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Abstract. In a series of recent papers ([7],[8],[9],[10]), Husain and Latif et al de�ned

the notions of contractive-type and of nonexpansive-type multivalued mappings and

presented theorems that are designed to generalize the well known theorems concerning

the �xed points of nonexpansive and contractive multivaluedmappings. In this note, we

present some results that generalize theorem 2.3 of [9]. We also point out in this note

that most of the theorems in the aforementioned papers, in light of conditions under

which they were presented, do not generalize the existing theorems of nonexpansive

mappings. Some remarks on De�nition 2.1 made by Husain and Tarafdar in [7] are also

included.

1. Introduction. In a series of recent papers ([7],[8],[9],[10]), Husain and Latif et al de-
�ned the notions of contractive-type and of nonexpansive-type multivalued mappings and
presented a number of theorems that are designed to generalize the well known theorems
concerning the �xed points of nonexpansive and contractive multivalued mappings. A merit
of the generalization seems to lie in the fact that nonexpansive-type and contractive-type
mappings can have unbounded images and yet be guaranteed �xed points. In this regard,
theorem 2.3 [9] generalizes the well known theorem of Nadler [15] that guarantees the �xed
point of multivalued contraction in a complete metric space. In Section 4, we present some
results that extend theorem 2.3 of [9]. Sections 2 and 3 are somewhat more critical in na-
ture toward the results presented in [7],[8],[9],[10]. For example, in Section 3, we prove that
contractive-type and nonexpansive-type multivalued mapping having closed and bounded
images are, respectively, contractive and nonexpansive multivalued mappings. Therefore,
most of the theorems in [7],[8],[9],[10], under the conditions that are presented, do not
generalize the corresponding �xed point theorems for contractive and nonexpansive multi-
valued mappings. A remark is made in Section 3 to the e�ect that, if a nonexpansive-type
multivalued mapping has an unbounded image at a point, then the mapping must have
an unbounded image at every other point. The remark a�rms the claim which we made
above that the notions of nonexpansive-type and contractive-type mappings are useful in
the setting of multivalued mappings with unbounded images. Section 2 is used to make
comments regarding an earlier de�nition of nonexpansive-type mappings that appeared in
[7].

2. Nonexpansive-type Mappings; Earlier Version. In [7], Husain and Tarafdar de-
�ned the following concept of nonexpansive-type mappings and proved theorem 1.1 below.

De�nition A: Let (E; �) be a locally convex linear Hausdor� topological space where
the topology � is generated by the family [p� : � 2 I] of seminorms on E. Let K be a
subset of E. A multivalued (or a single valued) mapping f : K ! 2K n ; is said to be
nonexpansive-type on K if f satis�es either of the following conditions:
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(a) for each � 2 I, there are nonnegative real numbers a1(�),a2(�),a3(�) with a1(�)+
a2(�) + a3(�) � 1 such that for all x; y 2 K,

p�(u� v) � a1(�)p�(x� y) + a2(�)p�(x� v) + a3(�)p�(y � u);

whenever u 2 f(x) and v 2 f(y);

(b) given x 2 K and u 2 F (x), for each v 2 f(y), y 2 K and each � 2 I, there exists
v
0(�) 2 f(y) such that p�(u� v) � p�(x� v

0(�));

(c) Given x 2 K and a real number � > 0, there exists for each � 2 I a real number
�(�) � � such that p�(u�v) � � whenever u 2 f(x), v 2 f(y), y 2 K and p�(x�y) � �(�).
Using De�nition A, the following theorem was presented in [7].

Theorem 2.1. Let K be a nonempty weakly compact convex subset of E. Assume that K
has a normal structure. Then for each multivalued mappings f of nonexpansive-type on K,

there is a point x 2 K such that f(x) = fxg where fxg denotes the set consisting of the
single point x.

Unfortunately, Theorem 2.1 fails for the following simple multivalued contraction map-
ping; let E = R, and let f : [0; 1]! 2[0;1] n ; be de�ned by f(x) = [0; 1] for every x 2 [0; 1].
Therefore, the authors' claim (page 4, [7]) that Theorem 2.1 generalizes the results of
Browder[2], G�ohde[6], Kirk[13] and Wong[20] is false. The di�culty of Theorem 2.1 lies in
De�nition A. Therefore we now focus our attention to this de�nition.

