CANCELLATION LAWS FOR BCI-ALGEBRA, ATOMS AND P-SEMISIMPLE BCI-ALGEBRAS

M.W. BUNDER

Received July 8, 1997

ABSTRACT. We derive cancellation laws for BCI-algebras and for *p*-semisimple BCI-algebras, show that the set of all atoms of a BCI-algebra is a *p*-semisimple BCI-algebra and that in a *p*-semisimple BCI-algebra \leq and = are the same.

1. Introduction. *BCI*-algebras, first introduced by Iséki in [1], can be defined as follows: **Definition 1** An algebra $\langle X; *, 0 \rangle$ of type (2, 0) is a *BCI*-algebra if for all $x, y, z \in X$.

The following well known properties of *BCI*-algebras are used below.

- (1) (x * y) * z = (x * z) * y

2. A Cancellation law for BCI-Algebras.

Theorem 1 If $\langle X; *, 0 \rangle$ is a *BCI*-algebra and $x, y, z \in X$ then:

(i) $x * y \le x * z \implies 0 * y = 0 * z$; (ii) $y * x \le z * x \implies 0 * y = 0 * z$. **Proof** (i) If $x * y \le x * z$, by *BCI-5*,

$$(x \ast y) \ast (x \ast z) = 0$$

and so by BCI-1 and BCI-5,

$$0 * (z * y) = 0$$
 – (a)

and by (2),

$$(0 * z) * (0 * y) = 0.$$

¹⁹⁹¹ Mathematics Subject Classification. 06F35.

Key words and phrases. BCI-algebras.

Hence by *BCI*-5

$$0 * z \le 0 * y.$$

We now apply the same cancellation procedure to this as we did to $x * y \le x * z$, this time "cancelling" the 0 to give:

$$0 * y \le 0 * z$$

$$0 * y = 0 * z.$$

(ii) If
$$y * x \le z * x$$
, by BCI -5

$$(y \ast x) \ast (z \ast x) = 0.$$

BCI-1 and (1) give

$$\begin{array}{l} ((y*x)*(z*x))*(y*z) = 0 \\ 0*(y*z) = 0 \end{array}$$

-(b)

giving, as above,

 \mathbf{SO}

$$0 * y \le 0 * z.$$

As in (i) this gives 0 * y = 0 * z.

Corollary If $\langle X; *, 0 \rangle$ is a *BCI*-algebra and $x, y, z \in X$ then

(i) $x * y = x * z \implies 0 * y = 0 * z$

(ii) $y * x = z * x \implies 0 * y = 0 * z.$

We have two further properties resulting from the above cancellation laws:

Theorem 2 If $\langle X; *, 0 \rangle$ is a *BCI*-algebra and $x, y, z \in x$ then:

(i) $x \le x * z \implies 0 \le z$

(ii) $x * y \le x \Rightarrow 0 \le y$.

Proof (i) If $x \le x * z$, by (3) $x * 0 \le x * z$ and so by Theorem 1 (i) 0 * z = 0 * 0. This gives 0 * z = 0 ie $0 \le z$.

(ii) If $x * y \le x$, by (3), $x * y \le x * 0$ and so by Theorem 1 (ii) 0 * y = 0 * 0 = 0, so $0 \le y$.

3. P-Semisimple Algebras. These were introduced by Lei and Xi in [2] as follows: Definition 2 A *BCI*-algebra $\langle X; *, 0 \rangle$ is p-semisimple if

$$(\forall x \in X)(0 * x = 0 \quad \Rightarrow \quad x = 0).$$

In these algebras we find that \leq becomes the same as = .

Theorem 3 If $\langle X; *, 0 \rangle$ is a p-semisimple *BCI*-algebra and $x, y \in X$ then if $x \leq y$ also x = y.

Proof If $x \le y$, x * y = 0 by *BCI-5*. Also by (5), x * y = x * x, so by the corollary to Theorem 1, 0 * y = 0 * x.

As (0 * x) * (0 * x) = 0, we have (0 * y) * (0 * x) = 0 and by (2), 0 * (y * x) = 0.

As *BCI*-algebras are closed under $*, y * x \in X$, so if the algebra is p-semisimple, y * x = 0.

By BCI-4, x = y.

Our cancellation laws can now be strengthened.

Theorem 4 If $\langle X; *, 0 \rangle$ is a p-semisimple *BCI*-algebra and $x, y, z \in X$ then:

(i) $x * y \le x * z \Rightarrow y = z;$

(ii) $y * x \le z * x \Rightarrow y = z$.

Proof (i) If $x * y \le x * z$, by Theorem 1(i) we get 0 * z = 0 * y and so (0 * z) * (0 * y) = 0. By (2) this gives 0 * (z * y) = 0, so if the algebra is p-semisimple we have z * y = 0 i.e. $z \le y$. The result then follows from Theorem 3.

