NON-LIPSCHITZ FUNCTIONS WHICH OPERATE ON FUNCTION SPACES

OSAMU HATORI

Received May 20, 1997; revised December 16, 1997

Abstract

Sufficient conditions for non-Lipschitz functions to operate only in the space of all continuous functions among weakly normal real Banach function spaces. If the operating function h does not satisfy the conditions, then the both cases can occur: h operates only in the space of all continuous functions; there exsits a non-trivial normal real Banach function space on which h operates.

Introduction. In this paper we consider the question "Une fonction non Lipschitzienne peutelle opérer sur un espace de Banach de fonctions non trivial?" posed by A. Bernard [2]. There are non-Lipschitz functions which operate in non-trivial real Banach function spaces. We give a sufficient condition for those functions which cannot operate in them. By a real Banach function space on a compact Hausdorff space X we mean a linear subspace E of $C_{R}(X)$, the space of all real-valued continuous functions on X, which contains constant functions, separates the different points of X and is a Banach space in a norm $\|\cdot\|_{E}$ which dominates the uniform norm $\|\cdot\|_{\infty(X)}$ on X and is normalized so that $\|1\|_{E}=1$. The space E is said to be non-trivial if $E \neq C_{R}(X)$. We say that a real Banach function space E is weakly normal if for every pair of disjoint compact subsets K_{0} and K_{1} of X, there exists a function $f \in E$ such that $f=0$ on K_{0} and $f=1$ on K_{1}. We say that E is normal if for every pair of disjoint compact subsets K_{0} and K_{1} of X and $g \in E$, there exists a function $f \in E$ such that $f=0$ on K_{0} and $f=g$ on K_{1}. We say that E satisfies the condition $(*)$ if for every point x_{0} in X, there exist a compact neighborhood G_{0} of x_{0}, an infinite number of points $\left\{x_{\alpha}\right\}$ in X, compact neighborhood G_{α} of each x_{α} with $G_{0} \cap G_{\alpha}=\emptyset$ and a homeomorphism π_{α} from G_{0} onto G_{α} such that $E\left|G_{0}=E\right| G_{\alpha} \circ \pi_{\alpha}$. If $A_{\mathbb{R}}(\mathbb{T})$ is the space of all real-valued functions in the Wiener algebra $A(\mathbb{T})$, then $A_{\mathbb{R}}(\mathbb{T})$ is a non-trivial real Banach function space on \mathbb{T} and satisfies the condition $(*)$. The real part of the disk algebra on the unit disk also satisfies the condition $(*)$.

Let φ be a real valued function defined on an interval I. We say that φ operates in E if $\varphi \circ f$ is in E for every $f \in E$ with $f(X) \subset I$. de Leeuw and Katznelson [3] showed that if a non-trivial real Banach function space E on X is uniformly closed, then only affine functions operate on E, which is a generalization of the Stone-Weierstrass theorem. It is not the case for non-uniformly closed spaces: by a theorem of Wiener and Levy [8, p. 138] every real-valued real-analytic function operates on $A_{\mathbb{R}}(\mathbb{T})$. On the other hand by a theorem of Katznelson [6] we see that if φ is a real-valued continuous function which is not real-analytic, then φ never operates in $A_{\mathbb{R}}(\mathbb{T})$. In general, if E is a non-trivial real Banach function space, then there exists a fucntion which does not operate in E. Although the study of these functions is still far from beeing satisfactory, Katznelson's square root theorem is

[^0]well-known: the function \sqrt{t} on $[0,1)$ never operates on a non-trivial real Banach function algebra (cf. $[2,4,5]$). One might conjecture that non-Lipschitz functions never operate on non-trivial E. We showed that it is the case for certain real Banach function spaces. We can prove the following theorem in a way similar to the proof of [5, Proposition 25].

Theorem 0.1. Suppose that E is a non-trivial normal real Banach function space which satisfies the condition $(*)$. Suppose also that φ is a real-valued function defined on the open interval $(-1,1)$. If φ operates in E, then φ satisfies the Lipschitz condition on every compact subset of $(-1,1)$.

