ON COMPLETE AND STRONGLY STONIAN MV-ALGEBRAS

S. SESSA AND E. TURUNEN

Received September 4, 1997

ABSTRACT. We solve positively a conjecture of L. P. Belluce by using the notion of singular element of an MV-algebra. This concept implies a decomposition theorem for complete MV-algebras, formally analogous to that one for lattice-ordered complete groups. We also prove that strongly stonian MV-algebras correspond, via the well known functor , , to lattice-ordered Abelian groups with strong unit which are strongly projectable.

1. Introduction. After Mundici [1], the theory of MV-algebras of Chang [2] turned out to be intimely connected with lattice-ordered Abelian groups with strong unit, AF C^* -algebras [1], fuzzy set theory [3], [4], just to cite some notewhorty applications.

We recall that an MV-algebra $A=(A,\oplus,\odot,-\underline{0,1})$ is a system such that $(A,\oplus,0)$ is an Abelian monoid, $x\oplus 1=1,\ \bar x=x,\ \bar 0=1,\ x\odot y=\overline{(\bar x+\bar y)},\ \overline{(\bar x\oplus y)}\oplus y=\overline{(\bar y\oplus x)}\oplus x$ for all $x,\ y\in A$.

A is said complete iff the underlying bounded distributive lattice (A, \vee, \wedge, \leq) , defined via the stipulations $x \vee y = (x \odot \bar{y}) \oplus y$, $x \wedge y = (x \oplus \bar{y}) \odot y$ and $x \leq y$ iff $x \wedge y = x$ for all $x, y \in A$, is complete. For brevity, we write $x \odot y = xy$ for all $x, y \in A$ from now on.

For all the unexplained notions on MV-algebras and lattice-ordered groups, we refer to [2], [1] and [7], [8], respectively.

The following is due to Lacava [5] (a full functorial description is given in [1]):

Proposition 1. Let G be an Abelian lattice-ordered group with strong unit u and A = [0, u] be the unit interval of G. For each $x, y \in A$ define $x \oplus y = (x+y) \land u, x \odot y = 0 \lor (x+y-u), \bar{x} = u - x, u = 1$, (here $+, \lor, \land$ are operations in G). Then A is an MV-algebra denoted by A = (G, u) and the lattice operations on A agree with those of G. Conversely, let A be an MV-algebra. Then there exists (up to isomorphisms) an Abelian lattice-ordered group G with strong unit u such that A = (G, u).

From now on we tacitly use this proposition. The functor , is a categorical equivalence [1], thus we rely on its properties in order to solve an open question of L. P. Belluce [4], already solved in other way by U. Höhle [9], using properly MV-machinery. After the concept of singular MV-algebra, we show that a complete MV-algebra is direct product of a divisible MV-algebra and a singular MV-algebra, obtained from the analogous result of lattice-ordered groups using , . We also prove that strongly stonian MV-algebras and Abelian lattice-ordered groups with strong unit which are strongly projectable, correspond via , .

Keywords: Complete MV-algebra, singular MV-algebra, strongly stonian MV-algebra, strongly projectable lattice-ordered group.

¹⁹⁹¹ Mathematics Subject Classification. Primary 03B50; Secondary 06D99.

2. Definition and results. All the definitions used here draw inspiration from the analogous ones for lattice-ordered groups.

A positive element s of an MV-algebra A is said singular iff for each $x \in A$, $x \le s$, then $x \wedge s\bar{x} = 0$ ([8], Def. 6.9).

Theorem 2. Let $s \in A - \{0\}$ and A = (G, u). Then s is singular in A iff s is singular in G.

Proof. For $x \leq s$, we have $s\bar{x} = 0 \lor (s + u - x - u)$. Then the thesis is immediate since $x \land s\bar{x} = 0$ iff $x \land (s - x) = 0$ for all $x \leq s$. \square

We call singular an MV-algebra iff each element $a \in A - \{0\}$ majorizes a singular element cfr. ([7], 11.2.4) or ([8], Def. 54.2).

Lemma 3. Let A = (G, u). Then A is singular iff G is singular.

Proof. Let A be singular and g > 0 be an element of G. If $a = g \wedge u$, then a > 0 since u is also a weak unit for G ([8], Prop. 54.19). Since $a \in A$, there exists a singular element s in A such that $0 < s \le a \le g$. s is also singular in G by Theorem 2 and hence G is singular. The converse is trivial by Theorem 2. \square

Following ([4], Prop. 15), we say that an MV-algebra A is strongly atomless iff for each $a \in A - \{0\}$, there is $x \in A$, 0 < x < a, with $x \wedge a\bar{x} > 0$.

