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ON COMPLETE AND STRONGLY STONIAN MV-ALGEBRAS

S. SESSA AND E. TURUNEN
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ABSTRACT. We solve positively a conjecture of L. P. Belluce by using the notion of
singular element of an MV-algebra. This concept implies a decomposition theorem
for complete M V-algebras, formally analogous to that one for lattice-ordered complete
groups. We also prove that strongly stonian MV -algebras correspond, via the well
known functor , , to lattice-ordered Abelian groups with strong unit which are strongly
projectable.

1. Introduction. After Mundici [1], the theory of MV-algebras of Chang [2] turned out to
be intimely connected with lattice-ordered Abelian groups with strong unit, AF C*-algebras
[1], fuzzy set theory [3], [4], just to cite some notewhorty applications.

We recall that an MV-algebra A = (4,¢,©,—0,1) is a system such that (4,,0) is an
Abelian monoid, z D1 =1,Z=2,0=1,20y=(2+7), (ZDy)©y=(§ D x) D x for all
x, y € A.

A is saild complete iff the underlying bounded distributive lattice (A4,V, A, <), defined
via the stipulations st Vy = (2 0 §) @y, e Ay= (2 D §) @y and x < y iff # Ay = x for all
x, y € A, is complete. For brevity, we write « © y = azy for all 2, y € A from now on.

For all the unexplained notions on MV-algebras and lattice-ordered groups, we refer to
[2], [1] and [7], [8], respectively.

The following is due to Lacava [5] (a full functorial description is given in [1]):

Proposition 1. Let G be an Abelian lattice-ordered group with strong unit u and A = [0, u]
be the unit interval of G. For each z, y € A define v Dy = (v+y)Au, Gy =0V (r+y—u),
z=u—x,u=1, (here +, V, A are operations in G). Then A is an MV -algebra denoted
by A=, (G,u) and the lattice operations on A agree with those of G. Conversely, let A be
an MV -algebra. Then there exists (up to isomorphisms) an Abelian lattice-ordered group
G with strong unit w such that A=, (G, u).

From now on we tacitly use this proposition. The functor , is a categorical equivalence
[1], thus we rely on its properties in order to solve an open question of L. P. Belluce [4],
already solved in other way by U. Hohle [9], using properly MV-machinery. After the
concept of singular MV-algebra, we show that a complete MV-algebra is direct product
of a divisible MV-algebra and a singular MV -algebra, obtained from the analogous result
of lattice-ordered groups using , . We also prove that strongly stonian MV-algebras and
Abelian lattice-ordered groups with strong unit which are strongly projectable, correspond
via , .
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2. Definition and results. All the definitions used here draw inspiration from the anal-
ogous ones for lattice-ordered groups.
A positive element s of an MV-algebra A is said singular iff for each z € A, x < s, then

x A sz =0 ([8], Def. 6.9).

Theorem 2. Let s € A— {0} and A =, (G,u). Then s is singular in A iff s is singular
in G.

Proof. For v < s, we have sz = 0V (s + u — 2 — u). Then the thesis is immediate since
rAsE=0ifzA(s—x)=0forallz<s. O

We call singular an MV-algebra iff each element a € A—{0} majorizes a singular element

cfr. ([7], 11.2.4) or ([8], Def. 54.2).
Lemma 3. Let A=, (G,u). Then A is singular iff G is singular.

Proof. Let A be singular and ¢ > 0 be an element of G. If « = g A u, then a > 0 since u is
also a weak unit for G ([8], Prop. 54.19). Since a € A, there exists a singular element s in
A such that 0 < s < a < g. s is also singular in GG by Theorem 2 and hence G is singular.
The converse is trivial by Theorem 2. [

Following ([4], Prop. 15), we say that an MV -algebra A is strongly atomless iff for each
a € A—{0}, thereis v € 4, 0 < z < a, with z A az > 0.
Following [6], an MV-algebra A is divisible iff for each « € A — {0} and integer n > 0,
there exist a unique least element b € A such that
bobo...&b=a and a-(b@b...b)=b.
N——r —_—————

n—times (n—1)—times

It is known that A is injective iff A is complete and divisible [6]. L. P. Belluce ([4], Cor.
2) proves that A injective implies A complete and strongly atomless, conjecturing that the
converse of this implication is also true. We confirm this conjecture proving the following:

Theorem 4. Let A be a complete MV -algebra. Then A is strongly atomless iff A is divis-
ble.

Proof. Let G be such that A = , (G,u). A is strongly atomless iff G has not singular
elements by Theorem 2. Further, A is divisible iff G is divisible ([5], Prop. 1.2) and A is
complete iff G is complete ([10], Thm. 3.1). Thus the thesis follows from ([7], 11.2.13) or
([8], Thm. 54.13). O

3. Strongly stonian M V-algebras. In this Section we show that strongly stonian MV -
algebras and Abelian lattice-ordered groups with strong unit which are strongly projectable
are correspondent via the functor , . In order to get this result, we first recall some related
definitions.