Three parts of De�nition A above are clearly not equivalent. To see this, in part (b) of
De�nition A, de�ne K = R and let f : R ! R be a single valued contraction f(x) = 1

2
x.

For x 2 R, u = 1
2
x, if y 2 R, then v = 1

2
y and the only choice for v0 is also 1

2
y. We thus

obtain j 1
2
x �

1
2
yj � jx �

y

2
j. This does not hold for y = 2x with x 6= 0. The reader should

note that part (c) is satis�ed by this contraction mapping f . Now let g : [0; 1] ! [0; 1] be
de�ned by g(x) = 0 for x 2 [0; 1) and g(1) = 1. Then g satis�es part (a) but neither part
(b) nor part (c) of De�nition A. Thus we have shown that three parts of De�nition are not
equivalent and that De�nition A does not encompass the classical contraction mappings.
Hence it neither does encompass the class of nonexpansive mappings. Now consider the
following mapping. With 0 < � < 1, let f : [0; 4]! [0; 4] be de�ned by

f(x) =

8>><
>>:

x; on [0; 1]
1; on [1; 3]
�
x
�
+ 3

�
+ 1; on [3; 3 + �]

0; on [3 + �; 4]

f can be shown to satisfy all three parts of De�nition A. Taking 3 � x < y � 3 + �, we

get
jf(x)�f(y)j

jx�yj
= 1

�
. Hence f is not a nonexpansive mapping. Thus, we have shown that

De�nition A neither implies nor is implied by the classical notion of nonexpansiveness.

3. Nonexpansive-type Mappings; Later Version. In the papers [9],[10], the notion
of nonexpansive-type multivalued mappings is de�ned to be that described in De�nition B
below. We note that in [8], the same idea is used under the di�erent terminology of weak
nonexpansive mappings.

De�nition B: Let C be a subset of a metric space (X; d). A multivalued mapping
f : C ! 2C n ; is said to be nonexpansive-type if given x and u 2 f(x), there is v 2 f(y)
for each y 2 C such that d(u; v) � d(x; y).

The idea of contractive-type mappings is de�ned similarly by replacing d(u; v) � d(x; y)
in the above de�nition by d(u; v) � hd(x; y) for 0 � h < 1. As was stated in Introduction,
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every contractive-typemultivalued mapping with closed and bounded images turns out to be
a contractive multivalued mapping. This will be demonstrated in the following proposition.

Proposition 3.1. Let (X; d) be a metric space. Denote by CB(X) the set of all nonempty
closed bounded subsets of X. The every contractive-type multivalued mapping f : X !

CB(X) is a contractive mapping.

Proof: If f is not a contractive mapping, then there is a sequence (xn; yn) such that, for
every n 2 N , H(f(xn); f(yn)) > (1 � 1

n
)d(xn; yn). Hence xn 6= yn for every n. Let C be

any subset of X containing fxng [ fyng. Now suppose that T is of contractive-type with
0 � h < 1. Choose n 2 N such that n >

1
1�h

. Also choose � such that 0 < � < 1� 1
n
� h.

Without of loss of generality, we suppose that H(f(xn); f(yn)) = supa2f(x
n
) d(a; f(yn))

where H denotes the Hausdor� metric on CB(X) induced by the metric d. Now �nd
x
0

n 2 f(xn) such that

d(x0n; f(yn)) > supa2f(xn) d(a; f(yn))� �d(xn; yn)

= H(f(xn); f(yn))� �d(xn; yn):

For any y0n 2 f(yn), we have

d(x0n; y
0

n) � d(x0n; f(yn))
> H(f(xn); f(yn))� �d(xn; yn)
> (1� 1

n
� �)d(xn; yn)

> hd(xn; yn):

Since y0n is arbitrary in f(yn) for the element yn 2 C, for xn and x
0

n 2 f(xn), there is no
element y of f(yn) which satis�es d(x0n; y) � hd(xn; y), and hence f is not of contractive-
type. This contradiction proves our proposition. �

Similarly, we obtain;

Proposition 3.2. Let (X; d) be a metric space. The every nonexpansive-type multivalued

mapping f : X ! CB(X) is a nonexpansive mapping.