Let h be a real-valued function defined on the open interval $(-1,1)$. Suppose that h does not satisfy the Lipschitz condition on a comapct subset K of (-1, 1), i.e.,

$$
\sup \{|h(t)-h(s)| /|t-s|: t, s \in K, t \neq s\}=\infty
$$

We consider two cases: i)for every $t_{0} \in(-1,1)$,

$$
\varlimsup_{s \rightarrow t_{0}}\left|h\left(t_{0}\right)-h(s)\right| /\left|t_{0}-s\right|<\infty ;
$$

ii) there exists a $t_{0} \in(-1,1)$ such that

$$
\varlimsup_{s \rightarrow t_{0}}\left|h\left(t_{0}\right)-h(s)\right| /\left|t_{0}-s\right|=\infty .
$$

Put

$$
E=\left\{f \in C_{R}\left(\mathbb{N}_{\infty}\right): \sum_{n=1}^{\infty}|f(n)-f(\infty)|<\infty\right\}
$$

where $\mathbb{N}_{\infty}=\mathbb{N} \cup\{\infty\}$ is the one point compactification of the space of all positive integers \mathbb{N}. Then E is a non-trivial normal real Banach function space on \mathbb{N}_{∞} with the norm $\|f\|_{E}=\sum_{n=1}^{\infty}|f(n)-f(\infty)|+|f(\infty)|$. It is easy to see that if h satisfies the condition i) above, then h operates in E. Thus our problem is to consider whether a real valued function on $(-1,1)$ which satisfies the condition ii) above can operate on a non-trivial real Banach function space or not.

Systematic study of operating non-Lipschitz functions by using an ultraseparation argument, which is originated by Bernard [1], has just begun recently and we believe it is a powerful tool to attack the problem involving operating functions. We proved that the Cantor function and t^{p} on $[0,1)$ for a p with $0<p<1$ never operate in a non-trivial $E[4,5]$. Similar results were obtained independently by Bernard [2]. We also proved the following $[4,5]$.

Theorem 0.2. If φ is a real-valued function on $(-1,1)$ such that $(\varphi(t)-\varphi(0)) / t \rightarrow \infty$ as $t \rightarrow+0$, then φ never operates in a non-trivial weakly normal real Banach function space.

In the same way as in the proof of Proposition 24 in [5] we see that there is a non-Lipschitz function which does operate on a non-trivial real Banach function space.

Theorem 0.3. Let $X=\mathbb{N}_{\infty}$ and

$$
E=\left\{f \in C_{R}(X): \sum_{n=1}^{\infty}|f(n)-f(\infty)| M_{n}<\infty\right\}
$$

where $M_{n}=2^{n^{2}}$. Then E is a non-trivial normal real Banach function space on X. Let φ be a continuous function defined on the interval $(-1,1)$ such that

$$
\varphi(t)= \begin{cases}0 & \text { if } t \in(-1,0] \cup\left[\frac{1}{2}, 1\right) \cup\left(\bigcup_{n=1}^{\infty}\left(\frac{1}{M_{n+1}-1}, \frac{1}{M_{n}}\right)\right) \\ c_{n}\left(t-\frac{1}{M_{n+1}}\right) & \text { if } \frac{1}{M_{n+1}} \leq t \leq \frac{1}{2 M_{n+1}}+\frac{1}{2\left(M_{n+1}-1\right)} \\ -c_{n}\left(t-\frac{1}{M_{n+1}-1}\right) & \text { if } \frac{1}{2 M_{n+1}}+\frac{1}{2\left(M_{n+1}-1\right)} \leq t \leq \frac{1}{M_{n+1}-1}\end{cases}
$$

where we denote $c_{n}=\frac{2^{-\left(n^{2}+n-1\right)}}{-\left(M_{n+1}\right)^{-1}+\left(M_{n+1}-1\right)^{-1}}$. Then $t_{n}=\left(1 / M_{n+1}+1 /\left(M_{n+1}-1\right)\right) / 2 \rightarrow 0$ and $\varphi\left(t_{n}\right) / t_{n} \rightarrow \infty$ and φ operates in E.

