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A BOUNDARY ELEMENT GALERKIN METHOD FOR THE
DIRICHLET PROBLEM OF THE HEAT EQUATION IN NON-SMOOTH
DOMAIN

KENJI SHIROTA AND KAZUEI ONISHI

ABSTRACT. We consider a numerical method for the Volterra-Fredholm integral equa-
tion of the first kind corresponding to the Dirichlet problem of heat conduction in a solid
with piecewise Lyapunov surface with corners and edges. To approximate the ill-posed
boundary integral equation we adopt the Galerkin method using boundary finite element
and one-dimensional finite element in the time variable. We show the convergence prop-
erty and the stability of the semi-discretized approximate solution using boundary finite
elements. We estimate the error bound for the full-discretized approximate solution.

1. INTRODUCTION. Recently, numerical solutions of initial-boundary value problems
of the heat equation are often obtained by boundary element methods based on boundary
integral equations, because the approach enables us to treat heat conduction problems with
domains extending to infinity, with polygonal domains and non-smooth data with much
ease. For the Dirichlet problem, direct methods lead to the approximation of a Volterra
integral equation of the first kind. The kernel function involved in the boundary integral
equation corresponds to the single-layer heat potential, which is weakly singular.

The approximation of boundary integral equations in transient heat conduction prob-
lems has been considered by several authors; see Brebbia[2] et al. for example in engi-
neering applications. They used the collocation method with boundary finite elements as
trial functions on the boundary. As regard to the mathematical analysis, Costabel[4] et
al. and Onishi[17] discussed the Neumann problem and they showed the existence of the
solution of a corresponding Volterra integral equation of the second kind on a non-smooth
boundary. They showed the convergence and the stability of the projection method in
the space of continuous functions. Yang[23], Arnold and Noon[1], and Noon[14] presented
some attempts at boundary element methods using the single-layer heat potential to the
solution of Dirichlet problem on a smooth surface. Okamoto[15] showed an application of
Fourier transform to the Dirichlet problem and proved unconditional stability as well as
conditional convergence of the boundary element approximation for the heat operator in
L?-sense. Pointwise convergence in time was obtained by Lubich and Schneider[11] on a
smooth boundary. The uniform convergence of boundary element solutions and conditional
stability of the boundary element collocation method are proved by Iso[7] for the boundary
integral equation corresponding to an initial-boundary value problem of the heat equation
with the Robin boundary condition on a boundary of class C?.

In this paper, we will show the convergence property and the stability of Galerkin’s
method applied to the solution of the boundary integral equation of the Dirichlet problem
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of heat conduction in a solid with piecewise Lyapunov surface with corners and edges in a
more general class. The discussion is carried out for three-dimensional problems, but the
validity of the results remains also for problems in two dimensions.

2. DIRICHLET PROBLEM IN A NON-SMOOTH DOMAIN. We shall confine
the geometry of the domain in question. Let £ be a simply connected bounded open domain
in the three-dimensional Euclidean space R® and assume that the closed bounded surface

= 0N consists of a finite number of open smooth subsurfaces , ; (i = 1,... ,N) so that
v = U , i» where , ; = . ; U0, ;. Then the surface has a tangent plane at every point
1<Gi<N

x €, ; if the tangent plane at the edge point of , ; is understood to be the corresponding
half plain. Moreover, the angle v between the exterior normal vector n(xz) to , ; at ¥ € , ;
and the vector (z—y) for an arbitrary point y € , ; (¢ # y) satisfies the Lyapunov condition,
see Michlin[12, p. 285] for example:

|cosv| < L(, )|y 0< k<1, (1)

where L is a global constant depending only on , . The set of points on , where the surface

is not smooth forms corners and edges. This is denoted by §, = U d, i, which has zero
1<i<N
Lebesgue volume measure.
Let dO,(y) denote an infinitesimal solid angle at = € R’ subtending the infinitesimal
surface area d, (y) at y €, — 4, ; see Michlin[12, p. 287]. Then

0 1
00 = =55 (=) 4 0

(y—z)-nly)
ly — [ h ) ®

Remark 2.1. Let I(z) be the index set attributed to the point z, for which = € , ; with
i € I(x). If z ¢ ,. then I(x) is the null set. Put I“(z) = {1,2,... ,N} — I(x). For
i € I(x) it follows from (1) that |[(y — z) - n(y)|/ly — «|* = |cosv|/|ly — x|* < L[|y — x|*~*

for any y € , ;. Therefore, the integral dO,(y) is absolutely convergent. For j € I¢(z),
/ dO,(y) is also convergent since [y —x| > C(z) > 0 for y € , ;. Hence, O(x ):/ dO,(y)
r; r

J
is well defined for every = € R®.

