
Scientiae Mathematicae Vol. 1, No. 1(1998), 7{14 7

NON-LIPSCHITZ FUNCTIONS WHICH OPERATE ON

FUNCTION SPACES
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Abstract. Su�cient conditions for non-Lipschitz functions to operate only in the space

of all continuous functions among weakly normal real Banach function spaces. If the

operating function h does not satisfy the conditions, then the both cases can occur:h

operates only in the space of all continuous functions; there exsits a non-trivial normal

real Banach function space on which h operates.

Introduction. In this paper we consider the question "Une fonction non Lipschitzienne
peutelle op�erer sur un espace de Banach de fonctions non trivial?" posed by A. Bernard [2].
There are non-Lipschitz functions which operate in non-trivial real Banach function spaces.

We give a su�cient condition for those functions which cannot operate in them. By a real
Banach function space on a compact Hausdor� space X we mean a linear subspace E of

CR(X), the space of all real-valued continuous functions on X, which contains constant
functions, separates the di�erent points of X and is a Banach space in a norm k � kE which
dominates the uniform norm k � k1(X) on X and is normalized so that k1kE = 1. The space

E is said to be non-trivial if E 6= CR(X). We say that a real Banach function space E is
weakly normal if for every pair of disjoint compact subsets K0 and K1 of X, there exists a

function f 2 E such that f = 0 on K0 and f = 1 on K1. We say that E is normal if for
every pair of disjoint compact subsets K0 and K1 of X and g 2 E, there exists a function

f 2 E such that f = 0 on K0 and f = g on K1. We say that E satis�es the condition
(�) if for every point x0 in X, there exist a compact neighborhood G0 of x0, an in�nite
number of points fx�g in X, compact neighborhood G� of each x� with G0 \G� = ; and
a homeomorphism �� from G0 onto G� such that EjG0 = EjG� � ��. If AR (T) is the
space of all real-valued functions in the Wiener algebra A(T), then AR (T) is a non-trivial

real Banach function space on T and satis�es the condition (�). The real part of the disk
algebra on the unit disk also satis�es the condition (�).

Let ' be a real valued function de�ned on an interval I. We say that ' operates in E

if ' � f is in E for every f 2 E with f(X) � I. de Leeuw and Katznelson [3] showed that
if a non-trivial real Banach function space E on X is uniformly closed, then only a�ne

functions operate on E, which is a generalization of the Stone-Weierstrass theorem. It
is not the case for non-uniformly closed spaces: by a theorem of Wiener and Levy [8, p.

138] every real-valued real-analytic function operates on AR (T). On the other hand by a
theorem of Katznelson [6] we see that if ' is a real-valued continuous function which is not
real-analytic, then ' never operates in AR (T). In general, if E is a non-trivial real Banach

function space, then there exists a fucntion which does not operate in E. Although the study
of these functions is still far from beeing satisfactory, Katznelson's square root theorem is
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well-known: the function
p
t on [0; 1) never operates on a non-trivial real Banach function

algebra (cf. [2, 4, 5]). One might conjecture that non-Lipschitz functions never operate on
non-trivial E. We showed that it is the case for certain real Banach function spaces. We
can prove the following theorem in a way similar to the proof of [5, Proposition 25].

Theorem 0.1. Suppose that E is a non-trivial normal real Banach function space which

satis�es the condition (�). Suppose also that ' is a real-valued function de�ned on the

open interval (�1; 1). If ' operates in E, then ' satis�es the Lipschitz condition on every

compact subset of (�1; 1).

Let h be a real-valued function de�ned on the open interval (�1; 1). Suppose that h does
not satisfy the Lipschitz condition on a comapct subset K of (�1; 1), i.e.,

supfjh(t)� h(s)j=jt� sj : t; s 2 K; t 6= sg =1:

We consider two cases: i)for every t0 2 (�1; 1),

lim s!t0 jh(t0)� h(s)j=jt0 � sj <1;

ii) there exists a t0 2 (�1; 1) such that

lim s!t0 jh(t0)� h(s)j=jt0 � sj =1:

Put

E = ff 2 CR(N1) :

1X
n=1

jf(n)� f(1)j <1g;

where N1 = N [ f1g is the one point compacti�cation of the space of all positive integers

N. Then E is a non-trivial normal real Banach function space on N1 with the norm
kfkE =

P1
n=1 jf(n) � f(1)j + jf(1)j. It is easy to see that if h satis�es the condition i)

above, then h operates in E. Thus our problem is to consider whether a real valued function
on (�1; 1) which satis�es the condition ii) above can operate on a non-trivial real Banach

function space or not.

