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NON-LIPSCHITZ FUNCTIONS WHICH OPERATE ON
FUNCTION SPACES
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ABSTRACT. Sufficient conditions for non-Lipschitz functions to operate only in the space
of all continuous functions among weakly normal real Banach function spaces. If the
operating function h does not satisfy the conditions, then the both cases can occur:h
operates only in the space of all continuous functions; there exsits a non-trivial normal

real Banach function space on which h operates.

Introduction. In this paper we consider the question ”Une fonction non Lipschitzienne
peutelle opérer sur un espace de Banach de fonctions non trivial?” posed by A. Bernard [2].
There are non-Lipschitz functions which operate in non-trivial real Banach function spaces.
We give a sufficient condition for those functions which cannot operate in them. By a real
Banach function space on a compact Hausdorff space X we mean a linear subspace E of
Cr(X), the space of all real-valued continuous functions on X, which contains constant
functions, separates the different points of X and is a Banach space in a norm || - || g which
dominates the uniform norm || || (x) on X and is normalized so that ||1||z = 1. The space
E is said to be non-trivial if ¥ # Cr(X). We say that a real Banach function space F is
weakly normal if for every pair of disjoint compact subsets Ky and K of X, there exists a
function f € E such that f = 0 on Ky and f = 1 on Ky. We say that E is normal if for
every pair of disjoint compact subsets Iy and K7 of X and g € E, there exists a function
f € E such that f = 0 on Ky and f = g on K. We say that E satisfies the condition
(x) if for every point x( in X, there exist a compact neighborhood Gy of z(, an infinite
number of points {z,} in X, compact neighborhood G,, of each z, with Gy N G, = @) and
a homeomorphism 7, from Gy onto G, such that E|Gy = E|G, o mo. If Ap(T) is the
space of all real-valued functions in the Wiener algebra A(T), then Ag(T) is a non-trivial
real Banach function space on T and satisfies the condition (%). The real part of the disk
algebra on the unit disk also satisfies the condition (x).

Let ¢ be a real valued function defined on an interval I. We say that ¢ operatesin E
if oo fisin FE for every f € F with f(X) C I. de Leeuw and Katznelson [3] showed that
if a non-trivial real Banach function space E on X is uniformly closed, then only affine
functions operate on E, which is a generalization of the Stone-Weierstrass theorem. It
is not the case for non-uniformly closed spaces: by a theorem of Wiener and Levy [8, p.
138] every real-valued real-analytic function operates on Ag(T). On the other hand by a
theorem of Katznelson [6] we see that if ¢ is a real-valued continuous function which is not
real-analytic, then ¢ never operates in Ap(T). In general, if E is a non-trivial real Banach
function space, then there exists a fucntion which does not operatein E. Although the study
of these functions is still far from beeing satisfactory, Katznelson’s square root theorem is
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well-known: the function v/ on [0, 1) never operates on a non-trivial real Banach function
algebra (cf. [2, 4, 5]). One might conjecture that non-Lipschitz functions never operate on
non-trivial E. We showed that it is the case for certain real Banach function spaces. We
can prove the following theorem in a way similar to the proof of [5, Proposition 25].

Theorem 0.1. Suppose that E s a non-trivial normal real Banach function space which
satisfies the condition (x). Suppose also that ¢ is a real-valued function defined on the
open interval (—1,1). If ¢ operates in E, then ¢ satisfies the Lipschitz condition on every
compact subset of (—1,1).

Let h be a real-valued function defined on the open interval (—1,1). Suppose that h does
not satisfy the Lipschitz condition on a comapct subset K of (—1,1), Le.,

sup{|h(t) — h(s)|/|t — s| : t,s € K, t # s} = .
We consider two cases: 1)for every tg € (—1,1),
L sty [A(t0) = h(s)|/[to = s] < o0
ii) there exists a ¢y € (—1,1) such that
lim s, [(to) = (s)l/[to — ] = oc.
Put

E={f€Cr(Nw): > If(n) = floe)| < o0},

n=1

where Ny = NU {00} is the one point compactification of the space of all positive integers
N. Then E is a non-trivial normal real Banach function space on N, with the norm
Iflle =37, |f(n) — f(oo)] + |f(o0)|. It is easy to see that if h satisfies the condition i)
above, then h operatesin E. Thus our problem is to consider whether a real valued function
on (—1,1) which satisfies the condition ii) above can operate on a non-trivial real Banach
function space or not.