For x € ., O(2) is equal to the interior solid angle at the vertex « of the cone, whose side
surface is constructed by all the half ray tangential lines to the surface , radiating from z.
For a piecewise Lyapunov surface , it follows that

sup / |[dO,(y)| = sup / Iy I; y)|d, (y) =A< +00 (3)
«cR’ e R’ |y — 2|
with some constant 4. In addition we require , to satisfy
lim sup Ws(2) = w < 1, (4)
6—0 =€l

where W;s(x) is defined by the expression:

o1 o (4 e — Ol .
Wie) i= 5 {/5 40, (y)] + 27 — O ,>|}. (5)
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Remark 2.2. The piecewise Lyapunov surface satisfying (4) is called Wendland surface.
The condition (4) (Wendland[21]) allows the splitting of the integral operator of the double-
layer potential into the sum of a contraction operator and a completely continuous one in
C'(, ), which is basic for the validity of the Fredholm-Radon method in potential theory.

We consider the heat equation for unknown temperature u(z, t):

ou e
i = Au, (2,1) € (QUQ%) x (0,7 (6)

for some finite value T, in which A is the Laplacian in R® with respect to the variable
and €° denotes the exterior of the domain (.
On the boundary we consider the Dirichlet condition:

u(z,t) =a(z,t), (2,t)€, x[0,7T]. (7)
In addition, we consider the initial condition:
u(x,0) = up(x), reQUQ° (8)

for the bounded Cauchy datum wuy in C(QU Q). In Q°, the corresponding Cauchy datum
1o may be assumed to grow at most, exponentially:

|uo ()] < a1 exp[f[]°] (9)

with some constants a; > 0, 3; > 0 and 0 < ¢ < 2; see Krzyzanski[9, p. 455] for example.
We can assume without loss of generality by considering the Weierstrass integral that ug = 0
in QU Q°.

3. BOUNDARY INTEGRAL EQUATION OF THE FIRST KIND. We shall de-
rive a boundary integral equation corresponding to the Dirichlet problem (6)—(8) and in-
vestigate some properties of the integral operator. We start the discussion with definitions
of single-layer heat potential:

Gala,t) : / / o t)d, (y)dr, (10)

with the density ¢ and double-layer heat potential:

80 D, t) s
Hu(z,t) / / 817(1/) L, (y)dr, (11)

with the density u, where n(y) is the external normal at y to the boundary , . Here, v is
the fundamental solution of the heat operator /9t — A:

1 ’ r?
vy, 7, t) = <2 m(t— T)> b [_ 4(t — T)] (t>7) (12)
0 (t<7)

with r = |y — z|. Put

with the expression:

Hi(z,t) = (1 — 92(;7)) u(x,t) + A /r a(y, ) (tr— 3 o(y, 7 2, t)dO (y)dr.  (14)
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According to Costabel[4] et al., unknown boundary flux ¢ = Ou/dn in the normal direction
is given as a solution of the linear Volterra-Fredholm boundary integral equation of the first

kind:
Gz, t) = g(z, 1), (z,t) eX =, x[0,T] (15)

Next lemma shows that G can be understood as a linear bounded operator from C'(L*(, ) :
[0,T]) into C(X).
Lemma 3.1. The operator G : C(LP(, ) : [0,T]) = C(X) defined by (10) is bounded for
p> 2.

Proof. Using the idea in Pogorzelski[18, p. 353], we have for any pu (0 < pu < 3/2) the
inequality:

» . B 1 1 1 7*2 (3/2)—u , 7,2
L(qu L, ) — 22“7T3/2 (t _ 7_)# r3—2u 4(2¢ _ 7_) exp _4(f _ 7_)
1 Gy

(16)

= (=T

with Gy = s%¢™%/(22#7%/2) and s = 3/2 — . We apply the Holder’s inequality to Gg(x,t)
and obtain from (16) that

4 . ; 1/p . , 1/p'
Gt < [ / )l | { JE
1
< G LoV
— 71 ||q(7 ||I’ (t MP ] (3=2u)p’ aT
: d,  \7
. / lat- 7l / N
o (t—T)H P r3-2mp’
t l d L/
dr ,
< Gy </0 m) (/F m) Walllezrry:q0,m
1
with — + — = 1. In view of the inequality (16) we can see that inequalities above are
p p