We may say that t_{n} in Theorem 0.3 rapidly converges to 0 in the sense that $t_{n+1} / t_{n} \rightarrow 0$ as $n \rightarrow \infty$. In this paper we consider the intermediate case of the above two theorems, that is, we consider the case where there exists a slowly decreasing sequence $\left\{t_{n}\right\}$ with $\left(\varphi\left(t_{n}\right)-\varphi(0)\right) / t_{n} \rightarrow \infty$. The proofs in this paper implicitly and heavily depend on an ultraseparation argument.

1. Sufficient conditions for $E=C_{R}(X)$. We say that a subset S of X is a uniqueness set for a real Banach function space E if $f=0$ on S implies that $f=0$ on X for $f \in E$.

Lemma 1.1. Let B be a real Banach function space on a compact Hausdorff space K. Let $\left\{\mu_{n}\right\}$ be a sequence of positive real numbers and $\left\{f_{n}\right\}$ a sequence of functions in B. Let S be a subset of K which is a uniqueness set for B. Suppose that for every sequence $\left\{a_{n}\right\}$ of non-negative real numbers such that $\sum_{n=1}^{\infty} a_{n} \mu_{n}<\infty$, there exists a function $f \in B$ such that $\sum_{n=1}^{\infty} a_{n} f_{n}$ converges pointwisely on S to f. Then there exists a positive real number Msuch that the inequality

$$
\left\|f_{n}\right\|_{B} \leq M \mu_{n}
$$

holds for every positive integer n.
Proof. First we consider the case where $\mu_{n}=1$ for every $n \in \mathbb{N}$. The corresponding function $f \in B$ for each sequence $\left\{a_{n}\right\}$ of non-negative real numbers with $\sum a_{n}<\infty$ is unique since S is a uniqueness set and $\sum_{n=1}^{\infty} a_{n} f_{n}(y)=f(y)$ for every $y \in S$. Put $T\left(\left\{a_{n}\right\}\right)=f$. Then T can be extended in a way natural as a linear operator on the usual Banaach space ℓ^{1} of all sequences of complex numbers $\left\{c_{n}\right\}$ such that $\sum\left|c_{n}\right|<\infty$ to B. It is easy to see that

$$
T\left(\left\{c_{n}\right\}\right)(y)=\sum_{n=1}^{\infty} c_{n} f_{n}(y)
$$

holds for every $\left\{c_{n}\right\} \in \ell^{1}$ and every $y \in S$. We show that T is bounded. If we prove it, it will follow that

$$
\left\|f_{n}\right\|_{E} \leq\|T\|
$$

holds for every $n \in \mathbb{N}$ since $T\left(\left\{\delta_{m n}\right\}_{m=1}^{\infty}\right)=f_{n}$. First we show that $\left\{f_{n}(y)\right\}$ is a bounded sequence for each $y \in S$. Suppose not. Then, for every $m \in \mathbb{N}$, there exists $n(m)$ such that $\left|f_{n(m)}(y)\right| \geq m^{2}$. Put

$$
a_{n}=\left\{\begin{array}{cl}
\frac{1}{m^{2}}, & n=n(m) \\
0, & \text { otherwise }
\end{array}\right.
$$

Then $\left\{a_{n}\right\} \in \ell^{1}$ and $\sum_{n=1}^{\infty} a_{n} f_{n}(y)$ diverges since $\left|a_{n(m)} f_{n(m)}\right| \geq 1$ for every m, a contradiction. Suppose that $\left\{c_{n}^{(k)}\right\}_{n=1}^{\infty} \in \ell^{1}$ converges to $\left\{c_{n}\right\} \in \ell^{1}$ and $T\left(\left\{c_{n}^{(k)}\right\}\right)$ converges in
B to a function $F \in B$. If we show that $F=T\left(\left\{c_{n}\right\}\right)$, it will follow by the closed graph theorem that T is bounded. Let $y \in S$. Since $\|\cdot\|_{\infty(S)} \leq\|\cdot\|_{B}$, we have

$$
\left|\sum_{n=1}^{\infty} c_{n}^{(k)} f_{n}(y)-F(y)\right| \leq\left\|T\left(\left\{c_{n}^{(k)}\right\}\right)-F\right\|_{B} \rightarrow 0
$$