Systematic study of operating non-Lipschitz functions by using an ultraseparation ar-
gument, which is originated by Bernard [1], has just begun recently and we believe it is
a powerful tool to attack the problem involving operating functions. We proved that the
Cantor function and ¥ on [0,1) for a p with 0 < p < 1 never operate in a non-trivial
E [4, 5]. Similar results were obtained independently by Bernard [2]. We also proved the
following [4, 5].

Theorem 0.2. If ¢ is a real-valued function on (—1,1) such that (p(t) — ¢(0))/t = oo as
t = 40, then ¢ never operates in ¢ non-trivial weakly normal real Banach function space.

In the same way as in the proof of Proposition 24 in [5] we see that there is a non-Lipschitz
function which does operate on a non-trivial real Banach function space.

Theorem 0.3. Let X = N, and

E={f€Cn(X): Y |f(n) = f(oc)|M,, < oo},

n=1
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where M, = 27" Then E is a non-trivial normal real Banach function space on X. Let ¢
be a continuous function defined on the interval (—1,1) such that

. 1 [e ] 1 1
0 if te(-1,0]U[3,1)U (Uﬂzl(mv T))
o) = 1 : 1 1 1
P(t) = qealt - Mn_,_l) f v <t <sw— tsoroon

1 e 1 1 1
—cn(t — Mnﬂ—l) if Tor T =) St< Mpyi—1"

2—(n2+n—1)
—(Mpg1) " (Mg —1) 7L
and @(t,)/t, = 0o and ¢ operates in E.

Then t, = (1/Mp41+1/(Mp41—1))/2 20

where we denote ¢, =

We may say that ¢,, in Theorem 0.3 rapidly converges to 0 in the sense that t,41/t, — 0
as n — oo. In this paper we consider the intermediate case of the above two theorems,
that is, we consider the case where there exists a slowly decreasing sequence {t,} with
(p(tn) — ¢(0))/t,, =& oc. The proofs in this paper implicitly and heavily depend on an
ultraseparation argument.

1. Sufficient conditions for F = Cr(X). We say that a subset S of X is a uniqueness
set for a real Banach function space E if f = 0 on S implies that f =0 on X for f € E.

Lemma 1.1. Let B be a real Banach function space on a compact Hausdorff space K. Let
{pn} be a sequence of positive real numbers and {f,} a sequence of functions in B. Let S
be a subset of K which is a uniqueness set for B. Suppose that for every sequence {a,} of
non-negative real numbers such that 22021 Apftn, < 00, there exists a function f € B such
that Y ", a, fn converges pointwisely on S to f. Then there exists a positive real number
M such that the inequality

||fn,||B < Mup,

holds for every positive integer n.

Proof. First we consider the case where p,, = 1 for every n € N. The corresponding function
| € B for each sequence {a,} of non-negative real numbers with 3 a, < oo is unique since
S is a uniqueness set and 3" a, fn(y) = f(y) for every y € S. Put T({a,}) = f. Then
T can be extended in a way natural as a linear operator on the usual Banaach space ¢' of
all sequences of complex numbers {¢,,} such that > |¢,| < oo to B. Tt is easy to see that

o0

T({(/"})(y) = Z Cnfn(y)

n=1
holds for every {c,} € ¢! and every y € S. We show that T is bounded. If we prove it, it
will follow that
[ fulle < {177
holds for every n € N since T'({0mn}55—,) = fn. First we show that {f,(y)} is a bounded

m=1
sequence for each y € S. Suppose not. Then, for every m € N, there exists n(m) such that

| f(m) ()] = m?. Put

1
ay, = <& m?2’
0, otherwise.

