Cs-N) space determined by the countable system of semi-norms F}(] € N). In fact, let us

put
S ) = AT e LA(X:Y) : 7)(T) < 1/2'} (€ N),

and we have
MA(T):{T+S(/\,]'):]'€N} (T € L\(X;Y)),
Ur ={T+S(\.j): T € Ly\(X;Y)}  (jEN).

Then, the space Ly(X;Y) endowed with UNT) (T € LA(X;Y)) and Z//j‘ (j € N):
(LA(X:Y), Z//)‘(T),L{J’»\) becomes a (Cs-N) space.
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Next, we define the ranked space (L(X;Y),U(T),U;) as the ranked union space of the
(Cs-N) spaces (L)\(X;Y),MX(T),UJ?‘) (A € X)), ie., as the ranked space L(X;Y) provided
with the family of the preneighborhoods of T: U(T) (T € L(X;Y)) and the family of the
preneighborhoods of rank j: U; (j € N), which are defined by

UT) = U{U)‘(T) : A € X for which T € Ly(X;Y)},
Uy = J{u} - xe o

Then, by Propositions 2, 1 (5) and [3, Propositions 2 and 4], we have:

Theorem 1. Let (X;{(Xm,pm)}), (Y;{(Yn,qn)}) be (CUB) spaces satisfying (p), and
each X,, be locally compact. Suppose that X, ; X,+1 for eachm € N and Y, ; Y, 41 for
each n € N. Then, the following statements hold.

(1) The ranked space (L(X:Y).U(T),U;) is a (UCs-N) space with component spaces
(L)\(X;Y),M/\(T),Z//j)‘) (Ae X).

(2) The ranked space (L(X:Y),U(T),U;) is a ranked vector space satisfying Hausdorff’s
axioms (B) and (C) as well as (r-T,) and having the properties (M, ), (Mz) and (Mj).

4. Continuous differentiability and partial derivatives. Let us recall the defini-
tions of differentiabilities and derivatives in [5], where we refer to [1] as for those in Banach
spaces.

Now, let (X;{(Xm,pm)}), (Y;{(Yn,qn)}) be (CUB) spaces satisfying (p) (both real or

both complex), and each X, be locally compact.

Definition 1. ([5, Definition 2]) Let f be a mapping of an r-open set A C X into Y.
We will say that f is differentiable at t, € A if for every m with #, € X,,, there are a
neighborhood B C A of ¢y in (X, pm) and an n such that f(B) is contained in Y;,, and f is
differentiable at t, as a mapping of B into (Y},,¢,). By [5, Lemma 7], the derivative of f at
to indicated above is uniquely determined as a linear mapping of (X, pn,) into Y. Denote
the derivative by w,,,. The mapping of X into Y defined by setting u(t) = w;,(t) whenever
t € X,, for every m with t, € X, is said to be the derivative of f at ty. This is well-defined
by [5, Lemma 7]. The derivative is continuous linear as a mapping of X into Y, and written

fl(fl)) or Df(f(])
We define the continuous differentiability for a mapping.

Definition 2. (cf. [5, Definition 5]) Let f be a mapping of an r-open set A C X into
Y, and differentiable in A. We will say that f is continuously differerntiable in A if the
derivative Df is continuous in A N X, as a mapping of 4 N X, into the (CUB) space

L(X;Y) for each m with AN X,, # 0.

We remark that, f is continuously differentiable in A if and only if Df is continuous in
A as a mapping of A into L(X,,;Y) for each m.

Proposition 3. Suppose that X,, ; Xna1 for each m € N and Y, ; Y1 for each
n € N. Let f be a mapping of an r-open set A C X into Y, and differentiable in A. Then,
f is continuously differentiable in A if and only if D f is continuous in A as a mapping of A
into the (UCs-N) space L(X;Y).

Proof. Supppose that f is continuously differentiable in A. Let z € A and r-limaz; = x
in X, where 2; € A. For each m, we have r-limDf(z;) = Df(z) in L'(Xm; Y). There is an
integer n(m) such that Df(z) and all D f(x;) belong to £(X,;Y5,(m)) and Py (Df(x) —
Df(x;)) = 0 as i = oo. Then, we have k(m,Df(z)) < n(m) and x(m,Df(x;)) < n(m) for
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each i. Without loss of generality, we may assume that n(0) £ n(1) £ ---. Then, {n(m)} €
Y, which is written A. Hence, for each j, fJ/\ (Df(z) —Df(z;)) = 0 as i = co. Consequently,
r-lim D f(2;) = D f(2) in the (UCs-N) space (£(X;Y),U(T),U;). Thus Df is continuous at
z € A. Conversely, suppose that Df is continuous in A as a mapping of A into the (UCs-N)
space L(X;Y). Let m be a fixed integer, and let € A and r-limz; = 2 in X, where z; € A.
Then, r-imDf(z;) = Df(z) in L(X;Y). There exists a A = {n(m)} € X such that Df(z)
and all D f(z;) belong to Ly(X;Y) and r-imDf(z;) = Df(«) in the (Cs-N) space Ly(X;Y),
so Df(z;) = Df(«) in each of FJ’\ Then, p", ., (Df(x)—Df(x;)) = 0as i — co. Moreover,

r(m,Df(z)) £ n(m) and k(m,Df(x;)) < n(m) for each 7, so Df(z) and all D f(z;) belong to

L(X . Yom)). Thus, imDf(x;) = Df(x) in L(X,; Yo(m)). Hence, r-limDf(x;) = Df(x)
in the (CUB) space L(X,,;Y"). Therefore, f is continuously differentiable in A.