as $k \rightarrow \infty$. We also have

$$
\left|\sum_{n=1}^{\infty} c_{n}^{(k)} f_{n}(y)-\sum_{n=1}^{\infty} c_{n} f_{n}(y)\right| \rightarrow 0
$$

as $k \rightarrow \infty$ since $\left\{f_{n}(y)\right\}$ is bounded and $\left\{c_{n}^{(k)}\right\} \rightarrow\left\{c_{n}\right\}$ in ℓ^{1}. Henceforce we see that the equality

$$
F(y)=\sum_{n=1}^{\infty} c_{n} f_{n}(y)=T\left(\left\{c_{n}\right\}\right)(y)
$$

holds for every $y \in S$, thus we have

$$
F=T\left(\left\{c_{n}\right\}\right)
$$

since S is a uniquness set for B. We have proven that T is bounded.
Next we consider the general case. Put

$$
g_{n}=f_{n} / \mu_{n}
$$

Then for every $\left\{c_{n}\right\} \in \ell^{1}$ with $c_{n} \geq 0$, we have

$$
\sum_{n=1}^{\infty} d_{n} \mu_{n}<\infty
$$

where $d_{n}=c_{n} / \mu_{n}$. Then by the condition there exists a function $f \in E$ such that $\sum_{n=1}^{\infty} d_{n} f_{n}$ converges pointwisely on S to f, hence $\sum_{n=1}^{\infty} c_{n} g_{n}$ converges pointwisely to f. It follows by the first part of the proof that there exists a positive real number M such that the inequality

$$
\left\|g_{n}\right\| \leq M
$$

holds for every $n \in \mathbb{N}$, henceforce

$$
\left\|f_{n}\right\|_{E} \leq M \mu_{n}
$$

holds for every $n \in \mathbb{N}$.
The function φ in Theorem 0.3 satisfies $t_{n+1} / t_{n} \rightarrow 0$ and $\varphi\left(t_{n+1}\right) / t_{n} \rightarrow 0$ as $n \rightarrow \infty$. We consider operating functions which does not satisfy these properties.

Theorem 1.2. Let E be a weakly normal real Banach function space on a compact Hausdorff space X. Suppose that h is a real-valued function defined on the open interval $(-1,1)$ such that $h(0)=0$. Suppose also that there exists a strictly decreasing sequence $\left\{t_{n}\right\}$ of positive real numbers such that $t_{n} \rightarrow 0$ as $n \rightarrow \infty$ which satisfies $\lim _{n \rightarrow \infty} h\left(t_{n+1}\right) / t_{n}=\infty$. If h operates in E, then $E=C_{R}(X)$.

Proof. Suppose that X is a finite set. Then we have $E=C_{R}(X)$ since E is weakly normal. So we consider the case where X is infinite. In the same way as in the first part of the proof of Theorem 1 in [4] we see that h is continuous on $(-1,1)$.

Suppose that $E \neq C_{R}(X)$. Then by Theorem 9 in [5] or Théorèm 3 in [2], there exists $x \in X$ such that $E \mid G \neq C_{R}(G)$ holds for every compact neighborhood G of x since h is non-affine and continuous on $(-1,1)$. Let $E_{x}=\{u \in E: u(x)=0\}$. Then by Lemma 27 in
[5] there are two sequences $\left\{G_{0}^{(n)}\right\}_{n=1}^{\infty}$ and $\left\{G_{1}^{(n)}\right\}_{n=1}^{\infty}$ of compact subsets of $X \backslash\{x\}$ which satisfy that

$$
G_{\alpha}^{(n)} \cap\left(\overline{\bigcup_{(\beta, m) \neq(\alpha, n)} G_{\beta}^{(m)}}\right)=\emptyset
$$

for every $(\alpha, n) \in\{0,1\} \times \mathbb{N}$ and that for evey $n \in \mathbb{N}$ a function $u \in E_{x}$ with $u \geq 1$ on $G_{1}^{(n)}$ and $u \leq 0$ on $G_{0}^{(n)}$ implies that $\|u\|_{E}>n$, where ${ }^{-}$denotes the closure in X. For $n \in \mathbb{N}$ put

$$
\begin{aligned}
& M_{n}=\inf \left\{\|u\|_{E}: u \in E_{x}, u=1 \text { on } G_{1}^{(n)}\right. \\
& \left.\qquad u=0 \text { on } G_{\beta}^{(m)} \text { for every }(\beta, m) \in\{0,1\} \times \mathbb{N} \text { with }(\beta, m) \neq(1, n)\right\} .
\end{aligned}
$$

