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A BOUNDARY ELEMENT GALERKIN METHOD FOR THE

DIRICHLET PROBLEM OF THE HEAT EQUATION IN NON-SMOOTH

DOMAIN

KENJI SHIROTA AND KAZUEI ONISHI

Abstract. We consider a numerical method for the Volterra-Fredholm integral equa-

tion of the �rst kind corresponding to the Dirichlet problem of heat conduction in a solid

with piecewise Lyapunov surface with corners and edges. To approximate the ill-posed

boundary integral equation we adopt the Galerkin method using boundary �nite element

and one-dimensional �nite element in the time variable. We show the convergence prop-

erty and the stability of the semi-discretized approximate solution using boundary �nite

elements. We estimate the error bound for the full-discretized approximate solution.

1. INTRODUCTION. Recently, numerical solutions of initial-boundary value problems
of the heat equation are often obtained by boundary element methods based on boundary

integral equations, because the approach enables us to treat heat conduction problems with
domains extending to in�nity, with polygonal domains and non-smooth data with much

ease. For the Dirichlet problem, direct methods lead to the approximation of a Volterra
integral equation of the �rst kind. The kernel function involved in the boundary integral
equation corresponds to the single-layer heat potential, which is weakly singular.

The approximation of boundary integral equations in transient heat conduction prob-

lems has been considered by several authors; see Brebbia[2] et al. for example in engi-
neering applications. They used the collocation method with boundary �nite elements as

trial functions on the boundary. As regard to the mathematical analysis, Costabel[4] et
al. and Onishi[17] discussed the Neumann problem and they showed the existence of the
solution of a corresponding Volterra integral equation of the second kind on a non-smooth

boundary. They showed the convergence and the stability of the projection method in
the space of continuous functions. Yang[23], Arnold and Noon[1], and Noon[14] presented

some attempts at boundary element methods using the single-layer heat potential to the
solution of Dirichlet problem on a smooth surface. Okamoto[15] showed an application of
Fourier transform to the Dirichlet problem and proved unconditional stability as well as

conditional convergence of the boundary element approximation for the heat operator in
L2-sense. Pointwise convergence in time was obtained by Lubich and Schneider[11] on a

smooth boundary. The uniform convergence of boundary element solutions and conditional
stability of the boundary element collocation method are proved by Iso[7] for the boundary

integral equation corresponding to an initial-boundary value problem of the heat equation
with the Robin boundary condition on a boundary of class C3.

In this paper, we will show the convergence property and the stability of Galerkin's
method applied to the solution of the boundary integral equation of the Dirichlet problem
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of heat conduction in a solid with piecewise Lyapunov surface with corners and edges in a

more general class. The discussion is carried out for three-dimensional problems, but the
validity of the results remains also for problems in two dimensions.

2. DIRICHLET PROBLEM IN A NON-SMOOTH DOMAIN. We shall con�ne
the geometry of the domain in question. Let 
 be a simply connected bounded open domain

in the three-dimensional Euclidean space R3 and assume that the closed bounded surface
� = @
 consists of a �nite number of open smooth subsurfaces �i (i = 1; : : : ; N) so that

� =
[

1�i�N
�i, where �i = �i [ @�i. Then the surface has a tangent plane at every point

x 2 �i if the tangent plane at the edge point of �i is understood to be the corresponding
half plain. Moreover, the angle � between the exterior normal vector n(x) to �i at x 2 �i
and the vector (x�y) for an arbitrary point y 2 �i (x 6= y) satis�es the Lyapunov condition,
see Michlin[12, p. 285] for example:

j cos �j � L(�)jy � xj� (0 < � < 1); (1)

where L is a global constant depending only on �. The set of points on � where the surface

is not smooth forms corners and edges. This is denoted by �� =
[

1�i�N
@�i, which has zero

Lebesgue volume measure.
Let d�x(y) denote an in�nitesimal solid angle at x 2 R3 subtending the in�nitesimal

surface area d�(y) at y 2 �� ��; see Michlin[12, p. 287]. Then

d�x(y) = � @

@n(y)

�
1

jy � xj

�
d�(y)

=
(y � x) � n(y)
jy � xj3 d�(y): (2)

Remark 2.1. Let I(x) be the index set attributed to the point x, for which x 2 �i with

i 2 I(x). If x 62 �, then I(x) is the null set. Put IC(x) = f1; 2; : : : ; Ng � I(x). For
i 2 I(x) it follows from (1) that j(y � x) � n(y)j=jy � xj3 = j cos �j=jy � xj2 � L=jy � xj2��

for any y 2 �i. Therefore, the integral

Z
�i

d�x(y) is absolutely convergent. For j 2 IC(x),Z
�j

d�x(y) is also convergent since jy�xj � C(x) > 0 for y 2 �j . Hence, �(x) =

Z
�

d�x(y)

is well de�ned for every x 2 R3.