Next, we study the partial derivatives. Let (X {(Xim,pim)}) (i = 1,2) and (Y {(Ya,
gn)}) be (CUB) spaces satisfying (p). The product space X = X7 x X3 becomes a (CUB)
space satisfying (p) (see [5, p.1173]). Let f be a mapping of A into Y. The partial differen-
tiabilities and the partial derivatives of f are similar to those in [1, p.172].

Theorem 2. Suppose that each X;,,(i = 1,2) is locally compact. Let f be a contimious
mapping of an r-open set A C X into Y. The mapping f is continuously differentiable in
A if and only if f is differerntiable at each point with respect to the first and the second
variable, and for each m, the mappings D1 f and Do f are continuous in A as a mapping
of A Into L(X1,;Y) and L(Xa,,;Y), respectively. Then, at each point (x1,39) € A, the
derivative of f is given by

Df(xy,22) - (t,t2) = Dy f(ay,22) - t1 + Daf(ay,22) - ta.

Proof. The “if "part is proved as follows. Let us take an (a1,as9) € A. Let m € N with
(a1,az) € Xim X Xap. There are open neighborhoods I; of a; in (Xim, pim) with I; C A,
and n; such that:

(1) The image fo,(I;) C Y.

(2) f{,,j is continuous in I; as a mapping of I; into (Y,,i,q,,i).

(3) Ja; is differentiable at a; € I; as a mapping of I; into (Yo, qn, )s
for i = 1,2 and j = 2, 1, respectively (A4, and f4; are referred to [1]). By Lemma 1, there
are an open ball V' of center (ay,as) in X1, X Xay and an ng such that V.C AN (I x L)
and f is continuous in V' as a mapping of V into Y,,,. Since D, f is continuous in A as a
mapping of 4 into £(X;,,;Y), by Lemma 1, there are an open ball W of center (a1, a) in
Xim X Xap, and an ny such that W C AN (X, x Xop) and D; f is continuous in W as a
mapping of W into £(X;n;Y,,), fori =1,2. Put U = VNW and ny = max{ny,nz,ng,n4}.
Then, f is differentiable at each point in U with respect to the first and the second variable,
as a mapping of U into a Banach space Y,,,, and D;f is continuous in U as a mapping of
U into L(X;,,;Y,,), for i = 1,2. By [1, (8.9.1)], f is continuously differentiable in U as a
mapping of U into (Y, qn, ) and

Df(ai,az)- (t1,t2) =Dy f(ar,a2) - t1 + Daf(ar,az) - ta  ((t1,t2) € Xim x Xopm).

For each (t1,t2) € X1 x Xg, there is an m such that (a1, as), (t1,t2) € X1 X Xop, so that
this equality holds. Since (a1,a2) € A is arbitrary, f is differentiable in A and the required
equality holds. Moreover, Df is continuous in U as a mapping of U into £{X,,;Y") for each
m. Since (a1,a2) € A is arbitrary, Df is continuous in 4 as a mapping of A into £(X,,;Y")
for each m. Hence, f is continuously differentiable in A. Similarly, the “only if ”part is
proved by [1, (8.9.1)].
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Proposition 4. Let (X;{(X,pm)}), (Y;{(Ya.qn)}) be (CUB) spaces satisfying (p).
Let I = [a, 8] C R be a compact interval, f a continuous mapping of I x A into Y, where
A C X is r-open. Then, the mapping g which is defined by g(z) = Jj f(&, z)d¢ is continuous
in A.

The proof is similar to that of [1, (8.11.1)].

Proposition 5. (Leibniz’s rule) With the same assumptions as in Proposition 4, suppose
in addition that each X, is locally compact, and f is continuously differentiable in I x A
with respect to the second variable. Then, ¢ is continuously differentiable in A, and

,8
Dy(e) = [ Das(ez)ae.

Proof. Let us take a zg € A. Let m € N with zy € X,;,. Then, there are an open
neighborhood U C A of zy in (X, prm ) and an n such that for each € € I, Dy f is continuous
at (£,2z9) on I x U in the usual sense as a mapping of I x U into £(X,,;Y,,). As in [1,
(8.11.2)], g is differentiable at zy and we have

,8
Dy(z) = /i[bf(ﬁzﬂdé

Moreover, by Proposition 4, Dg is continuous in A.
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