Proof: If f is not nonexpansive, then there exist x and y with H(f(x); f(y)) > d(x; y). As
in the proof of Proposition 2.1, without loss of generality thatH(f(x); f(y)) = supa2f(x) d(a; f(y))
and we choose � such that 0 < � < H(f(x); f(y))� d(x; y). If f is of nonexpansive-type,
then to x and any x0 2 f(x), and y, there exists y0 2 f(y) such that d(x0; y0) < d(x; y). We
now choose x0 2 f(x) to satisfy d(x0; f(y)) > supa2f(x) d(a; f(y)) � � = H(f(x); f(y))� �.
Then for any y0 2 f(y), d(x0; y0) � d(x0; f(y)) = H(f(x); f(y))� � > d(x; y) and f is not of
nonexpansive type. �

In [10], the notion of K-multivalued mapping is de�ned. Namely, let C be a nonempty
subset of a normed linear space X. f : C ! 2C is K-multivalued if for each x 2 C,
ux 2 f(x), there is uy 2 f(y) for all y 2 C such that

kux � uyk �
1

2
fkx� uxk+ ky � uykg:

Of course, the purpose of de�ning the idea of K-multivalued mappings is to generalize the
idea of Kannan mappins of [11],[12]. We recall that if (X; d) is a metric space, f : X !

CB(X) is called a Kannan mapping if for each x,y 2 X,

H(f(x); f(y)) �
1

2
fd(x; f(x))+ d(y; f(y))g:

Following the argument used in the proof of Proposition 3.1, it is easy to see the following;
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Proposition 3.3. Let (X; d) be a metric space. Then every K-multivalued mapping f : X !

CB(X) is a Kannan mapping.

We note that Proposition 3.2 is recognized by Husain and Latif in [9] (p. 428). Then
what is the advantage of studying the new classes of contractive-type and nonexpansive-type
mappings? It seems to the present authors that the advantage of studying such mappings
ought to lie on the point that such mappings need not have bounded images to have �xed
points. Among the theorems listed in [8],[9] and [10], theorem 2.3 of [9] appears to be the
only theorem that takes advantage of this point. Theorem 2.3 of [9] states the following;

Theorem 3.4. Let M be a nonempty closed subset of a complete metric space (X; d) and

J : M ! 2M a multivalued contractive-type mappings with closed subsets of M as values.
Then there is a point x 2M such that x 2 J(x).

Most of the other theorems in the papers [8],[9] and [10] require multivalued mappings
to have closed bounded images since the mappings are assumed to be compact-valued.
Therefore, because of Propositions 3.1 and 3.2, they do not generalize the existing �xed
point theorems for contractive and nonexpansive mappings. The following proposition is
interesting in that, if a nonexpansive-type multivalued mapping is unbounded at a point,
then it has unbounded images everywhere. This con�rms our previous claim that a useful
application of the notions of nonexpansive-type and contractive-type mappings ought to lie
in the area of guaranteeing the existence of �xed points for multivalued mappings having
unbounded images.

Proposition 3.5. Let (X; d) be a metric space and f : X ! 2X n; is of nonexpansive-type.
If there exists x 2 X such that f(x) is unbounded, then f(y) is unbounded for every y 2 X.

Proof: Suppose that, for x 2 X, f(x) is unbounded. Then there is a sequence fung,
un 2 f(x), such that d(x; un) ! 1. Since f is of nonexpansive-type, given any y 2 X,
there is, to each un, a vn 2 f(y) such that d(un; vn) � d(x; y). But d(x; un) � d(x; vn) +
d(vn; un) � d(x; vn)+ d(x; y), hence as n!1, we get d(x; vn)!1. This shows that f(y)
is an unbounded set. Since y is arbitrary in X, we have that f(y) is unbounded for every
y 2 X. �

4. Generalizations of Contractive-type Mappings. In this section, we obtain several
results that guarantee the existence of �xed points of generalized contractive-type multi-
valued mappings that extend theorem 2.3 of [9]. Throughout this section, (X; d) denotes a
complete metric space. K(X) denotes the space of all nonempty compact subsets of X. In
[16, p. 40], Reich proved that a mapping T : X ! K(X) has a �xed point in X if it satis�es
H(Tx; Ty) � k(d(x; y))d(x; y) for all x; y 2 X with x 6= y, where k : (0;1)! [0; 1) satis�es
lim supr!t+ k(r) < 1 for every t 2 (0;1). This result generalizes the �xed point theorem
for single-valued mappings that was proved by Boyd and Wong [1]. One of the conjectures
made by Reich in [17, 18] asks whether or not the range of T can be relaxed. Speci�cally the
question is whether or not the range of T , K(X), can be replaced by CB(X). In response to
Reich's conjecture, the following theorem was recently proved by Mizoguchi and Takahashi
[14] , and other proofs have been given by Da�er and Kaneko [4] and Tong-Huei Chang [3].

Theorem 4.1. Let (X; d) be a complete metric space and T : X ! CB(X). Assume that
T satis�es

H(Tx; Ty) � k(d(x; y))d(x; y)(1)

for all x; y 2 X with x 6= y, where k : (0;1) ! [0; 1) satis�es lim supr!t+ k(r) < 1 for

every t 2 [0;1). Then T has a �xed point in X.
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This theorem is now modi�ed to accomodate multivalued mappings with unbounded
images.

Theorem 4.2. Let (X; d) be a complete metric space and T is a mapping of X into the
family of all closed subsets of X. If k : (0;1) ! [0; 1) satis�es lim supr!t+ k(r) < 1 for

every t 2 [0;1), and if T satis�es the following condition;

(*) to every x; y 2 X, u 2 T (x), there exists v 2 T (y) such that

d(u; v) � k(d(x; y))d(x; y);

then T has a �xed point in X.

Proof: Let x0 2 X and x1 2 T (x0). By hypothesis, there is x2 2 T (x1) such that
d(x2; x1) � k(d(x1; x0))d(x1; x0). In general, if xn 2 T (xn�1), we can �nd xn+1 2 T (xn)
such that

d(xn+1; xn) � k(d(xn; xn�1))d(xn; xn�1):

We write dn � d(xn; xn�1). Then

dn+1 � k(dn)dn �

nY
i=1

k(di)di:

Now dn+1 < dn and so dn converges to some c as n ! 1. Since dn+1 � k(dn)dn, we get
c � lim supn!1 k(dn)c. This shows that c = 0. Since lim supt!0+ k(t) < 1, there is h < 1
and n0 such that k(dn) < h for all n > n0. We then have

dn+1 �

nY
i=1

k(di)d1 <

n0Y
i=1

k(di)d1

nY
i=n0+1

k(di) < h
n�n0C

where C denotes a generic constant throughout the remainder of proof. For n > n0,

d(xn; xn+m) �
Pn+m

i+n+1 di � C
Pn+m

i=n+1 h
i�1�n0

= C
Pm�1

i=0 h
i+n�n0 = Ch

n�n0 1�h
m

1�h

� Ch
n
:

Since hn ! 0 as n!1, this shows that the sequence fxng is Cauchy. Hence, xn ! x 2 X,
and to xn and x, and xn+1 2 T (xn), we have yn 2 T (x) such that

d(xn+1; T (x)) � d(xn+1; yn) � k(d(xn; x))d(xn; x);

so that limn!1 d(x; T (x)) = 0. We thus have d(x; T (x)) = 0, and since T (x) is closed,
x 2 T (x)). �

Now we focus our attention to the following class of functions that were recently studied
by several authors, -e.g. [3, 19].

De�nition C Let � : R+ ! R+. The function � is said to satisfy the condition (�)
(denoted � 2 (�) ) if (i) �(t) < t for all t 2 (0;1); (ii) � is upper semicontinuous from the
right on (0;1); and (iii) there exists a positive real number s such that � is nondecreasing
on (0; s] and

P1

n=0 �
n(t) <1 for all t 2 (0; s].