Following [6], an MV-algebra A is divisible iff for each $a \in A - \{0\}$ and integer n > 0, there exist a unique least element $b \in A$ such that

$$\underbrace{b \oplus b \oplus \ldots \oplus b}_{n-\text{times}} = a \quad \text{and} \quad a \cdot \underbrace{\left(\bar{b} \odot \bar{b} \ldots \bar{b}\right)}_{(n-1)-\text{times}} = b.$$

It is known that A is injective iff A is complete and divisible [6]. L. P. Belluce ([4], Cor. 2) proves that A injective implies A complete and strongly atomless, conjecturing that the converse of this implication is also true. We confirm this conjecture proving the following:

Theorem 4. Let A be a complete MV-algebra. Then A is strongly atomless iff A is divisible.

Proof. Let G be such that A = (G, u). A is strongly atomless iff G has not singular elements by Theorem 2. Further, A is divisible iff G is divisible ([5], Prop. 1.2) and A is complete iff G is complete ([10], Thm. 3.1). Thus the thesis follows from ([7], 11.2.13) or ([8], Thm. 54.13). \square

3. Strongly stonian MV-algebras. In this Section we show that strongly stonian MV-algebras and Abelian lattice-ordered groups with strong unit which are strongly projectable are correspondent via the functor , . In order to get this result, we first recall some related definitions.

An MV-algebra A is strongly stonian iff for each each subset $\emptyset \neq X \subseteq A$, $X^{\perp_A} = \mathrm{id}(e)$ for some $e \in B(A)$, where $B(A) = \{b \in A : b \oplus b = b\}$ is the Boolean subalgebra of A, $X^{\perp_A} = \{x \in A : x \land a = 0 \ \forall y \in X\}$ is the polar of X in A and $\mathrm{id}(e) = \{x \in A : x \leq e\}$ is the ideal of A generated by A.

If $\operatorname{id}(X)$ denotes the ideal generated by X in A and since $(\operatorname{id}(X))^{\perp_A} = X^{\perp_A}$ [3], the present definition is clearly equivalent to that one given in [4]. For sake of completeness, we remember that a lattice-ordered group G is strongly projectable iff any polar P in G is a cardinal summand, i.e. $G = P \times P^{\perp_G}$ ([8], Def. 18.1), "×" being the internal direct product ([7], 3.5.5).

Let A = (G, u) and $\emptyset \neq X$ be a subset of [0, u]. If $X^{\perp_G} = \{g \in G : |g| \land x = 0 \ \forall x \in X\}$ is the polar of X in G, evidently $X^{\perp_A} = X^{\perp_G} \cap [0, u]$. Now we prove that

Theorem 5. Let A = (G, u). Then G is strongly projectable iff A is strongly stonian.

Proof. Let G be strongly projectable and $\emptyset \neq X$ be a subset of [0, u]. By ([8], Thm. 18.5), the set $X^{\perp_A} = X^{\perp_G} \cap [0, u]$ has a supremum e in G, which is also the supremum of X^{\perp_A} in A. Indeed, $e \in X^{\perp_A}$ as it is easily seen and clearly $e \in B(A)$.

Conversely, let A be strongly stonian and let g > 0, $X \subseteq [0, g]$. By ([8], Thm. 18.5), we must show that the set $Y = X^{\perp_G} \wedge [0, u]$ has supremum in G. By ([1], Prop. 3.1), let $g_1, g_2, \ldots, g_n \in A$ be such that $g = g_1 + g_2 + \ldots + g_n$. Let $y \in Y$ and $y_1, y_2, \ldots, y_m \in A$ such that $y = y_1 + y_2 + \ldots + y_m$. Without loss of generality, we can assume m = n.

Since $y \leq g$, then $y_i \leq g_i$ for any $i=1,2,\ldots,n$ by ([1], Prop. 3.1). Let $x \in X$ and similarly as before, let $x_1,x_2,\ldots,x_n \in A$ be such that $x=x_1+x_2+\ldots,x_n, \ x_i \leq g_i$, for any $i=1,2,\ldots,n$. Define the sets $X_i=\{x_i \in [0,g_i] : x \in X\} \subseteq [0,u]$. Since $y \wedge x=0$ for all $x \in X$, we have $y_i \wedge x_i \leq y \wedge x=0$ for all $x_i \in X_i$ and $x_i \in X_i$ for all $x_i \in X_i$ and $x_i \in X_i$ and $x_i \in X_i$ by Clearly $x_i \in X_i$ for any $x_i \in X_i$ is an upper bound for $x_i \in X_i$. By ([1], Prop. 3.1), $x_i \in X_i$ and $x_i \in X_i$ and $x_i \in X_i$ i.e. $x_i \in X_i$ and $x_i \in X_i$. Clearly $x_i \in X_i$ is the supremum of $x_i \in X_i$.

Since a complete lattice-ordered group is strongly projectable ([8], Prop. 5.4) or ([7], 11.2.4), then any complete MV-algebra is strongly stonian by the above theorem (cfr. [4], Prop. 18).