1 2
=(3— =) < p. If we take
P

valid only for such values of u satisfying (3 — 2u)p’ < 2, ie., 5

! dr

p with 0 < p < 1, the integral / is convergent. Consequently, there exists a

o (t—T)
constant C' depending only on , and 7" such that ||Gql| < C|||q|||c(zr (10, for the value
1 2 . . . 1 2

—(3 — =) < 1. The assumption p > 2 is equivalent to —(3 — =)< 1. O

2 p’ 2" p

Remark 3.1. In order to apply the Hilbert space approach in the approximation method
in the next section, we shall regard G as an operator:

G:H71/2471/4(E)_>H1/2,1/4(E).

Lemma 3.2. Under the assumption (3) and for u € C(X), the continuous function g(x,t)
of (13) satisfies the inequality:
3
loll < (5 + 57 ) .



BOUNDARY ELEMENT GALERKIN METHOD 111

Proof. The continuity of g(z,t) is shown in Costabel[3] et al.. We shall prove the inequality
of the lemma: By the variable transformation; 7 — ¢ = r/2y/t — 7, Hii(z,t) in (14) can be
expressed as

Hi(x,t) = (1—M> i(x, 1)

™

1 4 e 9 2 7‘2
— — =" u(y, t — —=)do » dO.(y).
+ 2’/T I’{\/E/r/Q\/Z(T e 'Il(y, 40_2)({7} (U)

Consequently, we have

Hi(et)] < {‘1— | <% / %aze—“cw) |dc~>$<y>|}||a||

A

The last inequality follows from (3) and from 0 < O(z) < 4~ / ole=" do = Vr/4. O
0

IA

Properties of the integral operator GG are now discussed in the space H1/2‘1/4(Z) and
its dual space H_]/2’_1/4(Z), introduced by Lions and Magenes[10, p. 10 and p. 44]: Let
H'/21/4() be a Sobolev space defined by

HY2AA(D) = LAY )1 [0,1]) 0 HYA(LA ) [0.7))

equipped with the norm:

: ’ , ot e t) = wls)lT
|||w|||j11/2-,1/4(x) :/0 ”’w(‘vt)”jjl/?(r)dt+/0 /0 |t — s|3/2 dsdt.

We denote by ((-,-))o the scalar product:

T
((w1,ws))o ::/ (wi(-,t), wa(- 1)) 2y dt.
Jo
Next two important lemmas are much due to Costabel[3].

Lemma 3.3. There exists a constant o > 0 depending only on ¥ such that

@71|||Q|||uf1/27*1/4(x) < |||GQ|||111/2VI/4(x) < 0f|||(]|||ufl/2fl/4(x)-

The next lemma shows strong coerciveness of the operator G.

Lemma 3.4. There exists a constant 3 > 0 depending only on X such that
(Ga.4))o > /3|||(J|||?171/2,—1/4(3)

for all ¢ in H’l/z*l/‘*(ﬁ)_
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4. APPROXIMATION ON THE BOUNDARY. In this section, we shall consider
the semi-discretization of the solution by Galerkin method using boundary finite elements.
We shall show convergence and accuracy of the semi-discretized approximate solution. The
way of arguments is much due to Nedelec and Planchard[13] as well as Hsiao and Wend-
land|[5].

Let V}, be finite-dimensional subspaces of the Hilbert space H ~1/2 (, ), approximating the
solution ¢(z,t) of the Volterra-Fredholm integral equation (10) and (15), such that UsoV3
is dense in L?(, ) and V}, C Vi for h > h'. Put dim(V}) = n by assuming that n = 1/h for
n=12,.... Let {¢;(x)}j=1.2, . denote the basis of Vj,. We consider the approximation
of g(x,t) in the form:

an(,1) = 3 4;(1)e5(x) (17)

with coefficient functions ¢; (t) (0 <t <T) to be determined later.
We shall consider the semi-discrete Galerkin approximation: Find unknown ¢y, in H~'/2=1/4 (2)
satisfying that

((Gan.qn))o = ((gn,qp))o  for all g;, € Vi, (18)

where g;, is an L2-orthogonal projection of ¢ € H1/2‘1/4(Z) into L?(V}, : (0,T)): That is,
with the projector

Pu:g € L3(S) = gn € LA(Vy : (0.T)).
We assume that ||Phgl|gi/2.0/4(sy < ||9llgres2s4(sy- This is equivalent to the proposition:

((Gany¢i))o = ((g,9i))o forall p; €V}, i=1,2,... ,n. (19)

Theorem 4.1. Let ¢ be the solution of (15) in H™'/27Y4(Z) and gy, be a solution of (18).
Then, there exists a constant p(X) > 0 such that

g — anlllir- 1/2—1/4(Z)<p{ juf, Mg = dhlllg=srz sy +llg = gnlllirears) - (20)

Proof. From (15) we have
((Ga.d))o = ((g.q"))o forall ¢ € H/271/4(x). (21)
For an arbitrary ¢}, in V}, it follows from Lemma 3.4 that

(Glan = ah)ran = ai))o = Blllan = a2 s)-
On the other hand, we can see that
(Glan—an)an—an))o = (G(la=an) = (2= an))sqn = @3))o

= ((Gla=an)>qn—an))o — ((G(a—an)san — q1))o
(Glg— qh Qh—(IZ))O—((.CI—.C/iMQh—(IZ))o

< |llG(g— (]h)|||ul/2v1/4(x)|||f.Ih - (];L|||ufl/2v*1/4(x)
+llg — gh|||Hl/?vl/4(E) I[an — q;1|||H*1/2v*1/4(2)
< Aollla = anllla-12-112) + g = gulllzr2 3y}

< an = anlll =172 104 ()
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The third equality follows from (18) and (21). The last inequality follows from Lemma 3.3.
Combining the above inequalities, we have

BIlan — QHHufl/zflM(x) <alllg = q;zl”ll*l/?v*l//l()j) +1llg — .C]h|||111/2,1/4(x)a

from which it follows that

Illg — Qh|||Hfl/2fl/4($) < llg - CI§1|||H71/2471/4(2) +llgn — q2|||H71/2v71/4(2)
@ ; 1
< (1 + §)|||(1 - (I},,|||H—‘/21—1/4(2‘) + §|||9 - yh|||H‘/21'/4(z)-

This leads to the desired inequality (20) with p = max{(1 +«/3),1/58}. O

We can obtain a stronger result in the next theorem, which shows the optimal rate of
convergence of the Galerkin approximation in H~1/%~1/ 1D).

Theorem 4.2 (Cea’s lemma). The semi-discrete Galerkin approzimation (18) is inverse
stable: For the Galerkin solution qp, it holds that
QoL
Mg = anlllg-1r2 1745y < (14 73) thlelf‘h g = anlll -2 -1 (-

Proof. The Galerkin approximation (18) is equivalent to the problem of finding the unknown
qn, of the form (17) in H71/2’71/4(E)1 satisfying the operator equation:

Ph,GPh,(]h, = Phg- (22)
By the same way of arguments as in Wendland[22, p. 21], we can see from Lemma 3.4 that

l3|||Qh|||§{71/2,71/4(2) < ((G(Ihth))o = ((PhG'Phqhth))O
< |||PhGPh(Jh|||ul/2)1/4(x)|||Qh|||u—1/2)—1/4(x)-
The first equality followed from the relation:
((GPhq}n(Jh,))() - ((PI,,GP}:,(]I,,,%))U = (((I - Ph)GPth,(Jh))l) = 07

since ¢ € V3 and (I — Pp)GPrgn € V#, the orthogonal complement of V},, for every
t € [0,T]. The we have

Blllanllgr=172.-172 ¢y < PG Prarlll o4 3y
Since this inequality holds for all ¢, we know that P,G P}, : H’l/2”l/4(2) — Hl/2’l/4(§]‘)
is invertible. The inverse is bounded as follows:

_ (PGP ‘gnlllgr=1/2=1am) 1
N(PRGP) ™ Il /2 14 () g =172 74 () = sup : ) <~ (23
\ gn#0 Mgnll 12045 6

see Kantorowitsch and Akilow[8, Satz 2, 2.V] for example. From (15) and (22) it follows
that

qn = (P],IGP},,)ilP],IGq.
This defines the Galerkin projector Gy, = (P,GPy,) ™' P,G : H_]/27_1/4(E) — H_]/2’_1/4(Z).
We shall show that G, is bounded. For this purpose, we put g, = P,Gq. From (23) and
Lemma 3.3 it follows that

|||(PhGPh)_1PhGC]|||H—|/2,—|/4(E)

IA

(PG PR) " gz s gy -rrz-10a ) 1 PRGalll gz s s

IA

«
E|||Q|||H*1/2,—1/4(2).
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This implies that G, is bounded as desired: Namely