For x 2 �, �(x) is equal to the interior solid angle at the vertex x of the cone, whose side

surface is constructed by all the half ray tangential lines to the surface � radiating from x.
For a piecewise Lyapunov surface � it follows that

sup
x2R3

Z
�

jd�x(y)j = sup
x2R3

Z
�

j(y � x) � n(y)j
jy � xj3 d�(y) = A < +1 (3)

with some constant A. In addition we require � to satisfy

lim
�!0

sup
x2�

W�(x) = ! < 1; (4)

where W�(x) is de�ned by the expression:

W�(x) :=
1

2�

(Z
0<jy�xj��

jd�x(y)j+ j2� ��(x)j
)
: (5)
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Remark 2.2. The piecewise Lyapunov surface satisfying (4) is called Wendland surface.

The condition (4) (Wendland[21]) allows the splitting of the integral operator of the double-
layer potential into the sum of a contraction operator and a completely continuous one in
C(�), which is basic for the validity of the Fredholm-Radon method in potential theory.

We consider the heat equation for unknown temperature u(x; t):

@u

@t
= �u; (x; t) 2 (
 [
e)� (0; T ] (6)

for some �nite value T , in which � is the Laplacian in R3 with respect to the variable x
and 
e denotes the exterior of the domain 
.

On the boundary we consider the Dirichlet condition:

u(x; t) = û(x; t); (x; t) 2 �� [0; T ]: (7)

In addition, we consider the initial condition:

u(x; 0) = u0(x); x 2 
 [
e (8)

for the bounded Cauchy datum u0 in C(
[ 
e). In 
e, the corresponding Cauchy datum

u0 may be assumed to grow at most exponentially:

ju0(x)j � �1 exp[�1jxj�] (9)

with some constants �1 > 0; �1 > 0 and 0 < � < 2; see Krzyzanski[9, p. 455] for example.
We can assume without loss of generality by considering the Weierstrass integral that u0 = 0

in 
 [
e.

3. BOUNDARY INTEGRAL EQUATION OF THE FIRST KIND. We shall de-

rive a boundary integral equation corresponding to the Dirichlet problem (6){(8) and in-
vestigate some properties of the integral operator. We start the discussion with de�nitions

of single-layer heat potential:

Gq(x; t) :=

Z t

0

Z
�

q(y; �)v(y; � : x; t)d�(y)d�; (10)

with the density q and double-layer heat potential:

Hu(x; t) :=

Z t

0

Z
�

u(y; �)
@v(y; � : x; t)

@n(y)
d�(y)d�; (11)

with the density u, where n(y) is the external normal at y to the boundary �. Here, v is

the fundamental solution of the heat operator @=@t ��:

v(y; � : x; t) =

8>><
>>:
 

1

2
p
�(t� �)

!3

exp

�
� r2

4(t� �)

�
(t > �)

0 (t < �)

(12)

with r = jy � xj. Put

g(x; t) :=
1

2
û(x; t) +Hû(x; t); x 2 � (13)

with the expression:

Hû(x; t) =

�
1� �(x)

2�

�
û(x; t) +

Z t

0

Z
�

û(y; �)
r3

(t� �)
v(y; � : x; t)d�x(y)d�: (14)
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According to Costabel[4] et al., unknown boundary ux q = @u=@n in the normal direction

is given as a solution of the linear Volterra-Fredholm boundary integral equation of the �rst
kind:

Gq(x; t) = g(x; t); (x; t) 2 � = �� [0; T ] (15)

Next lemma shows thatG can be understood as a linear bounded operator fromC(Lp(�) :

[0; T ]) into C(�).

Lemma 3.1. The operator G : C(Lp(�) : [0; T ]) ! C(�) de�ned by ( 10) is bounded for

p > 2.

Proof. Using the idea in Pogorzelski[18, p. 353], we have for any � (0 < � < 3=2) the
inequality:

v(y; � : x; t) =
1

22��3=2
1

(t� �)�
1

r3�2�

�
r2

4(t� �)

�(3=2)��
exp

�
� r2

4(t� �)

�

� 1

(t� �)�
G1

r3�2�
(16)

with G1 = sse�s=(22��3=2) and s = 3=2� �. We apply the H�older's inequality to Gq(x; t)
and obtain from (16) that

jGq(x; t)j �
Z t

0

�Z
�

jq(y; �)jpd�
�1=p�Z

�

jvjp0d�
�1=p0

d�

� G1

Z t

0

kq(�; �)kp
�Z

�

1

(t� �)�p
0

1

r(3�2�)p0
d�

� 1

p0

d�

= G1

Z t

0

kq(�; �)kp
(t� �)�

�Z
�

d�

r(3�2�)p0

� 1

p0

d�

� G1

�Z t

0

d�

(t� �)�

��Z
�

d�

r(3�2�)p0

� 1

p0

jjjqjjjC(Lp(�):[0;T ])

with
1

p
+

1

p0
= 1. In view of the inequality (16) we can see that inequalities above are

valid only for such values of � satisfying (3 � 2�)p0 < 2, i.e.,
1

2
(3 � 2

p0
) < �. If we take

� with 0 < � < 1, the integral

Z t

0

d�

(t� �)�
is convergent. Consequently, there exists a

constant C depending only on � and T such that kGqk � CjjjqjjjC(Lp(�):[0;T ]) for the value
1

2
(3� 2

p0
) < 1. The assumption p > 2 is equivalent to

1

2
(3� 2

p0
) < 1.