4. A decomposition theorem. In this Section we prove a decomposition theorem for complete MV-algebras using the following well known lemma (cfr., e.g., ([11], Lemmas 3.1 and 3.2] involving the functor,

Lemma 6. Let G be an Abelian lattice-ordered group with strong unit u and $G = G_1 \times G_2$. If u_i is the component of u in G_i , then u_i is a strong unit of G_i , i = 1, 2. Further, $A = A_1 \times A_2$, where $A = (G, u), A_i = (G_i, u_i)$ for i = 1, 2.

Now we are in position to prove the following:

Theorem 7. Let A be a complete MV-algebra. Then $A = A_1 \times A_2$, where A_1 (resp. A_2) is a complete divisible (resp. singular) MV-algebra.

Proof. Let A = (G, u). G is complete ([10], Thm. 3.1), then $G = G_1 \times G_2$, where G_1 (resp. G_2) is complete and divisible (resp. singular) by ([8], Thm. 54.14) or ([7], 11.2.15). Further, if $u = u_1 + u_2$, then u_i is a strong unit for G_i , i = 1, 2, by Lemma 6 which implies also that $A = A_1 \times A_2$, where $A_1 = (G_1, u_1)$ (resp. $A_2 = (G_2, u_2)$) is complete and divisible (resp. singular) by ([5], Prop. 12) (resp. Lemma 3). \square

An exact description of the MV-algebras A_1 and A_2 can be obtained recalling that $G_1 = S^{\perp_G}$ and $G_2 = S^{\perp_{G^{\perp_G}}}$, where S is the set of singular elements of G ([8], Thm. 54.14). The following lemma is useful for this description:

Lemma 8. Let A = (G, u) and $s' \in S$. Then s' is singular in A iff $s' = s \wedge u$ with $s \in S$.

Proof. If $s' = s \wedge u$ with $s \in S$, then s' > 0 is a minorant of s, hence $s' \in S$ by ([7], 11.2.9) or ([8], Cor. 54.8). Then s' is singular in A by Theorem 2. The converse is trivial. \square

In virtue of this Lemma, the set $T = \{s \land u : s \in S\} \subseteq [0,u]$ coincides with the singular elements of A. Clearly $T^{\perp_G} = S^{\perp_G}$ and then $T^{\perp_A} = S^{\perp_G}$ which implies $A = (S^{\perp_G} \times S^{\perp_G \perp_G}) \cap [0,u] = (S^{\perp_G} \cap [0,u]) \times (S^{\perp_G \perp_G} \cap [0,u]) = T^{\perp_A} \times T^{\perp_A \perp_A}$, i.e. $A_1 = T^{\perp_A}$, $A_2 = T^{\perp_A \perp_A}$. Since A is strongly stonian, we have $A_1 = \operatorname{id}(u_1)$, $A_2 = \operatorname{id}(\bar{u}_1)$ since $u_2 = u - u_1$ and $u_1 \in B(A)$.

References

- D. Mundici, Interpretation of AF C*-algebras in Lukasiewicz sentential calculus, J. Funct. Analysis 65, (1986), 15-63.
- C.C. Chang, Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88, (1958), 467-490.
- L.P. Belluce, Semisimple algebras of infinite-valued logic and bold fuzzy set theory, Canadian J. Math. 38, (1986), 1356-1379.
- L.P. Belluce, α-complete MV-algebras, in "Non-classical logics and their applications to fuzzy subsets"
 (U. Höhle and E. P. Klement, Eds.) Kluwer Acad. Publishers, Dordrecht, The Netherlands (1995), 7–21.
- 5. F. Lacava, Sulle classi delle \(\ell-\)-algebre e degli \(\ell-\)-gruppi abeliani algebricamente chiusi, Boll. Un. Mat. Ital. B(7) 1, (1987), 703-712.
- 6. F. Lacava, Sulle \ell-algebre iniettive, Boll. Un. Mat. Ital. A(7) 3, (1989), 319-324.
- A. Bigard, K. Keimel, S. Wolfenstein, Groupes et Anneaux Rèticulès, Springer Lecture Notes in Mathematics, 608, (1977).
- 8. M.R. Darnel, Theory of lattice-ordered groups, Marcell Dekker, Inc., New York (1995).
- U. Höhle, Commutative residuated ℓ-monoids, in "Non classical logics and their applications to fuzzy subsets" (U. Höhle and E. P. Klement, Eds.) Kluwer Acad. Publishers, Dordrecht, The Netherlands (1995), 53-106.
- A. Di Nola, S. Sessa, On MV-algebras of continuous functions, in "Non classical logics and their applications to fuzzy subsets" (U. Höhle and E. P. Klement, Eds.) Kluwer Acad. Publishers, Dordrecht, The Netherlands (1995), 23-32.
- J. Jakubik, Direct product decomposition of MV-algebras, Czech. Math. Journal 44(119) (1994), 725–739

(Sessa) Istituto di Matematica, Facoltà di Architettura, via Monteoliveto, 3, 80134 Napoli, Italy

E-mail address: sessa@unina.it

(Turunen) VISITING FROM UNIVERSITY OF LAPPEENRANTA, FINLAND.