REMARKS ON STRANG'S INEQUALITY

JIANMIN ZHU

Received October 6, 1994; revised September 6, 1995

ABSTRACT. In this note we present the best bounds for **ReAB** where **A** and **B** are bounded linear operators on a Hilbert space satisfying $\parallel \mathbf{A} - a \parallel \leq c$ and $\parallel \mathbf{B} - b \parallel \leq d$ for nonzero real numbers a, b, c and d.

Let \mathbf{H} be a Hilbert space and $\mathbf{L}(\mathbf{H})$ the Banach algebra consisting of all bounded linear operators on \mathbf{H} . For two selfadjoint operators \mathbf{A} and \mathbf{B} in $\mathbf{L}(\mathbf{H})$ which satisfy

$$(1) m \le \mathbf{A} \le M, \quad n \le \mathbf{B} \le N.$$

Strang [1] found the best bounds of the Jordan product **AB+BA**. Fujii,et al.[2] attempted to provide a simple proof of Strang's result. They obtained the following theorem:

Theorem A. Let **A** and **B** be selfadjoint operators in L(H) satisfying (1). Then the best lower bound c of ReAB is given by

(2)
$$\mathbf{ReAB} \ge c = \frac{16MNmn - (M-m)^2(N-n)^2}{8(M+m)(N+n)}.$$

It is regrettable that the above theorem is incorrect when (M+m)(N+n) < 0. The following simple example shows (2) is untenable. Let $\mathbf{A} = \frac{1}{2}$ and $\mathbf{B} = -\frac{1}{2}$, then $0 < \mathbf{A} < 1$ and $-1 < \mathbf{B} < 0$. We have a contradictory inequality $-\frac{1}{4} \ge \frac{1}{8}$ by (2). In fact the opposite of (2) holds when (M+m)(N+n) < 0. This follows if we write (1) in the form

$$-M \le -\mathbf{A} \le -m, \quad n \le \mathbf{B} \le N,$$

and use (2) in the case of (M+m)(N+n) > 0.

On the other hand Strang's result was generalized in part to one for nonselfadjoint operators in [2] as following:

Theorem B. Let $A, B \in L(H)$. If

(3)
$$\|\mathbf{A} - a\| \le c, \|\mathbf{B} - b\| \le d$$

for nonzero real numbers a, b, c and d, then the best bound is given by

$$2abRe\mathbf{A}^*\mathbf{B} > a^2b^2 - a^2d^2 - b^2c^2$$
.

From this theorem the lower bound of ReA^*B (or ReAB) is derived for ab > 0 and the upper bound for ab < 0. In the present paper we shall complete Theorem B and obtain the best lower and upper bound for ReAB with the restriction of (3). Strang's theorem becomes a special case of our result. The following is our main theorem in this note:

Theorem. With the hypotheses of Theorem B, we have

(4)
$$\alpha \leq \mathbf{ReAB} \leq \beta$$

where α and β are the minimum and maximum of $Re[(a+ce^{i\theta})(b+de^{i\phi})]$ for $\theta,\phi\in[0,2\pi]$.

From [1] we know that α and β are the least and the greatest of the following $E_j(1 \le j \le 5)$ given by

$$E_1 = ab + bc + ad + cd$$
, $E_2 = ab + bc - ad - cd$,
 $E_3 = ab - bc + ad - cd$, $E_4 = ab - bc - ad + cd$,
 $E_5 = \frac{1}{2}(ab - \frac{ad^2}{b} - \frac{bc^2}{a})$.

For the proof of the theorem the following lemma is required:

Lemma. If we set c = d = 1 among $E_j (1 \le j \le 5)$ given above and α is the least of E_j , then

$$\alpha = E_5 = \frac{1}{2}(ab - \frac{b}{a} - \frac{a}{b})$$

for ab > 0,

$$\alpha = E_2 = ab + b - a - 1$$

for a > 0 and b < 0, and

$$\alpha = E_3 = ab - b + a - 1$$

for a < 0 and b > 0.