Remark 3.1. In order to apply the Hilbert space approach in the approximation method
in the next section, we shall regard G as an operator:

G : H�1=2;�1=4(�)! H1=2;1=4(�):

Lemma 3.2. Under the assumption ( 3) and for u 2 C(�), the continuous function g(x; t)
of ( 13) satis�es the inequality:

kgk �
�
3

2
+

A

2�

�
kuk:



BOUNDARY ELEMENT GALERKIN METHOD 111

Proof. The continuity of g(x; t) is shown in Costabel[3] et al.. We shall prove the inequality

of the lemma: By the variable transformation; � 7! � = r=2
p
t� � , Hû(x; t) in (14) can be

expressed as

Hû(x; t) =

�
1� �(x)

2�

�
û(x; t)

+
1

2�

Z
�

(
4p
�

Z 1

r=2
p
t

�2e��
2

û(y; t � r2

4�2
)d�

)
d�x(y):

Consequently, we have

jHû(x; t)j �
�����1� �(x)

2�

����+ 1

2�

Z
�

�
4p
�

Z 1

0

�2e��
2

d�

�
jd�x(y)j

�
kûk

�
�
1 +

A

2�

�
kûk:

The last inequality follows from (3) and from 0 < �(x) < 4�,

Z 1

0

�2e��
2

d� =
p
�=4.

Properties of the integral operator G are now discussed in the space H1=2;1=4(�) and

its dual space H�1=2;�1=4(�), introduced by Lions and Magenes[10, p. 10 and p. 44]: Let
H1=2;1=4(�) be a Sobolev space de�ned by

H1=2;1=4(�) = L2(H1=2(�) : [0; T ]) \H1=4(L2(�) : [0; T ])

equipped with the norm:

jjjwjjj2H1=2;1=4(�) =

Z T

0

kw(�; t)k2H1=2(�)dt+

Z T

0

Z T

0

kw(�; t)�w(�; s)k2L2(�)
jt� sj3=2 dsdt:

We denote by ((�; �))0 the scalar product:

((w1; w2))0 :=

Z T

0

(w1(�; t); w2(�; t))L2(�)dt:

Next two important lemmas are much due to Costabel[3].

Lemma 3.3. There exists a constant � > 0 depending only on � such that

��1jjjqjjjH�1=2;�1=4(�) � jjjGqjjjH1=2;1=4(�) � �jjjqjjjH�1=2;�1=4(�):

The next lemma shows strong coerciveness of the operator G.

Lemma 3.4. There exists a constant � > 0 depending only on � such that

((Gq; q))0 � �jjjqjjj2H�1=2;�1=4(�)

for all q in H�1=2;�1=4(�).
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4. APPROXIMATION ON THE BOUNDARY. In this section, we shall consider

the semi-discretization of the solution by Galerkin method using boundary �nite elements.
We shall show convergence and accuracy of the semi-discretized approximate solution. The
way of arguments is much due to Nedelec and Planchard[13] as well as Hsiao and Wend-

land[5].

Let Vh be �nite-dimensional subspaces of the Hilbert spaceH�1=2(�), approximating the
solution q(x; t) of the Volterra-Fredholm integral equation (10) and (15), such that [h>0Vh
is dense in L2(�) and Vh � Vh0 for h > h0. Put dim(Vh) = n by assuming that n = 1=h for
n = 1; 2; : : : . Let f'j(x)gj=1;2;::: ;n denote the basis of Vh. We consider the approximation

of q(x; t) in the form:

qh(x; t) =

nX
j=1

q̂j(t)'j(x) (17)

with coe�cient functions q̂j(t) (0 � t � T ) to be determined later.

We shall consider the semi-discreteGalerkin approximation: Find unknown qh inH
�1=2;�1=4(�)

satisfying that

((Gqh; q
0
h))0 = ((gh; q

0
h))0 for all q0h 2 Vh; (18)

where gh is an L2-orthogonal projection of g 2 H1=2;1=4(�) into L2(Vh : (0; T )): That is,
with the projector

Ph : g 2 L2(�)! gh 2 L2(Vh : (0; T )):

We assume that kPhgkH1=2;1=4(�) � kgkH1=2;1=4(�). This is equivalent to the proposition:

((Gqh; 'i))0 = ((g; 'i))0 for all 'i 2 Vh; i = 1; 2; : : : ; n: (19)

Theorem 4.1. Let q be the solution of ( 15) in H�1=2;�1=4(�) and qh be a solution of ( 18).