NGulllg—1r2-1ram),m-1r2-1/03) £ = (24)

|2

Note that Gg), = gj, for all ¢}, € V;, because

PhG'Phq;l = Pth;r (25)
Consequently we have
g = anlllg-1r2-1r0s) < Ma=an'llg-1r2-100 2y + Wan — alllg=1r2-100(x)
= Mg =anlllg-12-175c2) +Gra = Graplllg=-1/2.-173 ()
< (1+ |||Gh|||u*1/2fl//1(x),1171/2v71/4(3))|||q - QZ|||1171/2*1/4(2)

which leads to the assertion of the theorem from (24). O

For the concreteness of the discussion, as V, we shall consider the regular finite element
spaces Sp, with the following two conditions for some positive integer m; see Hsiao and
Wendland[6, p. 4] for example:

Convergence property: Let t < s be such that —(m+1) <t <s<m+1, -m<s
and ¢ < m for some non-negative integer m. Then for any ¢ € H*(, ) there exists a ¢;, € Sp,
such that

llg = aillzrery < Crh*flallz=iry (26)

with some constant C'; which is independent on ¢; and h.
Inverse assumption: Let ¢ < s be such that |¢|, |s| < m. Then there exists a constant
C5 independent on & such that

||qh||HS(]") < CQhI_S”(IhHHt(]") for all g, € Sh. (27)

Remark 4.1. Nedelec and Planchard[13, Lemma 3.1 and Lemma 3.2] showed that, if ,
is a polyhedron, linear triangular finite element spaces satisfy (26) and (27) with m = 1,
provided that all the angles # in the triangulation satisfy # > 6, > 0 with a constant
8o, which is independent of the maximum diameter h among all triangles. For constant
triangular finite element spaces, the convergence property (26) is satisfied with m = 0; see
Nedelec and Planchard[13, Lemme 3.4]. However, (27) holds only for —1 < ¢t < s <0, see
Nedelec and Planchard[13, Lemme 3.3].

As an immediate consequence of Theorem 4.2 and (26) we have

Theorem 4.3. For the semi-discrete Galerkin solution qp with constant boundary finite
elements on the triangulation of the polyhedron , , it holds that

a. .
g — Qh|||H—1/2)—1/4(2) <1+ E)CIII’SH/Z”M”Hsv—1/4(3)
with 0 < s < 1.

It happens often that Dirichlet data @(z,t) of (7) or Cauchy data ug(x) of (8) are given
imprecisely due to measurements. The right hand side g(x,t) or (15) can not be obtained
exactly because of the approximate evaluation of the term Ha(z,t) in (13) and (14). Due to
the limitation of a finite number of digits available in the numerical computation, round-off
errors are not avoidable. These cause the additional impreciseness involved in the right
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hand side g(x,t). We assume that the polluted g, denoted here by g, belong to H0’1/4(Z).
Instead of (15), we have to solve the equation:

Gq(x,t) = q(z,t), (x,t)€X. (28)

In this situation we have the ill-posedness of the Galerkin approximation as next theorem
shows.

Theorem 4.4. For the semi-discrete Galerkin solution gy, of (28) with ¢; € Sy, it holds
that

g — C7h|||u*1/2fl/4(x) < C;;{h/5+1/2|||q|||115,71/4(x) + h71/2|||9 - §|||uﬁvl/4(x)}
with some constant Cs > 0 and 0 < s < 1.
Proof. Our proof is due to Hsiao and Wendland[6, p. 9]. From (22) it follows that
PyGPy(q = Gn) = PhGPrg — Prg = (PGP, — PuG)q + Pu(g — g)-

Using (25) we can see that

Py,GPu(q— qn) = (PhGP, — PoG)(q—an’) + Pu(g — 9)
for all qj, € Si. Application of (P,GP,)~! to both side of the equality yields that

q—qn =" —Gn)q—qn) — (PaGPy)""Pn(g - g)-

Counsequently, from (23) and (24) it follows that

Mg = qnlllgz—1r2 171y

< 0 D= ahlll-ornosrecsy + P o= Dl

Qe 1 .- .
< 1+ 35)Ch +1/2|||q|||HSv—1/4(Z)+§C2h Y2 g = alll o1 (- (29)

The last inequality follows from (26) and (27). O

Remark 4.2. For constant elements we can obtain only the first inequality of (29). Hence
it is suggested that, when constant elements are used, numerical computations must proceed
so that |[|Pn(g — )|/l gr1/2.1/4(x) is evaluated as small as possible. In other words, the right
hand side is required to be smooth and it should be calculated with high accuracy.