Proof. If ab > 0, an easy calculation shows that

$$E_2 - E_5 = \frac{(ab - a + b)^2}{2ab} \ge 0$$

which shows $E_2 \ge E_5$. Similarly, we can verify that E_5 is not greater than E_1, E_3 and E_4 . Thus E_5 is the least among $E_i (1 \le j \le 5)$ for ab > 0.

For the case of a > 0 and b < 0 we have

$$E_1 - E_2 = 2a + 2 > 0$$

which implies $E_1 > E_2$, and

$$E_5 - E_2 = a + 1 - b - \frac{1}{2}(ab + \frac{b}{a} + \frac{a}{b}) > 0,$$

this leads to $E_5 > E_2$. We can check similarly that $E_3 > E_2$ and $E_4 > E_2$. So E_2 is the least of $E_j (1 \le j \le 5)$ in this case. The other inequalities can be shown with the same method. This completes the proof.

The proof of the main theorem:

First we prove the left side of (4). Without loss of generality, we may assume c = d = 1. If ab > 0 we only need to verify that

$$\mathbf{ReAB} \ge E_5 = \frac{1}{2}(ab - \frac{b}{a} - \frac{a}{b}) = \alpha$$

from the lemma. This is given by Theorem B.

Suppose a>0 and b<0. Set S=A-a and T=B-b, then S and T are contractions and

$$\mathbf{AB} = ab + b\mathbf{S} + a\mathbf{T} + \mathbf{ST}.$$

Noticing that $-1 \le Re\mathbf{P} \le 1$ for the contraction \mathbf{P} , we have

$$ReAB = ab + bReS + aReT + Re(ST)$$

$$> ab + b - a - 1 = E_2 = \alpha$$

by the lemma. The same method is used to the proof in the case of a < 0 and b > 0. So the left side of (4) is proved.

To prove the right side of (4), we write (3) in the form

$$\| (-\mathbf{A}) - (-a) \| \le 1, \quad \| \mathbf{B} - b \| \le 1.$$

By the left side of (4) we have

(5)
$$Re(-\mathbf{A})\mathbf{B} \ge \alpha', \quad i.e. \quad \mathbf{Re}\mathbf{A}\mathbf{B} \le -\alpha'$$

where α' is the least of $E'_i (1 \le j \le 5)$ given by

$$E'_1 = -ab + b - a + 1, E'_2 = -ab + b + a - 1,$$

$$E'_3 = -ab - b - a - 1, E'_4 = -ab - b + a + 1,$$

$$E'_5 = \frac{1}{2}(-ab + \frac{a}{b} + \frac{b}{a}).$$

It is obvious that $E'_1 = -E_3$, $E'_2 = -E_4$, $E'_3 = -E_1$, $E'_4 = -E_2$ and $E'_5 = -E_5$. So $-\alpha' = -\min E'_i = \max(-E'_i) = \max E_i = \beta$.

Hence (5) is just the right side of (4). This concludes the proof.

Corollary. With the same condition of Theorem A we have

$$\tilde{\alpha} < \mathbf{ReAB} < \tilde{\beta}$$

where α and β are the least and greatest of $\tilde{E}_i(1 \le j \le 5)$ given by

$$\tilde{E}_1 = MN,$$
 $\tilde{E}_2 = Mn,$ $\tilde{E}_3 = mN,$ $\tilde{E}_4 = mn,$ $\tilde{E}_5 = \frac{16MNmn - (M-m)^2(N-n)^2}{8(M+m)(N+n)}$.

Proof. According to [1] we can translate (1) to (3) in the case of selfadjoint if we take

$$a = \frac{M+m}{2}, b = \frac{M-m}{2}, c = \frac{N+n}{2}, d = \frac{N-n}{2}$$
.

Then it follows with a simple computation from the main theorem.

The above corollary is the generalization of Strang's result.

I wish to thank the referee for many useful suggestions.

References

- 1. W.G.Strang, Eigenvalues of Jordan product, Amer. Math. Mon., 69 (1962) 37-40.
- 2. J.I. Fujii, et al., Strang's inequality, Math. Japon., 37 (1992)479-486.

Department of Mathematics, National University of Defence Technology, Changsha 410073, People's Republic of China