Then, there exists a constant �(�) > 0 such that

jjjq � qhjjjH�1=2;�1=4(�) � �f inf
q0
h
2Vh

jjjq � q0hjjjH�1=2;�1=4(�) + jjjg � ghjjjH1=2;1=4(�)g: (20)

Proof. From (15) we have

((Gq; q0))0 = ((g; q0))0 for all q0 2 H�1=2;�1=4(�): (21)

For an arbitrary q0h in Vh, it follows from Lemma 3.4 that

((G(qh � q0h); qh � q0h))0 � �jjjqh � q0hjjj2H�1=2;�1=4(�)
:

On the other hand, we can see that

((G(qh � q0h); qh � q0h))0 = ((G((q� q0h)� (q � qh)); qh � q0h))0
= ((G(q� q0h); qh � q0h))0 � ((G(q� qh); qh � q0h))0
= ((G(q� q0h); qh � q0h))0 � ((g � gh; qh � q0h))0
� jjjG(q � q0h)jjjH1=2;1=4(�)jjjqh � q0hjjjH�1=2;�1=4(�)

+ jjjg � ghjjjH1=2;1=4(�)jjjqh � q0hjjjH�1=2;�1=4(�)

� f�jjjq � q0hjjjH�1=2;�1=4(�) + jjjg � ghjjjH1=2;1=4(�)g
� jjjqh � q0hjjjH�1=2;�1=4(�):
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The third equality follows from (18) and (21). The last inequality follows from Lemma 3.3.

Combining the above inequalities, we have

�jjjqh � q0hjjjH�1=2;�1=4(�) � �jjjq � q0hjjjH�1=2;�1=4(�) + jjjg � ghjjjH1=2;1=4(�);

from which it follows that

jjjq � qhjjjH�1=2;�1=4(�) � jjjq � q0hjjjH�1=2;�1=4(�) + jjjqh � q0hjjjH�1=2;�1=4(�)

� (1 +
�

�
)jjjq � q0hjjjH�1=2;�1=4(�) +

1

�
jjjg � ghjjjH1=2;1=4(�):

This leads to the desired inequality (20) with � = maxf(1 + �=�); 1=�g.
We can obtain a stronger result in the next theorem, which shows the optimal rate of

convergence of the Galerkin approximation in H�1=2;�1=4(�).

Theorem 4.2 (Cea's lemma). The semi-discrete Galerkin approximation ( 18) is inverse

stable: For the Galerkin solution qh it holds that

jjjq � qhjjjH�1=2;�1=4(�) � (1 +
�

�
) inf
q0
h
2Vh

jjjq � q0hjjjH�1=2;�1=4(�):

Proof. The Galerkin approximation (18) is equivalent to the problem of �nding the unknown

qh of the form (17) in H�1=2;�1=4(�), satisfying the operator equation:

PhGPhqh = Phg: (22)

By the same way of arguments as in Wendland[22, p. 21], we can see from Lemma 3.4 that

�jjjqhjjj2H�1=2;�1=4(�) � ((Gqh; qh))0 = ((PhGPhqh; qh))0

� jjjPhGPhqhjjjH1=2;1=4(�)jjjqhjjjH�1=2;�1=4(�):

The �rst equality followed from the relation:

((GPhqh; qh))0 � ((PhGPhqh; qh))0 = (((I � Ph)GPhqh; qh))0 = 0;

since qh 2 Vh and (I � Ph)GPhqh 2 V ?h , the orthogonal complement of Vh, for every

t 2 [0; T ]. The we have

�jjjqhjjjH�1=2;�1=4(�) � jjjPhGPhqhjjjH1=2;1=4(�):

Since this inequality holds for all qh, we know that PhGPh : H
�1=2;�1=4(�)! H1=2;1=4(�)

is invertible. The inverse is bounded as follows:

jjj(PhGPh)�1jjjH1=2;1=4(�);H�1=2;�1=4(�) := sup
gh 6=0

jjj(PhGPh)�1ghjjjH�1=2;�1=4(�)

jjjghjjjH1=2;1=4(�)

� 1

�
(23)

see Kantorowitsch and Akilow[8, Satz 2, 2.V] for example. From (15) and (22) it follows

that
qh = (PhGPh)

�1PhGq:

This de�nes the Galerkin projectorGh = (PhGPh)
�1PhG : H�1=2;�1=4(�)! H�1=2;�1=4(�).

We shall show that Gh is bounded. For this purpose, we put gh = PhGq. From (23) and

Lemma 3.3 it follows that

jjj(PhGPh)�1PhGqjjjH�1=2;�1=4(�)

� jjj(PhGPh)�1jjjH1=2;1=4(�);H�1=2;�1=4(�)jjjPhGqjjjH1=2;1=4(�)

� �

�
jjjqjjjH�1=2;�1=4(�):
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This implies that Gh is bounded as desired: Namely

jjjGhjjjH�1=2;�1=4(�);H�1=2;�1=4(�) �
�

�
: (24)

Note that Ghq
0
h = q0h for all q0h 2 Vh because

PhGPhq
0
h = PhGq

0
h: (25)

Consequently we have

jjjq � qhjjjH�1=2;�1=4(�) � jjjq � qh
0jjjH�1=2;�1=4(�) + jjjqh � q0hjjjH�1=2;�1=4(�)

= jjjq � q0hjjjH�1=2;�1=4(�) + jjjGhq �Ghq
0
hjjjH�1=2;�1=4(�)

� (1 + jjjGhjjjH�1=2;�1=4(�);H�1=2;�1=4(�))jjjq � q0hjjjH�1=2;�1=4(�)

which leads to the assertion of the theorem from (24).