n =n(m)

Then {a,} € (' and Y| an fy(y) diverges since |ay(m) fa(m)| = 1 for every m, a contra-

diction. Suppose that {cil’“)};@:l € (' converges to {c,} € (' and T({(’ﬁlk)}) converges in
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B to a function F € B. If we show that F = T({c,}), it will follow by the closed graph
theorem that 7' is bounded. Let y € S. Since || - [|so(s) < || - || 8, we have

1> el faly) = F) < 17| }) = Flls = 0

n=1

as k — oo. We also have

[oe]

| Z C,(,,k)fn(y) — Z Cnfn(y)| -0
n=1

n=1

as k — oo since {f,(y)} is bounded and {rif‘)} — {e,tin (', Henceforce we see that the
equality

F(y) =Y cafuly) = T{ea})(v)
n=1
holds for every y € 9, thus we have
F=T({cn})

since 9 is a uniquness set for B. We have proven that T is bounded.
Next we consider the general case. Put

gn = fn /ﬂn .
Then for every {c,} € ! with ¢, > 0, we have

o0

Z dppty < 00,
n=1
where d,, = ¢,,/ptn. Then by the condition there exists a function f € FE such that
o0 . . . . = - . o0 . ) . e .
> neq dnfn converges pointwisely on S to f, hence )~ ¢ng, converges pointwisely to

f. It follows by the first part of the proof that there exists a positive real number M such
that the inequality
||gn|| S ‘T\/[

holds for every n € N, henceforce
||fn, ” F S [\’[//'n
holds for every n € N. O

The function ¢ in Theorem 0.3 satisfies t,,41/t, = 0 and @(tp41)/tn = 0 as n — oco.
We consider operating functions which does not satisfy these properties.

Theorem 1.2. Let E be a weakly normal real Banach function space on a compact Haus-
dorff space X. Suppose that h is a real-valued function defined on the open interval (—1,1)
such that h(0) = 0. Suppose also that there exists a strictly decreasing sequence {t,} of
positive real numbers such that t, — 0 as n = oo which satisfies lim, o0 A(tn41)/tn = .

If I operates in E, then E = Cr(X).

Proof. Suppose that X is a finite set. Then we have E = C'gr(X) since E is weakly normal.
So we consider the case where X is infinite. In the same way as in the first part of the proof
of Theorem 1 in [4] we see that h is continuous on (—1,1).

Suppose that E # Cr(X). Then by Theorem 9 in [5] or Théorém 3 in [2], there exists
x € X such that E|G # Cr(G) holds for every compact neighborhood G of z since h is
non-affine and continuous on (-1, 1). Let B, = {u € E: u(x) = 0}. Then by Lemma 27 in
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[5] there are two sequences {G(()”) 12, and {G(l”) oo | of compact subsets of X \ {z} which
satisfy that
‘(1) (m)
Gg')ﬂ( U 73 ):V)
(B,m)#(a,n)
for every (a,n) € {0,1} x N and that for evey n € N a function u € E, with v > 1 on Gﬁ"”"
and u < 0 on G(()") implies that ||u||g > n, where ~ denotes the closure in X. For n € N put

M, =inf{||ul|lg:u € E,;, u=1on G(in),
u =20 on Gl(gm) for every (8,m) € {0,1} x N with (8,m) # (1,n)}.
Since E is weakly normal, we see that n < M, < co. Put a,, = h(¢,,)/t,,—1 for n > 2. Since
ayn — 00 as n — oo, for every n € N there exists k(n) € N such that
ap > n2"t!
holds for every k > k(n). Then there exists [(rn) € N such that
My tpn2" > 1

since M,, = 00 as n — 0o. We may suppose that I(rn) < I(n + 1). Then there exists
m(n) € N such that
2"m(n) < (2n+1j\/ll(n))7l < 2"m(n)—l-