Remark 4.3. A rough estimate of the optimal choice of h may be given from Theorem 4.4
by minimization of the expression in {---} with respect to h: From the relation

1 Mg = alllgo.1 /(s

2

Wt =

N

1
(s+ 3)|||CI|||H@<1/4(2)
we have the guideline:

h()])l = O(|||g - g|||[ﬁl/4(2))'
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5. APPROXIMATION IN TIME. In this section, we shall consider a constructive
theory in the full-discretization of the solution by Galerkin method using one-dimensional
finite elements in the time variable. We shall estimmate the condition number of the coefficient
matrix in the linear system of equations for a time-stepping procedure. We shall obtain
convergence and accuracy of the approximate solution.

Let us subdivide the interval [0, T] into N small segments of equal length with nodes
ty = te—y + A k= 1,2,... ,N (= T/At). Let Ta; be corresponding finite element
subspaces of C([0,T]), approximating coefficient functions §;(t) in the expression (17). Let
{¥i(t)}r=0,1,. ~n denote the basis of Tas. From (15) it follows that

n ot
Z/ G (T)Vij(r,t)ydr = G4(t), i=1,2,... ,n, (30)
=170
where
Vij(r,t) = / / ei(z)ei(y)o(y, 7z, t)d, (z)d, (y) (31)
TJT
Gilt) = [ alathi(a)d. (2) (32)
T
This is the linear system of Volterra integral equations of the first kind for unknowns §;(¢)

with kernels V;;(7,t). Let ¢;(t) be the orthogonal projection of §;(¢) into Ta,:

m

Gi(t) = i Vi(t). 0<t<t, (33)
k=0

with coefficients ¢¥, which stand for approximate values of §;(tr). As an approximation, we
consider the Galerkin method: Namely, we will find unknown ¢;(¢) satisfying that

/t'” Z / gi (T)Vij(7,O)dr p dt = / W (1)Gi()dt (34)

for m = 1,2,... ,N. Substitution of (33) into these equations yields the linear system of
algebraic equations for unknowns qf:

n m

Zqua =b;", (35)

j=1k=0

where
to
af’j:/ T, (1) /‘I/k(T) Vij(r. t)drdt, (36)
0

b
by =/ U, (1) G (t)dt. (37)
0
Note that a¥; ; depends on the number m of the time step, in general. Inductively suppose
that all qj (F < m — 1) are known. Then, the system of equations (35) can be written in
the form:
n m-—1

qu m=>p"— Z Z q;‘f(lfj. (38)

j=1 k=0
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We shall express this form using matrices and column vectors as follows:

m—1
AT g™ = (o) = Y0 AW, (39)
k=0
Note that all square matrices [A(k)] (k=0,1,... ,m) are symmetric since V;; = Vj; in view

of the reciprocity v(t, 7 : 2,t) = v(x, 7 : y,t) in (31).

Lemma 5.1. The matriz [A™)] is symmetric, positive definite, and all eigenvalues \(A™)
satisfy
8 ;
- hAE Apin(B) < MA™) < aCyAtA ez (B) (40)
'3

with some constant C3 > 0 and Cy > 0, where [B] is the Gram matriz of the basis
{pi(x)}i=12, . n in L*-sense: b;; = (@i, @) 2(rys Amix(B) and Xy (B) are smallest and
largest eigenvalues of [B], respectively.

Proof. The basic idea of the proof is due to Richter[19]. With real numbers & (i =
1,2,... ,n), consider the quadratic form:

n

Q) = D apge

i,7=1

= A’ U, (t) /“.[ \I}m(T)/]_:v/];nh(éE)nh(y)’U(yﬂT o, t)d, (2)d, (y)drdt.

Here we put: np(z) = Z &igi(x) € Vi. Set g}, (z,t) = Uy (t)nn(z). Then we have
i=1

tm
A = [ Gyl st (41)
Jo
From Lemma 3.4 with T = t,, it follows for any ¢ € H' /2‘1/4(2) that

Q4) = (Gqhai)o = BlllahlllTz-1r2-1/3x)
> Al 9ol /gl re1s sy

The last inequality followed from the definition:

M lll-1r2-170 (s = SI;IO)|(((II/119))0|/|||g|||ul/2v1/4(ﬁ)-
g

Take g(x) = np (). Then it becomes

T 2
Q) = 8| [ om0 T OmOdt] My,
T 2
= 3| [ watorit] Tl AT )
3 | T ?
> Lon| [ waat] Il /1.
C2 J0
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The last inequality followed from the inverse assumption (27) with s = 1/2, ¢ = 0. This
implies the positive definiteness of [A(™]. For the finite element base ¥ (t), there exists an
integer p, which is independent on k, such that supp (¥) C [te—p, th+p]. We have

/l’m T, (1)t = O(AY), /l’m @, ()2t = O(A)

0 0

independently of m. We have also that

n
ey = D bij&i&s.