For the concreteness of the discussion, as Vh we shall consider the regular �nite element

spaces Sh with the following two conditions for some positive integer m; see Hsiao and
Wendland[6, p. 4] for example:

Convergence property: Let t � s be such that �(m + 1) � t � s � m+ 1, �m � s

and t � m for some non-negative integer m. Then for any q 2 Hs(�) there exists a q0h 2 Sh
such that

kq � q0hkHt(�) � C1h
s�tkqkHs(�) (26)

with some constant C1 which is independent on qh and h.

Inverse assumption: Let t � s be such that jtj; jsj � m. Then there exists a constant
C2 independent on h such that

kqhkHs(�) � C2h
t�skqhkHt(�) for all qh 2 Sh: (27)

Remark 4.1. Nedelec and Planchard[13, Lemma 3.1 and Lemma 3.2] showed that, if �
is a polyhedron, linear triangular �nite element spaces satisfy (26) and (27) with m = 1,

provided that all the angles � in the triangulation satisfy � � �0 > 0 with a constant
�0, which is independent of the maximum diameter h among all triangles. For constant
triangular �nite element spaces, the convergence property (26) is satis�ed with m = 0; see

Nedelec and Planchard[13, Lemme 3.4]. However, (27) holds only for �1 � t � s � 0, see
Nedelec and Planchard[13, Lemme 3.3].

As an immediate consequence of Theorem 4.2 and (26) we have

Theorem 4.3. For the semi-discrete Galerkin solution qh with constant boundary �nite

elements on the triangulation of the polyhedron �, it holds that

jjjq � qhjjjH�1=2;�1=4(�) � (1 +
�

�
)C1h

s+1=2jjjqjjjHs;�1=4(�)

with 0 � s � 1.

It happens often that Dirichlet data û(x; t) of (7) or Cauchy data u0(x) of (8) are given
imprecisely due to measurements. The right hand side g(x; t) or (15) can not be obtained

exactly because of the approximate evaluation of the termHû(x; t) in (13) and (14). Due to
the limitation of a �nite number of digits available in the numerical computation, round-o�

errors are not avoidable. These cause the additional impreciseness involved in the right
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hand side g(x; t). We assume that the polluted g, denoted here by ~g, belong to H0;1=4(�).

Instead of (15), we have to solve the equation:

G~q(x; t) = ~q(x; t); (x; t) 2 �: (28)

In this situation we have the ill-posedness of the Galerkin approximation as next theorem
shows.

Theorem 4.4. For the semi-discrete Galerkin solution ~qh of ( 28) with 'i 2 Sh, it holds

that

jjjq � ~qhjjjH�1=2;�1=4(�) � C3fhs+1=2jjjqjjjHs;�1=4(�) + h�1=2jjjg � ~gjjjH0;1=4(�)g

with some constant C3 > 0 and 0 � s � 1.

Proof. Our proof is due to Hsiao and Wendland[6, p. 9]. From (22) it follows that

PhGPh(q � ~qh) = PhGPhq � Ph~g = (PhGPh � PhG)q + Ph(g � ~g):

Using (25) we can see that

PhGPh(q � ~qh) = (PhGPh � PhG)(q� qh
0) + Ph(g � ~g)

for all q0h 2 Sh. Application of (PhGPh)
�1 to both side of the equality yields that

q � ~qh = (I �Gh)(q � q0h)� (PhGPh)
�1Ph(g � ~g):

Consequently, from (23) and (24) it follows that

jjjq � ~qhjjjH�1=2;�1=4(�)

� (1 +
�

�
)jjjq � q0hjjjH�1=2;�1=4(�) +

1

�
jjjPh(g � ~g)jjjH1=2;1=4(�)

� (1 +
�

�
)C1h

s+1=2jjjqjjjHs;�1=4(�) +
1

�
C2h

�1=2jjjg � ~gjjjH0;1=4(�): (29)

The last inequality follows from (26) and (27).

Remark 4.2. For constant elements we can obtain only the �rst inequality of (29). Hence
it is suggested that, when constant elements are used, numerical computationsmust proceed
so that jjjPh(g � ~g)jjjH1=2;1=4(�) is evaluated as small as possible. In other words, the right

hand side is required to be smooth and it should be calculated with high accuracy.

Remark 4.3. A rough estimate of the optimal choice of h may be given from Theorem 4.4
by minimization of the expression in f� � � g with respect to h: From the relation

hs+1 =
1

2

jjjg � ~gjjjH0;1=4(�)

(s+
1

2
)jjjqjjjHs;1=4(�)

;

we have the guideline:

hopt = O(jjjg � ~gjjj
1

s+1

H0;1=4(�)
):
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5. APPROXIMATION IN TIME. In this section, we shall consider a constructive

theory in the full-discretization of the solution by Galerkin method using one-dimensional
�nite elements in the time variable. We shall estimate the condition number of the coe�cient
matrix in the linear system of equations for a time-stepping procedure. We shall obtain

convergence and accuracy of the approximate solution.