Since E is weakly normal, we see that $n \leq M_{n}<\infty$. Put $\alpha_{n}=h\left(t_{n}\right) / t_{n-1}$ for $n \geq 2$. Since $\alpha_{n} \rightarrow \infty$ as $n \rightarrow \infty$, for every $n \in \mathbb{N}$ there exists $k(n) \in \mathbb{N}$ such that

$$
\alpha_{k}>n 2^{n+1}
$$

holds for every $k \geq k(n)$. Then there exists $l(n) \in \mathbb{N}$ such that

$$
M_{l(n)} t_{k(n)} 2^{n+1}>1
$$

since $M_{n} \rightarrow \infty$ as $n \rightarrow \infty$. We may suppose that $l(n)<l(n+1)$. Then there exists $m(n) \in \mathbb{N}$ such that

$$
t_{m(n)}<\left(2^{n+1} M_{l(n)}\right)^{-1} \leq t_{m(n)-1}
$$

We have $m(n)>k(n)$ for every $n \in \mathbb{N}$ since $\left(2^{n+1} M_{l(n)}\right)^{-1}<t_{k(n)}$. So we see that

$$
\alpha_{m(n)}>n 2^{n+1}
$$

Let

$$
K=\{x\} \cup\left(\overline{\bigcup G_{\alpha}^{(m)}}\right), S=\{x\} \cup\left(\bigcup G_{\alpha}^{(m)}\right)
$$

where (α, m) varies through $\{0,1\} \times \mathbb{N}$. Then S is a uniqueness set for a real Banach function space $B=E \mid K$ on K. Note that $E \mid K=\{u \mid K: u \in E\}$ is a real Banach function space with the quotient norm $\|\cdot\|_{E \mid K}$, where $\|u \mid K\|_{E \mid K}=\inf \left\{\|v\|_{E}: v|K=u| K, v \in E\right\}$. By the definition of $M_{l(n)}$, there exists $u_{l(n)} \in E_{x}$, for every n, such that

$$
u_{l(n)}= \begin{cases}1, & \text { on } G_{1}^{(l(n))} \\ 0, & \text { on } \bigcup_{(\beta, m) \neq(1, l(n))} G_{\beta}^{(m)},\end{cases}
$$

and $\left\|u_{l(n)}\right\|_{E}<2 M_{l(n)}$. We see that

$$
M_{l(n)} \leq\left\|u_{l(n)} \mid K\right\|_{E \mid K}
$$

by the definition of the quotient norm. For every $n \in \mathbb{N}$, put a positive real number

$$
\mu_{n}=\left(2^{n+1} M_{l(n)}\right) / \alpha_{m(n)} .
$$

Let

$$
f_{n}=u_{l(n)} \mid K
$$

for every $n \in \mathbb{N}$. For every sequence $\left\{a_{n}\right\}$ of non-negative real numbers such that

$$
\sum a_{n} \mu_{n}<\infty
$$

we show that there exists a function in $f \in B$ and $\sum_{n=1}^{\infty} a_{n} f_{n}$ converges pointwisely on S to the function f. Choose a sufficiently large D such that

$$
\sum_{n=1}^{\infty} a_{n} \mu_{n} / D<1
$$

Since every $a_{n} \mu_{n} / D$ is non-negative, we have $a_{n} / D<1 / \mu_{n}$, hence

$$
0 \leq a_{n} / D<\alpha_{m(n)}\left(M_{l(n)} 2^{n+1}\right)^{-1} \leq \alpha_{m(n)} t_{m(n)-1}=h\left(t_{m(n)}\right)
$$