An MV-algebra A is strongly stonian iff for each each subset ) # X C A, X124 =id(e)
for some e € B(A), where B(A) = {b€ A : b@ b= Db} is the Boolean subalgebra of A4,
Xta={r€eAd: 2Aa=0Vye€ X}isthepolar of X in A andid(e)={r € 4 : v <e}
is the ideal of A generated by e.

If id(X) denotes the ideal generated by X in A and since (id(X))+4 = X+4 [3], the
present definition is clearly equivalent to that one given in [4]. For sake of completeness,
we remember that a lattice-ordered group G is strongly projectable iff any polar P in G
is a cardinal summand, i.e. G = P x P1¢ ([8], Def. 18.1), “x” heing the internal direct
product ([7], 3.5.5).
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Let A=, (G,u) and § # X be asubset of [0,u]. f X1¢ ={ge€ G : |g|Az=0Vr € X}
is the polar of X in G, evidently X+4 = X1ton [0, u]. Now we prove that

Theorem 5. Let A=, (G,u). Then G is strongly projectable iff A is strongly stonian.

Proof. Let G be strongly projectable and ) # X be a subset of [0,u]. By ([8], Thm. 18.5),
the set X4 = X1¢ N[0,u] has a supremum e in G, which is also the supremum of X4
in A. Indeed, e € X1 as it is easily seen and clearly e € B(A).

Conversely, let A be strongly stonian and let g > 0, X C [0,g]. By ([8], Thm. 18.5),
we must show that the set ¥ = X1¢ A [0,u] has supremum in G. By ([1], Prop. 3.1), let
G1:G2y--- s gn € Abesuchthat g= g1 + o+ ...+ gn. Let y € Y and y1,y2, ... ,ym € A
such that y = y; + y2 + ... + ym. Without loss of generality, we can assume m = n.

Since y < g, then y; < g; for any ¢ = 1,2,... ,n by ([1], Prop. 3.1). Let v € X and
similarly as before, let @1, 29,... ,2, € A be such that z = z; + 22 + ... ,2,, ¥; < g;, for
any i = 1,2,... ,n. Define the sets X; = {&; € [0,¢] : v € X} C[0,u]. Since yAz =0
for all z € X, we have y; Az; <yAx=0forall z; € X; and 7 = 1,2,... ,n. This means
Yi € Xta: = id(e;) for some e; € B(A). By setting e = e; +e2+ ... + e,, we have y < e
for all y € Y. Clearly e < g since, for any i = 1,2,... ,n, g; is an upper bound for X+4:,
By ([1], Prop. 3.1), e Az = (ey Azy)+ ...+ (en Azp) =0foral z € X, ie € X9 and
e € A. Clearly e is the supremum of Y in G. O

Since a complete lattice-ordered group is strongly projectable ([8], Prop. 5.4) or ([7
11.2.4), then any complete MV -algebra is strongly stonian by the above theorem (cfr. [4
Prop. 18).

J:
I

4. A decomposition theorem. In this Section we prove a decomposition theorem for
complete MV-algebras using the following well known lemma (cfr., e.g., ([11], Lemmas 3.1
and 3.2] involving the functor , .

Lemma 6. Let G be an Abelian lattice-ordered group with strong unit v and G = G| x G.
If u; is the component of w in Gy, then w; is a strong unit of Gy, 1 = 1,2. Further,

A=Ay x Ay, where A=, (G,u), 4; =, (Gi,u;) fori=1,2.
Now we are in position to prove the following:

Theorem 7. Let A be a complete MV -algebra. Then A = Ay x A, where Ay (resp. As)
is a complete divisible (resp. singular) MV -algebra.

Proof. Let A =, (G,u). G is complete ([10], Thm. 3.1), then G = G7 x G, where G,
(resp. G2) is complete and divisible (resp. singular) by ([8], Thm. 54.14) or ([7], 11.2.15).
Further, if u = uy 4+ us, then u; is a strong unit for G;, i = 1,2, by Lemma 6 which implies
also that A = A; x Ay, where A =, (G1,uy) (resp. Az = . (G2,uz2)) is complete and
divisible (resp. singular) by ([5], Prop. 12) (resp. Lemma 3). O

An exact description of the MV-algebras 4; and Ay can be obtained recalling that
G = S19 and Gy = §+616, where S is the set of singular elements of G ([8], Thm.
54.14). The following lemma is useful for this description:

Lemma 8. Let A=, (G,u) and s’ € S. Then s is singular in A iff & = s Au with s € S.

Proof. If ' = s Au with s € S, then s’ > 0 is a minorant of s, hence s’ € S by ([7], 11.2.9)
or ([8], Cor. 54.8). Then s’ is singular in 4 by Theorem 2. The converse is trivial. O
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In virtue of this Lemma, the set T = {s Au : s € S} C [0,u] coincides with the

singular elements of A. Clearly T+¢ = §*¢ and then T4 = S§¢ which implies A =
(St x Stata)yn(o,u] = (St N[0,u]) x (Stetan[0,u]) = THa x THata ie A4, =T+a,
Ay = THata. Since A is strongly stonian, we have A; = id(u;), Ay = id(@;) since
uy = u —uq and uqy € B(A).

10.
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