7,j=1
Consequently, there exists a constant C'3(X) such that
¢
Cs
On the other hand, from (41) it follows that

Q(A) > Z=hAF \pin(B)[E% (42)

QM) < |||Gq;1|||ul/2vl/4(x)|||‘I;L|||u*1/2v*1/4(x)
< alllgnllli=1re—1/a g < v Nanlll7e (s

tom
(}"}"2 / |\Ilm (f)|2df||77}’||%2(r)
J0o

ay? AtCs||nnl|3 (T)

IN

with some constant C5 > 0. The second inequality followed from Lemma 3.3. The third
inequality followed from the continuous imbedding;: H’1/2’71/4(E) D L2(X)ihtecntnam >
Consequently there exists a constant Cy(X) such that

Q(A) < aC1 AtA s (B)|E]. (43)
By combining (42) with (43), we can obtain (40). O

Corollary 5.1. The condition number /sz(A(”"k)) of the coefficient matrix in the linear system
of equations (39) satisfies
1

—(B)- (44)

Iﬁ',(44<m) ) S %C’g 04

Proof. From (40) the assertion follows immediately, since

)\,,,,(,H,,(A("")) < al3Cy )\mal‘(B)
Amin (A™) = BRAEL Xpin(B)°

R(AM™)Y) =

O

In order to obtain error estimates of fully discretized approximate solution ¢;(t) of (33),
let us introduce the interpolates q]I» (t) defined by

aj(t) =Y qi(te)Ts(t), 0<t <t (45)
k=0

and we assume the convergence property:
lqj (1) = g;(1)] < CeAt?, 0<t<T (46)

with some constants Cs > 0 and o > 0.
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Remark 5.1. If linear finite element shape functions (roof functions) are used for Ta; and

G;(t) has bounded second derivative, then (46) holds with ¢ = 2; see Strang and Fix[20,
Theorem 3.1] for example.

From (30) we have the next semi-exact equations:

tm

tom n t
/ @, () Z/ ;(T)Vij (7, t)dr dt:/ @, (1)G;(t)dt.
JO j=1" 0 JO

Substituting (34) from this equation we have

tm,
/ \Ijm(f Z/ qJ )] ,,(l )dT dt = 0.
0
Hence

/ot Yn(t) Z/ e (T)Vij(T.t)dr o dt
:/ Z / q; (1) = q;(7)|Vij(r.t)dr 5 dt.

Put e’f = Gj(te) — q’f This indicates the error committed in the time-discretization at
time-space lattice point (Pj,t;) with P; € , . From

m
qht)—qi(t) =D ehTy(t),
k=0
we have
n m
ej‘ af‘J =" (47)
j=1 k=1

where
noog, t
A Z/ \Ilm(t)/ {qJI(T) — q;(7)}Vij (1, t)drdt.
oo 0

Theorem 5.1. Let £(h, At) = h/{AtAnin(B)}. Then the mazimum norm ||[{e™}|| of the

error column vector {e™} = (e",... ,el") satisfies
[[{e™ Hlse < G2At7EExp[G2TE] (48)

with some constant Gy > 0.

Proof. By using the inequalities (16) and (46), v/ can be estimated as follows:

m A a " C7d
o< e [l [ o [ )|Z/|w G4, (@)

Since finite element bases have the properties; —1 < p;(2) < 1 and —1 < Pg(t) < 1, all
integrals involved in the right-hand side are convergent for 1/2 < p < 1. We can see that

t t 1 1—

" 1 1 [t thon
/ |9 (1)) / T dr < / toHdE < pAtT
Jo Jo (t—T1)K 1_:“-tm_p L—p




120 K. SHIROTA AND K. ONISHI
since supp (¥p,) C [tm—p, tm]. Since p; has a locally compact support, that is,

/|w )d, (z) < C7h?

with some constant C; > 0, independent on ¢, we can see that

[y [l 5 [l e [leml s

From (3) and the fact that ¢; has a locally compact support, there exists a constant G,

depending only on , , such that

Gld )
1;16211XZ/|H Y)| R < Gs.