Systematic study of operating non-Lipschitz functions by using an ultraseparation ar-
gument, which is originated by Bernard [1], has just begun recently and we believe it is

a powerful tool to attack the problem involving operating functions. We proved that the
Cantor function and tp on [0; 1) for a p with 0 < p < 1 never operate in a non-trivial

E [4, 5]. Similar results were obtained independently by Bernard [2]. We also proved the
following [4, 5].

Theorem 0.2. If ' is a real-valued function on (�1; 1) such that ('(t)� '(0))=t!1 as

t! +0, then ' never operates in a non-trivial weakly normal real Banach function space.

In the same way as in the proof of Proposition 24 in [5] we see that there is a non-Lipschitz
function which does operate on a non-trivial real Banach function space.

Theorem 0.3. Let X = N1 and

E = ff 2 CR(X) :

1X
n=1

jf(n)� f(1)jMn <1g;
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where Mn = 2n
2

. Then E is a non-trivial normal real Banach function space on X. Let '

be a continuous function de�ned on the interval (�1; 1) such that

'(t) =

8>><>>:
0 if t 2 (�1; 0] [ [ 1

2
; 1) [

�S1
n=1(

1
M
n+1�1

; 1
M
n

)
�

cn(t� 1
M
n+1

) if 1
M
n+1

� t � 1
2M

n+1
+ 1

2(M
n+1�1)

�cn(t� 1
M
n+1�1

) if 1
2M

n+1
+ 1

2(M
n+1�1)

� t � 1
M
n+1�1

;

where we denote cn = 2
�(n2+n�1)

�(M
n+1)

�1+(M
n+1�1)�1

. Then tn = (1=Mn+1+ 1=(Mn+1� 1))=2! 0

and '(tn)=tn !1 and ' operates in E.

We may say that tn in Theorem 0.3 rapidly converges to 0 in the sense that tn+1=tn ! 0

as n ! 1. In this paper we consider the intermediate case of the above two theorems,
that is, we consider the case where there exists a slowly decreasing sequence ftng with

('(tn) � '(0))=tn ! 1. The proofs in this paper implicitly and heavily depend on an
ultraseparation argument.

1. Su�cient conditions for E = CR(X). We say that a subset S of X is a uniqueness

set for a real Banach function space E if f = 0 on S implies that f = 0 on X for f 2 E.

Lemma 1.1. Let B be a real Banach function space on a compact Hausdor� space K. Let

f�ng be a sequence of positive real numbers and ffng a sequence of functions in B. Let S

be a subset of K which is a uniqueness set for B. Suppose that for every sequence fang of

non-negative real numbers such that
P1

n=1 an�n < 1, there exists a function f 2 B such

that
P1

n=1 anfn converges pointwisely on S to f . Then there exists a positive real number

Msuch that the inequality

kfnkB �M�n

holds for every positive integer n.

Proof. First we consider the case where �n = 1 for every n 2 N. The corresponding function
f 2 B for each sequence fang of non-negative real numbers with

P
an <1 is unique since

S is a uniqueness set and
P1

n=1 anfn(y) = f(y) for every y 2 S. Put T (fang) = f . Then

T can be extended in a way natural as a linear operator on the usual Banaach space `1 of
all sequences of complex numbers fcng such that

P
jcnj <1 to B. It is easy to see that

T (fcng)(y) =
1X
n=1

cnfn(y)

holds for every fcng 2 `1 and every y 2 S. We show that T is bounded. If we prove it, it

will follow that

kfnkE � kTk
holds for every n 2 N since T (f�mng1m=1) = fn. First we show that ffn(y)g is a bounded

sequence for each y 2 S. Suppose not. Then, for every m 2 N, there exists n(m) such that
jfn(m)(y)j � m2. Put

an =

8<:
1

m2
; n = n(m)