We have m(n) > k(n) for every n € N since (2"*111/1'1(,1))71 < tp(n). So we see that

on+1
A(n) > n2"t

Let

K ={eyu(JGt), 5= {zpuJaim).

where (o, m) varies through {0, 1} xN. Then § is a uniqueness set for a real Banach function
space B = E|K on K. Note that E|K = {u|K : u € E} is a real Banach function space
with the quotient norm || - || gjx, Where |[u|K|| gjx = inf{||jv||p : |k = u|K, v € E}. By
the definition of Mj(,), there exists uj(,) € E,, for every n, such that

v

(U(n
1, on Gi( )

i) =950, on U G(L;jm),
(8,m)#(L,1(n))

and [|uy || m < 2M;(,y. We see that
My < ||ul(rl/)|I{||E|k"
by the definition of the quotient norm. For every n € N, put a positive real number
i = (2""'1]\4}(,,;))/cy,,,,L(l,l).
Let

fn = ugn) | IC

for every n € N. For every sequence {a, } of non-negative real numbers such that

Z Upfln < 00,
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we show that there exists a function in f € B and 25:1 an fn converges pointwisely on .S
to the function f. Choose a sufficiently large D such that

o0

Z anpin/D < 1.

n=1

Since every anpin /D is non-negative, we have a, /D < 1/p,, hence
0< an/D < O’m(n)(*/1/[[(17,)2n+l)7l < am(n)tm(n)—l = h(tm(n))

By the intermediate value theorem for continuous functions, there exists 0 < s, < t,,,(n)
such that h(s,) = a,/D. Since ||s || < 2M )t < 1/2", the series > Snli(n)
converges in E, say g. Since ||-|| g dominates ||-||c(x). >pey Sntiy(n) also converges uniformly
on X to g and g(X) C (=1,1), so hogis a function in E. Then f = D - (ho g)|K is the
desired function. Let y € S. Theny =z or y € G'™ for some (,m) € {0,1} x N. If
y = x, then 327 a,fu(z) = 0 = f(z) since fr(z) = 0 and h(0) = 0. If y € G for
m e N\ {I(n)}2,, then
> anfaly) = 0= f(y).

n=1

Ifye Gg(")) for some n € N, then

z anfﬂ(l/) = AnUi(n) (l/)
n=1
and oo
f(y) =D. h(z snfn(y)) = a'nul(n) (y)
n=1

Thus we have
oo

n=1
for every y € 5. We have proved that an:1 an fn converges pointwisely on S to f. It
follows by Lemma 1.1 that there exists a poisitive real number M such that the inequality

”ul(n) |K—||E\A" < AI/JN
holds for every n € N. Thus we see that
My < M - 2" My [ ()

{e]
am(n) 2_("+]) S M

holds for every n € N, which is a contradiction since
Am(n) > 2ty
holds for every n € N. O

Corollary 1.3. Let E be a weakly normal real Banach function space on a compact Haus-
dorff space X. Suppose that h is a real-valued function defined on the open interval (—1,1)
such that h(0) = 0. Suppose also that there exists a strictly decreasing sequence {t,} of pos-
itive real numbers such that t, — 0 as n — oo which satisfies that lim,_ oo h(ty)/th = 0
and inf{t, 41 /t,} > 0. If h operates in E, then E = Cr(X).
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Proof. Put § = inf{t,,+1/t,}. Then we have

]l’(t71+1)/t71 > 611’(t71+1)/tn+1 — 00
as n — o0, henceforce we see that h satisfies the condition of Theorem 1.2. It follows that
E = Cr(X). O
2. Operating functions with mild conditions. Let h be a real valued-continuous func-
tion defined on (—1,1) with h(0) =0. For 0 <t < 1, put
H(t) = max{h(s): 0 < s <t}
Then the function h satisfies the condition in Theorem 1.2 if and only if

H(t
lim (*) =0
t—+0 f

Suppose that there exists a decreasing sequence {t,} of positive real numbers with ¢, — 0
such that lim, . h(tn11)/tn = co. For every t > 0, there exist a positive integer n such
that ¢,41 < t < t,. Then h(tpg1)/tn < H(t)/t, so H(t)/t = oo as t — 40. Suppose
conversely that H(t)/t — oo as t — +0. Let t; = 1/2. Suppose that ¢y,... ¢, are choosen.
Then put
tpt1 = inf{t: H(t) = H(t,/2)}.