Let us subdivide the interval [0; T ] into N small segments of equal length with nodes
tk = tk�1 + �t; k = 1; 2; : : : ; N (= T=�t). Let T�t be corresponding �nite element

subspaces of C([0; T ]), approximating coe�cient functions q̂j(t) in the expression (17). Let
f	k(t)gk=0;1;::: ;N denote the basis of T�t. From (15) it follows that

nX
j=1

Z t

0

q̂j(�)Vij(�; t)d� = Gi(t); i = 1; 2; : : : ; n; (30)

where

Vij(�; t) =

Z
�

Z
�

'i(x)'j(y)v(y; � : x; t)d�(x)d�(y) (31)

Gi(t) =

Z
�

g(x; t)'i(x)d�(x): (32)

This is the linear system of Volterra integral equations of the �rst kind for unknowns q̂j(t)

with kernels Vij(�; t). Let qj(t) be the orthogonal projection of q̂j(t) into T�t:

qj(t) =

mX
k=0

qkj	k(t); 0 � t � tm (33)

with coe�cients qkj , which stand for approximate values of q̂j(tk). As an approximation, we

consider the Galerkin method: Namely, we will �nd unknown qj(t) satisfying that

Z tm

0

	m(t)

8<
:

nX
j=1

Z t

0

qj(�)Vij(�; t)d�

9=
; dt =

Z tm

0

	m(t)Gi(t)dt (34)

for m = 1; 2; : : : ; N . Substitution of (33) into these equations yields the linear system of

algebraic equations for unknowns qkj :

nX
j=1

mX
k=0

qkj a
k
ij = bmi ; (35)

where

akij =

Z tm

0

	m(t)

Z t

0

	k(�)Vij(�; t)d�dt; (36)

bmi =

Z tm

0

	m(t)Gi(t)dt: (37)

Note that akij depends on the number m of the time step, in general. Inductively suppose

that all qkj (k � m � 1) are known. Then, the system of equations (35) can be written in

the form:

nX
j=1

qmj a
m
ij = bmi �

nX
j=1

m�1X
k=0

qkj a
k
ij : (38)
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We shall express this form using matrices and column vectors as follows:

[A(m)]fqmg = fbmg �
m�1X
k=0

[A(k)]fqkg: (39)

Note that all square matrices [A(k)] (k = 0; 1; : : : ;m) are symmetric since Vij = Vji in view
of the reciprocity v(t; � : x; t) = v(x; � : y; t) in (31).

Lemma 5.1. The matrix [A(m)] is symmetric, positive de�nite, and all eigenvalues �(A(m))
satisfy

�

C3

h�t2�min(B) � �(A(m)) � �C4�t�max(B) (40)

with some constant C3 > 0 and C4 > 0, where [B] is the Gram matrix of the basis

f'i(x)gi=1;2;::: ;n in L2-sense: bij = ('i; 'j )L2(�); �mix(B) and �max(B) are smallest and
largest eigenvalues of [B], respectively.

Proof. The basic idea of the proof is due to Richter[19]. With real numbers �i (i =

1; 2; : : : ; n), consider the quadratic form:

Q(A) =

nX
i;j=1

amij �i�j

=

Z tm

0

	m(t)

Z t

0

	m(�)

Z
�

Z
�

�h(x)�h(y)v(y; � : x; t)d�(x)d�(y)d�dt:

Here we put: �h(x) =

nX
i=1

�i'i(x) 2 Vh. Set q
0
h(x; t) = 	m(t)�h(x). Then we have

Q(A) =

Z tm

0

(Gq0h(�; t); q0h(�; t))L2(�)dt: (41)

From Lemma 3.4 with T = tm it follows for any q 2 H1=2;1=4(�) that

Q(A) = ((Gq0h; q
0
h))0 � �jjjq0hjjj2H�1=2;�1=4(�)

� �j((q0h; g))0j2=jjjgjjj2H1=2;1=4(�)
:

The last inequality followed from the de�nition:

jjjq0hjjjH�1=2;�1=4(�) = sup
g 6=0

j((q0h; g))0j=jjjgjjjH1=2;1=4(�):

Take g(x) = �h(x). Then it becomes

Q(A) � �

�����
Z T

0

(�h(�);	m(t)�h(�))L2(�)dt
�����
2

=jjj�hjjj2H1=2;1=4(�)

= �

�����
Z T

0

	m(t)dt

�����
2

k�hk4L2(�)=fTk�hk2H1=2(�)g

� �

C2
2

h

�����
Z T

0

	m(t)dt

�����
2

k�hk2L2(�)=T:
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The last inequality followed from the inverse assumption (27) with s = 1=2; t = 0. This

implies the positive de�niteness of [A(m)]. For the �nite element base 	k(t), there exists an
integer �, which is independent on k, such that supp (	k) � [tk��; tk+�]. We haveZ tm

0

	m(t)dt = O(�t);

Z tm

0

j	m(t)j2dt = O(�t)

independently of m. We have also that

k�hk2L2(�) =
nX

i;j=1

bij�i�j :

Consequently, there exists a constant C3(�) such that

Q(A) � �

C3

h�t2�min(B)j�j2: (42)

On the other hand, from (41) it follows that

Q(A) � jjjGq0hjjjH1=2;1=4(�)jjjq0hjjjH�1=2;�1=4(�)

� �jjjq0hjjj2H�1=2;�1=4(�) � �(�)2jjjq0hjjj2L2(�)

= �2
Z tm

0

j	m(t)j2dtk�hk2L2(�)

� �2�tC5k�hk2L2(�)
with some constant C5 > 0. The second inequality followed from Lemma 3.3. The third
inequality followed from the continuous imbedding: H�1=2;�1=4(�) � L2(�)ihtecntnam >

Consequently there exists a constant C4(�) such that

Q(A) � �C4�t�max(B)j�j2: (43)

By combining (42) with (43), we can obtain (40).

