REMARKS ON STRANG'S INEQUALITY

JIANMIN ZHU

Received October 6, 1994; revised September 6, 1995

$$
\begin{aligned}
& \text { Abstract. In this note we present the best bounds for } \mathbf{R e A B} \text { where } \mathbf{A} \text { and } \mathbf{B} \text { are } \\
& \text { bounded linear operators on a Hilbert space satisfying }\|\mathbf{A}-a\| \leq c \text { and }\|\mathbf{B}-b\| \leq d \\
& \text { for nonzero real numbers } a, b, c \text { and } d \text {. }
\end{aligned}
$$

Let \mathbf{H} be a Hilbert space and $\mathbf{L}(\mathbf{H})$ the Banach algebra consisting of all bounded linear operators on \mathbf{H}. For two selfadjoint operators \mathbf{A} and \mathbf{B} in $\mathbf{L}(\mathbf{H})$ which satisfy

$$
\begin{equation*}
m \leq \mathbf{A} \leq M, \quad n \leq \mathbf{B} \leq N \tag{1}
\end{equation*}
$$

Strang [1] found the best bounds of the Jordan product AB+BA. Fujii,et al.[2] attempted to provide a simple proof of Strang's result. They obtained the following theorem:

Theorem A. Let \mathbf{A} and \mathbf{B} be selfadjoint operators in $\mathbf{L}(\mathbf{H})$ satisfying (1). Then the best lower bound c of ReAB is given by

$$
\begin{equation*}
\boldsymbol{\operatorname { R e }} \mathbf{A B} \geq c=\frac{16 M N m n-(M-m)^{2}(N-n)^{2}}{8(M+m)(N+n)} \tag{2}
\end{equation*}
$$

It is regrettable that the above theorem is incorrect when $(M+m)(N+n)<0$. The following simple example shows (2) is untenable. Let $\mathbf{A}=\frac{1}{2}$ and $\mathbf{B}=-\frac{1}{2}$, then $0<\mathbf{A}<1$ and $-1<\mathbf{B}<0$. We have a contradictory inequality $-\frac{1}{4} \geq \frac{1}{8}$ by (2). In fact the opposite of (2) holds when $(M+m)(N+n)<0$. This follows if we write (1) in the form

$$
-M \leq-\mathbf{A} \leq-m, \quad n \leq \mathbf{B} \leq N
$$

and use (2) in the case of $(M+m)(N+n)>0$.
On the other hand Strang's result was generalized in part to one for nonselfadjoint operators in[2] as following:

Theorem B. Let $\mathbf{A}, \mathbf{B} \in \mathbf{L}(\mathbf{H})$. If

$$
\begin{equation*}
\|\mathbf{A}-a\| \leq c, \quad\|\mathbf{B}-b\| \leq d \tag{3}
\end{equation*}
$$

for nonzero real numbers a, b, c and d, then the best bound is given by

$$
2 a b \operatorname{Re} \mathbf{A}^{*} \mathbf{B} \geq a^{2} b^{2}-a^{2} d^{2}-b^{2} c^{2}
$$

From this theorem the lower bound of $\operatorname{Re} \mathbf{A}^{*} \mathbf{B}$ (or ReAB) is derived for $a b>0$ and the upper bound for $a b<0$. In the present paper we shall complete Theorem B and obtain the best lower and upper bound for ReAB with the restriction of (3). Strang's theorem becomes a special case of our result. The following is our main theorem in this note:

Theorem. With the hypotheses of Theorem B, we have

$$
\begin{equation*}
\alpha \leq \boldsymbol{\operatorname { R e }} \mathbf{A B} \leq \beta \tag{4}
\end{equation*}
$$

where α and β are the minimum and maximum of $\operatorname{Re}\left[\left(a+c e^{i \theta}\right)\left(b+d e^{i \phi}\right)\right]$ for $\theta, \phi \in[0,2 \pi]$.

From [1] we know that α and β are the least and the greatest of the following $E_{j}(1 \leq$ $j \leq 5)$ given by

$$
\begin{array}{ll}
E_{1}=a b+b c+a d+c d, & E_{2}=a b+b c-a d-c d \\
E_{3}=a b-b c+a d-c d, & E_{4}=a b-b c-a d+c d \\
E_{5}=\frac{1}{2}\left(a b-\frac{a d^{2}}{b}-\frac{b c^{2}}{a}\right)
\end{array}
$$

For the proof of the theorem the following lemma is required:
Lemma. If we set $c=d=1$ among $E_{j}(1 \leq j \leq 5)$ given above and α is the least of E_{j}, then

$$
\alpha=E_{5}=\frac{1}{2}\left(a b-\frac{b}{a}-\frac{a}{b}\right)
$$

for $a b>0$,

$$
\alpha=E_{2}=a b+b-a-1
$$

for $a>0$ and $b<0$, and

$$
\alpha=E_{3}=a b-b+a-1
$$

for $a<0$ and $b>0$.
Proof. If $a b>0$, an easy calculation shows that

$$
E_{2}-E_{5}=\frac{(a b-a+b)^{2}}{2 a b} \geq 0
$$

which shows $E_{2} \geq E_{5}$. Similarly, we can verify that E_{5} is not greater than E_{1}, E_{3} and E_{4}. Thus E_{5} is the least among $E_{j}(1 \leq j \leq 5)$ for $a b>0$.