By induction we define a sequence {t, }. Since H is continuous, we have H(tp41) = H(t,/2).
Then by the definition of #,,41, we see that h(t,+1) = H(t,,4+1). Thus

h{tpe1)/tn = H(t,/2) [t — o0

as n — oo. Thus by Theorem 1.2 we see that, for short, E = C'p(X) if limy_, 49 H(t)/t = oo.
Next we consider the case that lim,_, ¢ H(t)/t # co. The following examples show that
if im 1o H(t)/t > 0, then both two cases are posible.

Example 2.1. Let ¢ be the function defined in Theorem 0.3. Put

. o(t 2t <t<l1
h(t): &y()-l- , 0<t<
0, —1<t<.

H(t)

Then mt_>+07 = oo and Yuit_}()@ = 2. We also see that h operates in the space E

defined in Theorem 0.3, that is, h operates in a non-triwial real Banach function space.

Example 2.2. Put a decreasing sequence {t,} defined inductively by to = 1/2, t,41 =
tn/(n+2) and put

1/2, 1/4<t<1
h(f)_ tna tn+1St<tn/2
S et 2t /250 <ty
0. —1<t <.
H(t)

Then mt*)+0H+t) = 00 and lim 40—~ = 2. Suppose that h operates in a weakly normal
real Banach function space E on a compact Hausdorff space X. Then hoh also opertates
in E. It follows by Theorem 1.2 that E = Cr(X) since

hoh(tyyr)/tn = tn—1/tn =

as n — 0.
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We consider the case where liIJt_Wo@ =0. For 0 <t <1, put
H(t) = max{|h(s)| : 0 < s < t}
for a real-valued continuous function h on (—1,1).

Theorem 2.3. Let h be a real-valued continuous function defined on the open interval
(—1,1) with h(0) = 0. Suppose that m,,_”0|h(t) — h(to)|/|t — ta] < o0 for every ty €
(=1,1)\ {0} and Iim,_, o|h(t)/t| < co. Suppose also that lim o H(t)/t = 0. Then there
exists a non-trivial normal real Banach function space E in which h operates.

Proof. Since li_m,,_>+01;~](t)/t = 0, there exists a decreasing sequence {t,,} of positive real
numbers such that H(t,)/t, < 27 ™. Let Noo = NU{oo} be the one point compactification
of the space of all positive integers. Put

E={feCr(Ny): Z |£(n) — £(0)]/t, < >}

Then F is a non-trivial normal real Banach function space on Ny, with the norm ||f||g =
S 1f(n) = f(00)|/tn + |f(o0)]. We show that h operates in E. Suppose that f € E
with f(No) C (=1,1). If f(oo) # 0, then by the condition there exists ¢ > 0 such that
|R(t)—h(f(o0))| < clt— f(o0)| for t near f(oc),s0 >, |hof(n)—ho f(cc)|/t, < oo, that is,
hof € E. Suppose that f(o0) = 0. Since lim —,_|h(t)/t| < oo, there exists ¢/ > 0 such that
|h(t)] < '|t] holds if —¢; < ¢ < 0. For a sufficiently large n, we have |f(n)| < t,, since f € E.
If f(n) <0, then [ho f(n)| <|f(n)]. If f(n) >0, then |ho f(n)]| < INJ(f(n)) <277, Tt
follows that - | |ho f(n)|/t, < oo, that is, ho f € E. O

Note that the function ¢ in Theorem 0.3 satisfies the condition of h in Theorem 2.3.
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