0; otherwise:

Then fang 2 `1 and
P1

n=1 anfn(y) diverges since jan(m)fn(m)j � 1 for every m, a contra-

diction. Suppose that fc(k)n g1n=1 2 `1 converges to fcng 2 `1 and T (fc(k)n g) converges in
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B to a function F 2 B. If we show that F = T (fcng), it will follow by the closed graph

theorem that T is bounded. Let y 2 S. Since k � k1(S) � k � kB , we have

j
1X
n=1

c(k)n fn(y)� F (y)j � kT (fc(k)n g)� FkB ! 0

as k !1. We also have

j
1X
n=1

c(k)n fn(y)�
1X
n=1

cnfn(y)j ! 0

as k ! 1 since ffn(y)g is bounded and fc(k)n g ! fcng in `1. Henceforce we see that the
equality

F (y) =

1X
n=1

cnfn(y) = T (fcng)(y)

holds for every y 2 S, thus we have

F = T (fcng)
since S is a uniquness set for B. We have proven that T is bounded.

Next we consider the general case. Put

gn = fn=�n:

Then for every fcng 2 `1 with cn � 0, we have

1X
n=1

dn�n <1;

where dn = cn=�n. Then by the condition there exists a function f 2 E such thatP1
n=1 dnfn converges pointwisely on S to f , hence

P1
n=1 cngn converges pointwisely to

f . It follows by the �rst part of the proof that there exists a positive real number M such

that the inequality

kgnk �M

holds for every n 2 N, henceforce
kfnkE �M�n

holds for every n 2 N.
The function ' in Theorem 0.3 satis�es tn+1=tn ! 0 and '(tn+1)=tn ! 0 as n ! 1.

We consider operating functions which does not satisfy these properties.

Theorem 1.2. Let E be a weakly normal real Banach function space on a compact Haus-

dor� space X. Suppose that h is a real-valued function de�ned on the open interval (�1; 1)
such that h(0) = 0. Suppose also that there exists a strictly decreasing sequence ftng of

positive real numbers such that tn ! 0 as n!1 which satis�es limn!1 h(tn+1)=tn =1.

If h operates in E, then E = CR(X).

Proof. Suppose that X is a �nite set. Then we have E = CR(X) since E is weakly normal.

So we consider the case where X is in�nite. In the same way as in the �rst part of the proof
of Theorem 1 in [4] we see that h is continuous on (�1; 1).

Suppose that E 6= CR(X). Then by Theorem 9 in [5] or Th�eor�em 3 in [2], there exists
x 2 X such that EjG 6= CR(G) holds for every compact neighborhood G of x since h is

non-a�ne and continuous on (�1; 1). Let Ex = fu 2 E : u(x) = 0g. Then by Lemma 27 in
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[5] there are two sequences fG(n)

0 g1n=1 and fG
(n)

1 g1n=1 of compact subsets of X n fxg which
satisfy that

G(n)
� \ (

[
(�;m)6=(�;n)

G
(m)

� ) = ;

for every (�; n) 2 f0; 1g�N and that for evey n 2 N a function u 2 Ex with u � 1 on G
(n)

1

and u � 0 on G
(n)

0 implies that kukE > n, where �� denotes the closure in X. For n 2 N put

Mn = inffkukE : u 2 Ex, u = 1 on G
(n)

1 ;

u = 0 on G
(m)

� for every (�;m) 2 f0; 1g � N with (�;m) 6= (1; n)g:

Since E is weakly normal, we see that n �Mn <1. Put �n = h(tn)=tn�1 for n � 2. Since

�n !1 as n!1, for every n 2 N there exists k(n) 2 N such that

�k > n2n+1

holds for every k � k(n). Then there exists l(n) 2 N such that

Ml(n)tk(n)2
n+1 > 1

since Mn ! 1 as n ! 1. We may suppose that l(n) < l(n + 1). Then there exists
m(n) 2 N such that

tm(n) < (2n+1Ml(n))
�1 � tm(n)�1:

We have m(n) > k(n) for every n 2 N since (2n+1Ml(n))
�1 < tk(n). So we see that

�m(n) > n2n+1:

Let

K = fxg [ (
[

G
(m)
� ); S = fxg [ (

[
G(m)
� );

where (�;m) varies through f0; 1g�N. Then S is a uniqueness set for a real Banach function
space B = EjK on K. Note that EjK = fujK : u 2 Eg is a real Banach function space

with the quotient norm k � kEjK , where kujKkEjK = inffkvkE : vjK = ujK; v 2 Eg. By
the de�nition of Ml(n), there exists ul(n) 2 Ex, for every n, such that

ul(n) =

8><>:
1; on G

(l(n))

1

0; on
[

(�;m)6=(1;l(n))

G
(m)

� ;

and kul(n)kE < 2Ml(n). We see that

Ml(n) � kul(n)jKkEjK :

by the de�nition of the quotient norm. For every n 2 N, put a positive real number

�n = (2n+1Ml(n))=�m(n):

Let

fn = ul(n)jK
for every n 2 N. For every sequence fang of non-negative real numbers such thatX

an�n <1;
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we show that there exists a function in f 2 B and
P1

n=1 anfn converges pointwisely on S

to the function f . Choose a su�ciently large D such that

1X
n=1

an�n=D < 1:

Since every an�n=D is non-negative, we have an=D < 1=�n, hence

0 � an=D < �m(n)(Ml(n)2
n+1)�1 � �m(n)tm(n)�1 = h(tm(n)):

By the intermediate value theorem for continuous functions, there exists 0 � sn < tm(n)

such that h(sn) = an=D. Since ksnul(n)kE � 2Ml(n)tm(n) < 1=2n, the series
P1

n=1 snul(n)
converges in E, say g. Since k�kE dominates k�k1(X),

P1
n=1 snul(n) also converges uniformly

on X to g and g(X) � (�1; 1), so h � g is a function in E. Then f = D � (h � g)jK is the

desired function. Let y 2 S. Then y = x or y 2 G
(m)
� for some (�;m) 2 f0; 1g � N. If

y = x, then
P1

n=1 anfn(x) = 0 = f(x) since fn(x) = 0 and h(0) = 0. If y 2 G
(m)
� for

m 2 N n fl(n)g1n=1, then
1X
n=1

anfn(y) = 0 = f(y):

If y 2 G
(l(n))
� for some n 2 N, then

1X
n=1

anfn(y) = anul(n)(y)

and

f(y) = D � h(
1X
n=1

snfn(y)) = anul(n)(y):

Thus we have

f(y) =

1X
n=1

anfn(y)

for every y 2 S. We have proved that
P1

n=1 anfn converges pointwisely on S to f . It
follows by Lemma 1.1 that there exists a poisitive real number M such that the inequality

kul(n)jKkEjK �M�n

holds for every n 2 N. Thus we see that

Ml(n) �M � 2n+1Ml(n)=�m(n);

so

�m(n)2
�(n+1) �M

holds for every n 2 N, which is a contradiction since

�m(n) > 2n+1n

holds for every n 2 N.

Corollary 1.3. Let E be a weakly normal real Banach function space on a compact Haus-

dor� space X. Suppose that h is a real-valued function de�ned on the open interval (�1; 1)
such that h(0) = 0. Suppose also that there exists a strictly decreasing sequence ftng of pos-

itive real numbers such that tn ! 0 as n ! 1 which satis�es that limn!1 h(tn)=tn = 1
and infftn+1=tng > 0. If h operates in E, then E = CR(X).
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Proof. Put � = infftn+1=tng. Then we have

h(tn+1)=tn � �h(tn+1)=tn+1 !1

as n! 1, henceforce we see that h satis�es the condition of Theorem 1.2. It follows that
E = CR(X).

2. Operating functions with mild conditions. Let h be a real valued-continuous func-

tion de�ned on (�1; 1) with h(0) = 0. For 0 � t < 1, put

H(t) = maxfh(s) : 0 � s � tg:

Then the function h satis�es the condition in Theorem 1.2 if and only if

lim
t!+0

H(t)

t
=1:

Suppose that there exists a decreasing sequence ftng of positive real numbers with tn ! 0

such that limn!1 h(tn+1)=tn = 1. For every t > 0, there exist a positive integer n such
that tn+1 < t � tn. Then h(tn+1)=tn � H(t)=t, so H(t)=t ! 1 as t ! +0. Suppose
conversely that H(t)=t! 1 as t! +0. Let t1 = 1=2. Suppose that t1; : : : tn are choosen.