For the case of $a>0$ and $b<0$ we have

$$
E_{1}-E_{2}=2 a+2>0
$$

which implies $E_{1}>E_{2}$, and

$$
E_{5}-E_{2}=a+1-b-\frac{1}{2}\left(a b+\frac{b}{a}+\frac{a}{b}\right)>0
$$

this leads to $E_{5}>E_{2}$. We can check similarly that $E_{3}>E_{2}$ and $E_{4}>E_{2}$. So E_{2} is the least of $E_{j}(1 \leq j \leq 5)$ in this case. The other inequalities can be shown with the same method. This completes the proof.

The proof of the main theorem:
First we prove the left side of (4). Without loss of generality, we may assume $c=d=1$. If $a b>0$ we only need to verify that

$$
\boldsymbol{\operatorname { R e A B }} \geq E_{5}=\frac{1}{2}\left(a b-\frac{b}{a}-\frac{a}{b}\right)=\alpha
$$

from the lemma. This is given by Theorem B.
Suppose $\mathrm{a}>0$ and $\mathrm{b}<0$. Set $\mathbf{S}=\mathbf{A}-a$ and $\mathbf{T}=\mathbf{B}-b$, then \mathbf{S} and \mathbf{T} are contractions and

$$
\mathbf{A B}=a b+b \mathbf{S}+a \mathbf{T}+\mathbf{S T}
$$

Noticing that $-1 \leq \operatorname{Re} \mathbf{P} \leq 1$ for the contraction \mathbf{P}, we have

$$
\begin{gathered}
\operatorname{Re} \mathbf{A B}=a b+b \operatorname{Re} S+a \operatorname{Re} T+\operatorname{Re}(S T) \\
\geq a b+b-a-1=E_{2}=\alpha
\end{gathered}
$$

by the lemma. The same method is used to the proof in the case of $a<0$ and $b>0$. So the left side of (4) is proved.

To prove the right side of (4), we write (3) in the form

$$
\|(-\mathbf{A})-(-a)\| \leq 1, \quad\|\mathbf{B}-b\| \leq 1
$$

By the left side of (4) we have

$$
\begin{equation*}
\operatorname{Re}(-\mathbf{A}) \mathbf{B} \geq \alpha^{\prime}, \quad \text { i.e. } \quad \boldsymbol{\operatorname { R e }} \mathbf{A B} \leq-\alpha^{\prime} \tag{5}
\end{equation*}
$$

where α^{\prime} is the least of $E_{j}^{\prime}(1 \leq j \leq 5)$ given by

$$
\begin{aligned}
E_{1}^{\prime} & =-a b+b-a+1, \\
E_{3}^{\prime} & =-a b-b-a-1, \\
E_{4}^{\prime} & =-a b+b+a-1 \\
E_{5}^{\prime} & =\frac{1}{2}\left(-a b+\frac{a}{b}+\frac{b}{a}\right) .
\end{aligned}
$$

It is obvious that $E_{1}^{\prime}=-E_{3}, E_{2}^{\prime}=-E_{4}, E_{3}^{\prime}=-E_{1}, E_{4}^{\prime}=-E_{2}$ and $E_{5}^{\prime}=-E_{5}$. So

$$
-\alpha^{\prime}=-\min E_{j}^{\prime}=\max \left(-E_{j}^{\prime}\right)=\max E_{j}=\beta
$$

Hence (5) is just the right side of (4). This concludes the proof.
Corollary. With the same condition of Theorem A we have

$$
\tilde{\alpha} \leq \boldsymbol{\operatorname { R e }} \mathbf{A B} \leq \tilde{\beta}
$$

where α and β are the least and greatest of $\tilde{E}_{j}(1 \leq j \leq 5)$ given by

$$
\begin{array}{ll}
\tilde{E}_{1}=M N, & \tilde{E}_{2}=M n \\
\tilde{E}_{3}=m N, & \tilde{E}_{4}=m n \\
\tilde{E}_{5}=\frac{16 M N m n-(M-m)^{2}(N-n)^{2}}{8(M+m)(N+n)}
\end{array}
$$

Proof. According to [1] we can translate (1) to (3) in the case of selfadjoint if we take

$$
a=\frac{M+m}{2}, b=\frac{M-m}{2}, c=\frac{N+n}{2}, d=\frac{N-n}{2} .
$$

Then it follows with a simple computation from the main theorem.
The above corollary is the generalization of Strang's result.
I wish to thank the referee for many useful suggestions.

References

1. W.G.Strang, Eigenvalues of Jordan product, Amer. Math. Mon., 69 (1962) 37-40.
2. J.I. Fujii, et al., Strang's inequality, Math. Japon., $\mathbf{3 7}$ (1992)479-486.

Department of Mathematics, National University of Defence Technology, Changsha 410073, People's Republic of China