Consequently we have the estimate:

t K .
I{o" H|oo == Inax|u"’| < CCrGaph* At7H! 1'1 ” < GuhPALTH!

with the constant G4 = C4CrGspT" “#/(1— p). Similarly, we can see from (36) that

n tm tryp
> lafyl < / | @, (t |/ | ()| dt
et trmp
- Gud, (y)
x/Wwwﬂzj/m%w»7;Z7¢<m
JT =/

S 2p2AtQC'8C'7h2G3.

Here we have used the inequality:

it dr
U (1) | ———— < 2pAtC
[ e <20y

with some constant Cg > 0. Therefore, there exists a constant G5 such that
n
(k) o . (k) B2 A2
A" || := llélia%nz; |a;;'| < Gsh At
i=
Now we shall show (48). For this purpose, we express (47) in the matrix form:

AT} = (o) — 30 (AW eH),

Using (49) and (50), we can see that

T < AT Hlos < ™ Hl + 3 N e Hl
> k=0

m—1
WAR(GA ™+ G5 > [{e )

k=0

IN

IA

(:

(49)

0)
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From (40) we know that
Cs

‘A(m) —1 oo [ —
AT e < BhAP N pin(B)

Consequently we have the recursive relation for ||{e™}||:

m h o—1 k
< T + E
||{P }” (6)\mzn(B) f ||{P }H%

with some constant Gg > 0. Using the result in Onishi[16, Eq. 4.45], we can see that

™ Hloo < (G{e Hlse + B)(1 + )™~

where
h - hAte ™!
=Gf—-—, [=Gt——.
‘ mzn(B) / 6)\min(B)

From the inequality 1 + x < e” (z > 0), we have
(1+a)m 1t < Exp[Gehm[X,in(B)].

If we can assuine that [[{e"}]|« = 0, we arrive at (48) by noting that m < T/At and
Gy=Gg. O

So far we have considered several solutions; the exact solution g(z,t) of the equation
(15) in H~Y/271/4(D), semi-discretized solution qn(z,t) of the form (17), fully discretized
solution

anaiz,t) = Zq,(f),:,(T) in Tas X S (51)
with ¢;(t) defined by (33), and interpolated solution
= Zq}(t)pj(w) in Tay X Sk (52)

with qjl-(t) defined by (45). Put e(z.t) = g(2,t) — gn a:(2. t). This indicates the total error
of the boundary finite element solution gs A;. We shall estimate e(x,t) in H’l/zf’l/‘*(Z).

Theorem 5.2. Under the assumptions (26), (27) and (46), the total error e(x,t) is bounded
by

ellli—s oy < Goh* 2 lalllgomvrs )

o—1
At {GSATV mnax +Gl)h \ (-B(_)B)E7P[G1Té]}

for 0 < s < 1, with some constants G; > 0 and Gg > 0.
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Proof. From (17), (51) and (52) it follows that

ewt) = fqlest) —an(e.)} + {an(et) — gl (2. 1))
‘Hqilz(T t) = aqn, At(T t)}

= Aal@,t) — qn(x.1) }+Z{q] 4} () }oi()

+Z{q1 —qj(t)}ej(2) (54)

The second term on the most right hand side can be bounded as follows:

n
11D (@5 = aD)eillli 1100y

<l Z{Qﬂ - qjl}99j|||27‘2(z)
= Z/ {30 = dl OH@0 = g} (O}t (i)t

< A TCEAL DA oz (B).

The last inequality followed from (46). The third term on the most right hand side can be
bounded similarly as follows:

n
1] = a)eil lfg-sre-ags,
J=1

IA

n
I Aaf — aideillliz s

i=1

n m
= 2l {Eef‘l’k} Pilllze -
=

Notice that the inequality:

m

Z s (t)

k=0

k
< ol max e} )

holds with some constant Cy > 0. It follows from Theorem 5.1 that

n

|||Z<qj 4)2illlinnm < PCH(max e Il 3 willlze )
j=1

< AVCEGEATE Eap2GaTETnA maz (B).

From Theorem 4.3 and (54), the total error satisfies that

[T
a a. .
< (L4 R llglll e -1

~ A+o—1 /. . / y H(B) GQTh
+ )\/TALL \/E{C()At Amax (B) + Cngh /\—min(B)E{Lp [—AtAmln(B) }

with 0 < s < 1. This completes the proof. O
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