(ii) Similar.

20

(i) $x * y = x * z \Rightarrow y = z;$

(ii) $y * x = z * x \Rightarrow y = z$.

4. Atoms. Meng and Xin in [5] introduced the notion of atom and the class of all atoms of a *BCI*-algebra.

Definition 3 An element of a *BCI*-algebra $\langle X; *, 0 \rangle$ is an atom if

$$(\forall z \in X)(z * a = 0 \quad \Rightarrow \quad z = a)$$

Definition 4 $L(X) = \{x \in X \mid a \text{ is an atom of } X\}$

Meng and Xin prove in [5]:

Theorem 5 If $\langle X; *, 0 \rangle$ is a *BCI*-algebra then

(i) a is an atom iff a = 0 * (0 * a);

(ii) $(\forall x \in X) \quad 0 * x \in L(X).$

((ii) also follows from (4) and (i).)

The following simple representation of L(X) results:

Theorem 6 $L(X) = \{0 * x \mid x \in X\}.$

Meng and Xin prove that L(X) is a *BCI*-algebra. The following result of Lei and Xi [2]: **Theorem 7** If $\langle X; *, 0 \rangle$ is a *BCI*-algebra then X is p-semisimple iff

 $(\forall x \in X) \quad 0 * (0 * x) = x.$

and Theorem 5(i) give us:

Theorem 8 If $\langle X; *, 0 \rangle$ is a *BCI*-algebra $\langle L(X); *, 0 \rangle$ is a p-semisimple *BCI*-algebra. A final result on L(X) is the following:

Theorem 9 If $\langle X; *, 0 \rangle$ is a *BCI*-algebra then L(L(X)) = L(X). **Proof** By Theorem 6,

$$L(L(X)) = \{0 * x \mid x \in L(X)\} \\ = \{0 * (0 * y) \mid y \in X\}$$

Similarly

$$L(L(L(X))) = \{0 * (0 * (0 * z)) \mid z \in X\},\$$

so by (4)

$$L(L(L(X))) = L(X).$$
 Hence as $L(L(L(X))) \subseteq L(L(X)) \subseteq L(X)$ we have
 $L(L(X)) = L(X)$

5. Powers. In [2] Lei and Xi define a new operation + by:

Definition 5 x + y = x * (0 * y)

and show that if $\langle X; *, 0 \rangle$ is a p-semisimple *BCI*-algebra then $\langle X, + \rangle$ is an abelian group. In [3] Meng and Wei use the same operation to define powers of elements by:

$$\begin{array}{rcl}
x^{1} &=& x \\
x^{n+1} &=& x * (0 * x^{n}),
\end{array}$$

(though mx instead of x^m might have been in better keeping with +).

The following are new properties of this form of exponentiation:

Theorem 10 If x is an element of a *BCI*-algebra $\langle X; *, 0 \rangle$ then:

- (i) $(0*x)^n = 0*x^n$;
- (ii) $(0 * x)^n = (...((0 * x) * x)...) * x$

(where there are n x s on the right hand side).

Proof (i) By induction on n.

n = 1 - obvious. Assuming (i) for n,

$$(0*x)^{n+1} = (0*x)*(0*(0*x)^n)$$

= (0*x)*(0*(0*x^n)) -(c)
= 0*(x*(0*x^n)) by (2)
= 0*x^{n+1}

(ii) By induction on n. n = 1 - obvious.

Assuming (ii) for n, by (c) above, (1) and (4):

$$(0 * x)^{n+1} = (0 * (0 * (0 * x^n))) * x$$

= (0 * xⁿ) * x
= (0 * x)ⁿ * x by (i)
= (...((0 * x) * x)...) * x.

as required.

References

- 1. K. Iséki, "An algebra related with a propositional calculus" Proc. Japan Acad. 42 (1966), 26-29.
- 2. T. Lei and C. Xi "p-Radical in BCI-algebras" Math. Japonica 30, (1985) 511-517.
- 3. J. Meng and S.M. Wei "Periods of elements in BCI-algebras" Math. Japonica 38 (1993), 427-431.
- 4. J. Meng and S.M. Wei "Periodic BCI-algebras and closed ideals" Math. Japonica 38 (1993), 571-575.
- 5. J. Meng and X.L. Xin "Characterization of atoms in BCI-algebras" Math Japonica 37, (1992), 359-361.

(M.W. Bunder) Department of Mathematics, University of Wollongong, Wollongong NSW 2522, Australia. Phone: 61 42 214151; fax: 61 42 214845

 $E\text{-}mail\ address:\ martin_bunder@uow.edu.au$

22