By the intermediate value theorem for continuous functions, there exists $0 \leq s_{n}<t_{m(n)}$ such that $h\left(s_{n}\right)=a_{n} / D$. Since $\left\|s_{n} u_{l(n)}\right\|_{E} \leq 2 M_{l(n)} t_{m(n)}<1 / 2^{n}$, the series $\sum_{n=1}^{\infty} s_{n} u_{l(n)}$ converges in E, say g. Since $\|\cdot\|_{E}$ dominates $\|\cdot\|_{\infty(X)}, \sum_{n=1}^{\infty} s_{n} u_{l(n)}$ also converges uniformly on X to g and $g(X) \subset(-1,1)$, so $h \circ g$ is a function in E. Then $f=D \cdot(h \circ g) \mid K$ is the desired function. Let $y \in S$. Then $y=x$ or $y \in G_{\alpha}^{(m)}$ for some $(\alpha, m) \in\{0,1\} \times \mathbb{N}$. If $y=x$, then $\sum_{n=1}^{\infty} a_{n} f_{n}(x)=0=f(x)$ since $f_{n}(x)=0$ and $h(0)=0$. If $y \in G_{\alpha}^{(m)}$ for $m \in \mathbb{N} \backslash\{l(n)\}_{n=1}^{\infty}$, then

$$
\sum_{n=1}^{\infty} a_{n} f_{n}(y)=0=f(y)
$$

If $y \in G_{\alpha}^{(l(n))}$ for some $n \in \mathbb{N}$, then

$$
\sum_{n=1}^{\infty} a_{n} f_{n}(y)=a_{n} u_{l(n)}(y)
$$

and

$$
f(y)=D \cdot h\left(\sum_{n=1}^{\infty} s_{n} f_{n}(y)\right)=a_{n} u_{l(n)}(y)
$$

Thus we have

$$
f(y)=\sum_{n=1}^{\infty} a_{n} f_{n}(y)
$$

for every $y \in S$. We have proved that $\sum_{n=1}^{\infty} a_{n} f_{n}$ converges pointwisely on S to f. It follows by Lemma 1.1 that there exists a poisitive real number M such that the inequality

$$
\left\|u_{l(n)} \mid K\right\|_{E \mid K} \leq M \mu_{n}
$$

holds for every $n \in \mathbb{N}$. Thus we see that

$$
M_{l(n)} \leq M \cdot 2^{n+1} M_{l(n)} / \alpha_{m(n)}
$$

so

$$
\alpha_{m(n)} 2^{-(n+1)} \leq M
$$

holds for every $n \in \mathbb{N}$, which is a contradiction since

$$
\alpha_{m(n)}>2^{n+1} n
$$

holds for every $n \in \mathbb{N}$.
Corollary 1.3. Let E be a weakly normal real Banach function space on a compact Hausdorff space X. Suppose that h is a real-valued function defined on the open interval $(-1,1)$ such that $h(0)=0$. Suppose also that there exists a strictly decreasing sequence $\left\{t_{n}\right\}$ of positive real numbers such that $t_{n} \rightarrow 0$ as $n \rightarrow \infty$ which satisfies that $\lim _{n \rightarrow \infty} h\left(t_{n}\right) / t_{n}=\infty$ and $\inf \left\{t_{n+1} / t_{n}\right\}>0$. If h operates in E, then $E=C_{R}(X)$.

Proof. Put $\delta=\inf \left\{t_{n+1} / t_{n}\right\}$. Then we have

$$
h\left(t_{n+1}\right) / t_{n} \geq \delta h\left(t_{n+1}\right) / t_{n+1} \rightarrow \infty
$$

as $n \rightarrow \infty$, henceforce we see that h satisfies the condition of Theorem 1.2. It follows that $E=C_{R}(X)$.
2. Operating functions with mild conditions. Let h be a real valued-continuous function defined on $(-1,1)$ with $h(0)=0$. For $0 \leq t<1$, put