Corollary 5.1. The condition number �(A(m)) of the coe�cient matrix in the linear system
of equations ( 39) satis�es

�(A(m)) � �

�
C3C4

1

h�t
�(B): (44)

Proof. From (40) the assertion follows immediately, since

�(A(m)) :=
�max(A

(m))

�min(A(m))
� �C3C4

�h�t

�max(B)

�min(B)
:

In order to obtain error estimates of fully discretized approximate solution qj(t) of (33),

let us introduce the interpolates qIj (t) de�ned by

qIj (t) =

mX
k=0

q̂j(tk)	k(t); 0 � t � tm (45)

and we assume the convergence property:

jqIj (t)� q̂j(t)j � C6�t
�; 0 < t < T (46)

with some constants C6 > 0 and � > 0.



BOUNDARY ELEMENT GALERKIN METHOD 119

Remark 5.1. If linear �nite element shape functions (roof functions) are used for T�t and

q̂j(t) has bounded second derivative, then (46) holds with � = 2; see Strang and Fix[20,
Theorem 3.1] for example.

From (30) we have the next semi-exact equations:

Z tm

0

	m(t)

8<
:

nX
j=1

Z t

0

q̂j(�)Vij(�; t)d�

9=
; dt =

Z tm

0

	m(t)Gi(t)dt:

Substituting (34) from this equation we have

Z tm

0

	m(t)

8<
:

nX
j=1

Z t

0

[qj(�)� qj(�)]Vij(�; t)d�

9=
; dt = 0:

Hence Z tm

0

	m(t)

8<
:

nX
j=1

Z t

0

[qIj (�)� qj(�)]Vij(�; t)d�

9=
; dt

=

Z tm

0

	m(t)

8<
:

nX
j=1

Z t

0

[qIj (�)� qj(�)]Vij(�; t)d�

9=
; dt:

Put ekj = q̂j(tk) � qkj . This indicates the error committed in the time-discretization at
time-space lattice point (Pj; tk) with Pj 2 �. From

qIj (t)� qj(t) =

mX
k=0

ekj	k(t);

we have

nX
j=1

mX
k=1

ekj a
k
ij = vmi (47)

where

vmi =

nX
j=1

Z tm

0

	m(t)

Z t

0

fqIj (�)� qj(�)gVij(�; t)d�dt:

Theorem 5.1. Let �(h;�t) = h=f�t�min(B)g. Then the maximum norm kfemgk1 of the

error column vector femg = (em1 ; : : : ; e
m
n )

0 satis�es

kfemgk1 � G2�t
��Exp[G2T�] (48)

with some constant G2 > 0.

Proof. By using the inequalities (16) and (46), vmi can be estimated as follows:

jvmi j � C6�t
�

Z tm

0

j	m(t)j
Z t

0

d�

(t� �)�
dt

Z
�

j'i(x)j
nX

j=1

Z
�

j'j(y)j
G1d�(y)

r3�2�
d�(x):

Since �nite element bases have the properties; �1 � 'i(x) � 1 and �1 � 	k(t) � 1, all

integrals involved in the right-hand side are convergent for 1=2 < � < 1. We can see thatZ tm

0

j	m(t)j
Z t

0

d�

(t� �)�
dt � 1

1� �

Z tm

tm��

t1��dt � ��t
t1��m

1� �
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since supp (	m) � [tm��; tm]. Since 'i has a locally compact support, that is,Z
�

j'i(x)jd�(x)� C7h
2

with some constant C7 > 0, independent on i, we can see thatZ
�

j'i(x)j
nX

j=1

Z
�

j'j(y)j
G1d�(y)

r3�2�
d�(x) �

Z
�

j'i(x)jd�(x)max
x2�

nX
j=1

Z
�

j'j(y)j
G1d�(y)

r3�2�
:

From (3) and the fact that 'j has a locally compact support, there exists a constant G3,
depending only on �, such that

max
x2�

nX
j=1

Z
�

j'j(y)j
G1d�(y)

r3�2�
� G3:

Consequently we have the estimate:

kfvmgk1 := max
i
jvmi j � C6C7G3�h

2�t�+1
t1��m

1� �
� G4h

2�t�+1 (49)

with the constant G4 = C6C7G3�T
1��=(1� �). Similarly, we can see from (36) that

nX
j=1

jakij j �
Z tm

tm��

j	m(t)j
Z tk+�

tk��

j	k(�)j
d�

(t� �)�
dt

�
Z
�

j'i(x)j
nX
j=1

Z
�

j'j(y)j
G1d�(y)

r3�2�
d�(x)