Then put

tn+1 = infft : H(t) = H(tn=2)g:
By induction we de�ne a sequence ftng. SinceH is continuous, we haveH(tn+1) = H(tn=2).

Then by the de�nition of tn+1, we see that h(tn+1) = H(tn+1). Thus

h(tn+1)=tn = H(tn=2)=tn !1

as n!1. Thus by Theorem 1.2 we see that, for short, E = CR(X) if limt!+0H(t)=t =1.

Next we consider the case that limt!+0H(t)=t 6=1. The following examples show that

if lim t!+0H(t)=t > 0, then both two cases are posible.

Example 2.1. Let ' be the function de�ned in Theorem 0.3. Put

h(t) =

(
'(t) + 2t; 0 � t < 1

0; �1 < t < 0:

Then lim t!+0
H(t)

t
= 1 and lim t!0

H(t)

t
= 2. We also see that h operates in the space E

de�ned in Theorem 0.3, that is, h operates in a non-trivial real Banach function space.

Example 2.2. Put a decreasing sequence ftng de�ned inductively by t0 = 1=2, tn+1 =
tn=(n+ 2) and put

h(t) =

8>>><>>>:
1=2; 1=4 � t < 1

tn; tn+1 � t < tn=2
2(tn�1�tn)

tn
t� tn�1 + 2tn; tn=2 � t < tn

0; �1 < t < 0:

Then lim t!+0
H(t)

t
= 1 and lim t!0

H(t)

t
= 2. Suppose that h operates in a weakly normal

real Banach function space E on a compact Hausdor� space X. Then h � h also opertates

in E. It follows by Theorem 1.2 that E = CR(X) since

h � h(tn+1)=tn = tn�1=tn !1

as n!1.
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We consider the case where lim t!+0
H(t)

t
= 0. For 0 � t < 1, puteH(t) = maxfjh(s)j : 0 � s � tg

for a real-valued continuous function h on (�1; 1).
Theorem 2.3. Let h be a real-valued continuous function de�ned on the open interval

(�1; 1) with h(0) = 0. Suppose that lim t!t0 jh(t) � h(t0)j=jt � t0j < 1 for every t0 2
(�1; 1) n f0g and lim t!�0jh(t)=tj <1. Suppose also that lim t!+0

eH(t)=t = 0. Then there

exists a non-trivial normal real Banach function space E in which h operates.

Proof. Since lim t!+0
eH(t)=t = 0, there exists a decreasing sequence ftng of positive real

numbers such that eH(tn)=tn < 2�n. Let N1 = N [ f1g be the one point compacti�cation
of the space of all positive integers. Put

E = ff 2 CR(N1) :

1X
n=1

jf(n)� f(0)j=tn <1g:

Then E is a non-trivial normal real Banach function space on N1 with the norm kfkE =P1
n=1 jf(n) � f(1)j=tn + jf(1)j. We show that h operates in E. Suppose that f 2 E

with f(N1) � (�1; 1). If f(1) 6= 0, then by the condition there exists c > 0 such that

jh(t)�h(f(1))j � cjt�f(1)j for t near f(1), so
P1

n=1 jh�f(n)�h�f(1)j=tn <1, that is,
h�f 2 E. Suppose that f(1) = 0. Since lim t!�0jh(t)=tj <1, there exists c0 > 0 such that

jh(t)j � c0jtj holds if �t1 � t � 0. For a su�ciently large n, we have jf(n)j < tn since f 2 E.

If f(n) < 0, then jh � f(n)j � c0jf(n)j. If f(n) > 0, then jh � f(n)j � eH(f(n)) � 2�ntn. It
follows that

P1
n=1 jh � f(n)j=tn <1, that is, h � f 2 E.

Note that the function ' in Theorem 0.3 satis�es the condition of h in Theorem 2.3.
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