$$
H(t)=\max \{h(s): 0 \leq s \leq t\}
$$

Then the function h satisfies the condition in Theorem 1.2 if and only if

$$
\lim _{t \rightarrow+0} \frac{H(t)}{t}=\infty
$$

Suppose that there exists a decreasing sequence $\left\{t_{n}\right\}$ of positive real numbers with $t_{n} \rightarrow 0$ such that $\lim _{n \rightarrow \infty} h\left(t_{n+1}\right) / t_{n}=\infty$. For every $t>0$, there exist a positive integer n such that $t_{n+1}<t \leq t_{n}$. Then $h\left(t_{n+1}\right) / t_{n} \leq H(t) / t$, so $H(t) / t \rightarrow \infty$ as $t \rightarrow+0$. Suppose conversely that $H(t) / t \rightarrow \infty$ as $t \rightarrow+0$. Let $t_{1}=1 / 2$. Suppose that $t_{1}, \ldots t_{n}$ are choosen. Then put

$$
t_{n+1}=\inf \left\{t: H(t)=H\left(t_{n} / 2\right)\right\}
$$

By induction we define a sequence $\left\{t_{n}\right\}$. Since H is continuous, we have $H\left(t_{n+1}\right)=H\left(t_{n} / 2\right)$. Then by the definition of t_{n+1}, we see that $h\left(t_{n+1}\right)=H\left(t_{n+1}\right)$. Thus

$$
h\left(t_{n+1}\right) / t_{n}=H\left(t_{n} / 2\right) / t_{n} \rightarrow \infty
$$

as $n \rightarrow \infty$. Thus by Theorem 1.2 we see that, for short, $E=C_{R}(X)$ if $\lim _{t \rightarrow+0} H(t) / t=\infty$.
Next we consider the case that $\lim _{t \rightarrow+0} H(t) / t \neq \infty$. The following examples show that if $\lim _{t \rightarrow+0} H(t) / t>0$, then both two cases are posible.

Example 2.1. Let φ be the function defined in Theorem 0.3. Put

$$
h(t)= \begin{cases}\varphi(t)+2 t, & 0 \leq t<1 \\ 0, & -1<t<0\end{cases}
$$

Then $\varlimsup_{t \rightarrow+0} \frac{H(t)}{t}=\infty$ and $\underline{\lim }_{t \rightarrow 0} \frac{H(t)}{t}=2$. We also see that h operates in the space E defined in Theorem 0.3, that is, h operates in a non-trivial real Banach function space.

Example 2.2. Put a decreasing sequence $\left\{t_{n}\right\}$ defined inductively by $t_{0}=1 / 2, t_{n+1}=$ $t_{n} /(n+2)$ and put

$$
h(t)= \begin{cases}1 / 2, & 1 / 4 \leq t<1 \\ t_{n}, & t_{n+1} \leq t<t_{n} / 2 \\ \frac{2\left(t_{n-1}-t_{n}\right)}{t_{n}} t-t_{n-1}+2 t_{n}, & t_{n} / 2 \leq t<t_{n} \\ 0, & -1<t<0\end{cases}
$$

Then $\varlimsup_{t \rightarrow+0} \frac{H(t)}{t}=\infty$ and $\varliminf_{t \rightarrow 0} \frac{H(t)}{t}=2$. Suppose that h operates in a weakly normal real Banach function space E on a compact Hausdorff space X. Then $h \circ h$ also opertates in E. It follows by Theorem 1.2 that $E=C_{R}(X)$ since

$$
h \circ h\left(t_{n+1}\right) / t_{n}=t_{n-1} / t_{n} \rightarrow \infty
$$

as $n \rightarrow \infty$.

We consider the case where $\varliminf_{t \rightarrow+0} \frac{H(t)}{t}=0$. For $0 \leq t<1$, put