� 2�2�t2C8C7h
2G3:

Here we have used the inequality:Z tk+�

tk��

j	k(�)j
d�

(t� �)�
� 2��tC8

with some constant C8 > 0. Therefore, there exists a constant G5 such that

k[A(k)]k1 := max
1�i�n

nX
j=1

ja(k)ij j � G5h
2�t2: (50)

Now we shall show (48). For this purpose, we express (47) in the matrix form:

[A(m)]femg = fvmg �
m�1X
k=0

[A(k)]fekg:

Using (49) and (50), we can see that

kfemgk1
k[A(m)]�1k1

� k[A(m)]fe(m)gk1 � kfvmgk1 +

m�1X
k=0

k[A(k)]k1kfekgk1

� h2�t2(G4�t
��1 +G5

m�1X
k=0

kfekgk1):
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From (40) we know that

k[A(m)]�1k1 � C3

�h�t2�min(B)
:

Consequently we have the recursive relation for kfemgk1:

kfemgk1 � G6
h

�min(B)
(�t��1 +

m�1X
k=0

kfekgk1)

with some constant G6 > 0. Using the result in Onishi[16, Eq. 4.45], we can see that

kfemgk1 � (�̂kfe0gk1 + �̂)(1 + �)m�1

where

�̂ = G6

h

�min(B)
; �̂ = G6

h�t��1

�min(B)
:

From the inequality 1 + x � ex (x � 0), we have

(1 + �̂)m�1 � Exp[G6hm=�min(B)]:

If we can assume that kfe0gk1 = 0, we arrive at (48) by noting that m � T=�t and
G2 = G6.

So far we have considered several solutions; the exact solution q(x; t) of the equation

(15) in H�1=2;�1=4(�), semi-discretized solution qh(x; t) of the form (17), fully discretized
solution

qh;�t(x; t) =

nX
j=1

qj(t)'j(x) in T�t � Sh (51)

with qj(t) de�ned by (33), and interpolated solution

qIh(x; t) =

nX
j=1

qIj (t)'j(x) in T�t � Sh (52)

with qIj (t) de�ned by (45). Put e(x; t) = q(x; t)� qh;�t(x; t). This indicates the total error

of the boundary �nite element solution qh;�t. We shall estimate e(x; t) in H�1=2;�1=4(�).

Theorem 5.2. Under the assumptions ( 26), ( 27) and (46), the total error e(x; t) is bounded

by

jjjejjjH�1=2;�1=4(�) � G7h
s+1=2jjjqjjjHs;�1=4(�)

+
�t��1

h

(
G8�t

p
�max(B) +G9h

s
�(B)

�min(B)
Exp[G2T�]

)
(53)

for 0 � s � 1, with some constants G7 > 0 and G8 > 0.
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Proof. From (17), (51) and (52) it follows that

e(x; t) = fq(x; t)� qh(x; t)g+ fqh(x; t)� qIh(x; t)g
+fqIh(x; t)� qh;�t(x; t)g

= fq(x; t)� qh(x; t)g+
nX

j=1

fq̂j(t)� qIj (t)g'j(x)

+

nX
j=1

fqIj (t)� qj(t)g'j(x) (54)

The second term on the most right hand side can be bounded as follows:

jjj
nX

j=1

(q̂j � qIj )'j jjj2H�1=2;�1=4(�)

� 2jjj
nX

j=1

fq̂j � qIj g'j jjj2L2(�)

= 2
nX

i;j=1

Z T

0

fq̂i(t)� qIi (t)gfq̂j(t)� qIj (t)gdt ('i; 'j)L2(�)

� 2TC2
6�t

2�n�max(B):

The last inequality followed from (46). The third term on the most right hand side can be

bounded similarly as follows:

jjj
nX

j=1

(qIj � qj)'j jjj2H�1=2;�1=4(�) � 2jjj
nX

j=1

fqIj � qjg'j jjj2L2(�)

= 2jjj
nX

j=1

(
mX
k=0

ekj	k

)
'j jjj2L2(�):

Notice that the inequality: �����
mX
k=0

ekj	k(t)

����� � C9( max
0�k�m

kfekgk1)

holds with some constant C9 > 0. It follows from Theorem 5.1 that

jjj
nX
j=1

(qIj � qj)'j jjj2H�1=2;�1=4(�) � 2C2
9 ( max

0�k�m
kfekgk1)2jjj

nX
j=1

'j jjj2L2(�)

� 2C2
9G

2
2�t

2��2Exp[2G2T�]Tn�max(B):

From Theorem 4.3 and (54), the total error satis�es that

jjjejjjH�1=2;�1=4(�)

� (1 +
�

�
)C1h

s+1=2jjjqjjjHs;�1=4(�)

+
p
T�t��1

p
nfC6�t

p
�max(B) +C9G2h

s
�(B)

�min(B)
Exp

�
G2Th

�t�min(B)

�
g

with 0 � s � 1. This completes the proof.
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