Chang [3] observed that if k : (0;1) ! [0; 1) satis�es lim supr!t+ k(r) < 1 for every
t 2 [0;1), then there exists a function � 2 (�) such that k(t)t � �(t) for all t 2 (0;1).
Subsequently, Chang proved the following theorem that generalizes Theorem 4.1 above.
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Theorem 4.3. Let (X; d) be a complete metric space. Let T : X ! CB(X) and suppose

that there exists a function � 2 (�) such that

H(Tx; Ty) � �

�
max

�
d(x; y); d(x; Tx); d(y; Ty);

d(x; Ty) + d(y; Tx)

2

��

for all x; y 2 X. Then T has a �xed point in X.

Theorem 4.2 is now extended using a function from the class (�). Speci�cally, we obtain,

Theorem 4.4. Let (X; d) be a complete metric space and T is a mapping of X into the
family of all closed subsets of X. Suppose that there exists a function � 2 (�) such that

(**) to every x; y 2 X,u 2 T (x), there exists v 2 T (y) such that

d(u; v) � �(d(x; y));

Then T has a �xed point in X.

Proof: Making use of the argument employed in lemma 2 [3], one may show that infx2X d(x; T (x)) =
0. Let x1 2 X be such that d(x1; T (x1)) < s where s is as speci�ed in De�nition C. Now to
x1 and x2 2 T (x1), choose x3 2 T (x2) such that

d(x2; x3) � �(d(x1; x2)) < d(x1; x2):

Likewise, since � is nondecreasing on (0; s],

d(x3; x4) � �(d(x2; x3)) � �
2(d(x1; x2)):

In general,

d(xn; xn+1) � �
n�1(d(x1; x2)):

For positive integers m and n (n > m), we get

d(xn; xm) � d(xn; xn�1) + � � � + d(xm+1; xm)
� �

n�1(d(x1; x2)) + � � � + �
m(d(x1; x2))

�
P
1

k=m �
k(d(x1; x2))

By virtue of condition
P
1

n=0 �
n(t) <1 for each t 2 (0; s] (rf. (iii) De�nition C), the above

inequalities show that fxng is a Cauchy sequence. Let xn ! x as n!1. Now using (**),
choose yn 2 T (x) so that

d(xn+1; T (x)) � d(xn+1; yn) � �(d(xn; x)) < d(xn; x):

Hence limn!1 d(xn; T (x)) = 0 and x 2 T (x) since T (x) is closed. �

Of course, Theorem 4.4 can be reformulated using the contractive condition described
in Theorem 4.3. Finally, we point out the fact that the conjecture of Reich described
above is still open. Namely, it is not yet known whether or not Theorem 4.1 remains valid
upon replacing the condition lim supr!t+ k(r) < 1 for every t 2 [0;1) by the condition
lim supr!t+ k(r) < 1 for every t 2 (0;1). In a recent paper, the present authors in
collaboration with Wu Li constructed a class of functions in (�) for which the condition
lim supr!t+ k(r) < 1 is satis�ed only in the region (0;1). Then utilizing Theorem 4.3 of
Chang [3], the following theorem was proved in [5].
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Theorem 4.5. Let (X; d) be a complete metric space and T : X ! CB(X). If there exists

an upper right semi-continuous function ' : R+ ! R+ such that (i) '(t) < t for all t > 0,
(ii) '(t) � t � at

b, a > 0, for some 1 < b < 2 on some interval [0; s], s > 0, and (iii)

H(Tx; Ty) � '(d(x; y))

for all x; y 2 X, then T has a �xed point in X.

Following the development made in Theorem 4.4, we obtain an extension of Theorem 4.5
that accomodates mappings with unbounded images. A proof is left to the reader.

Theorem 4.6. Let (X; d) be a complete metric space and T is a mapping of X into the
family of all closed subsets of X. If there exists an upper right semi-continuous function

' : R+ ! R+ such that (i) '(t) < t for all t > 0, (ii) '(t) � t � at
b, a > 0, for some

1 < b < 2 on some interval [0; s], s > 0, and (iii) to every x; y 2 X, u 2 T (x), there exists

v 2 T (y) such that
d(u; v) � '(d(x; y)):

Then T has a �xed point in X.
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