$$
\widetilde{H}(t)=\max \{|h(s)|: 0 \leq s \leq t\}
$$

for a real-valued continuous function h on $(-1,1)$.
Theorem 2.3. Let h be a real-valued continuous function defined on the open interval $(-1,1)$ with $h(0)=0$. Suppose that $\varlimsup_{t \rightarrow t_{0}}\left|h(t)-h\left(t_{0}\right)\right| /\left|t-t_{0}\right|<\infty$ for every $t_{0} \in$ $(-1,1) \backslash\{0\}$ and $\overline{\lim }_{t \rightarrow-0}|h(t) / t|<\infty$. Suppose also that $\underline{\lim }_{t \rightarrow+0} \widetilde{H}(t) / t=0$. Then there exists a non-trivial normal real Banach function space E in which h operates.
Proof. Since $\underline{\lim }_{t \rightarrow+0} \widetilde{H}(t) / t=0$, there exists a decreasing sequence $\left\{t_{n}\right\}$ of positive real numbers such that $\widetilde{H}\left(t_{n}\right) / t_{n}<2^{-n}$. Let $\mathbb{N}_{\infty}=\mathbb{N} \cup\{\infty\}$ be the one point compactification of the space of all positive integers. Put

$$
E=\left\{f \in C_{R}\left(\mathbb{N}_{\infty}\right): \sum_{n=1}^{\infty}|f(n)-f(0)| / t_{n}<\infty\right\}
$$

Then E is a non-trivial normal real Banach function space on \mathbb{N}_{∞} with the norm $\|f\|_{E}=$ $\sum_{n=1}^{\infty}|f(n)-f(\infty)| / t_{n}+|f(\infty)|$. We show that h operates in E. Suppose that $f \in E$ with $f\left(\mathbb{N}_{\infty}\right) \subset(-1,1)$. If $f(\infty) \neq 0$, then by the condition there exists $c>0$ such that $|h(t)-h(f(\infty))| \leq c|t-f(\infty)|$ for t near $f(\infty)$, so $\sum_{n=1}^{\infty}|h \circ f(n)-h \circ f(\infty)| / t_{n}<\infty$, that is, $h \circ f \in E$. Suppose that $f(\infty)=0$. Since $\varlimsup_{t \rightarrow-0}|h(t) / t|<\infty$, there exists $c^{\prime}>0$ such that $|h(t)| \leq c^{\prime}|t|$ holds if $-t_{1} \leq t \leq 0$. For a sufficiently large n, we have $|f(n)|<t_{n}$ since $f \in E$. If $f(n)<0$, then $|h \circ f(n)| \leq c^{\prime}|f(n)|$. If $f(n)>0$, then $|h \circ f(n)| \leq \widetilde{H}(f(n)) \leq 2^{-n} t_{n}$. It follows that $\sum_{n=1}^{\infty}|h \circ f(n)| / t_{n}<\infty$, that is, $h \circ f \in E$.

Note that the function φ in Theorem 0.3 satisfies the condition of h in Theorem 2.3.

References

1. A. Bernard, Espaces des parties réelles des éléments d'une algèbre de Banach de fonctions, Jour. Funct. Anal. 10(1972), 387-409
2. A. Bernard, Une fonction non Lipschitzienne peutelle opérer sur un espace de Banach de fonctions non trivial? Jour. Funct. Anal. 122 (1994), 451-477
3. K. de Leeuw and Y. Katznelson, Functions that operate on non-self-adjoint algebras, Jour. d'Anal. Math. 11 (1963), 207-219
4. O. Hatori, Symbolic calculus on a Banach algerba of continuous functions, Jour. Funct. Anal. 115 (1993), 247-280
5. O. Hatori, Separation properties and operating functions on a space of continuous functions, Internat. Jour. Math. 4(1993), 551-600
6. Y. Katznelson, Sur les fonctions opérant sur l'algèbre des séries de Fourier absolument convergentes, C. R. Acad. Sci. Paris 247(1958), 404-406
7. Y. Katznelson, A characerization of all continuous functions on a compact Hausdorff space, Bull. Amer. Math. Soc. 66(1960), 313-315
8. W. Rudin, Fourier Analysis on Groups, Interscience Publishers, New York 1962

Department of Mathematical Sciences, Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-no-chou, Niggata $950-21$, Japan

[^0]: 1991 Mathematics Subject Classification. Primary 46E15; Secondary 46J10.
 Key words and phrases. non-Lipschitz functions, ultraseparation, operating functions.
 The author was patially supported by the Grants-in Aid for Scientific Research, the Ministry of Education, Science and Culture, Japan

