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MAXIMAL ARITHMETICAL ALGEBRAS
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Abstract. In this paper we de�ne the notions of semilocal algebra and of maximal

algebra. We prove that any maximal algebra of an arithmetical variety is semilocal.

The main result shows that an algebra of an arithmatical variety is semisimple and

maximal i� it is isomorphic to a �nite product of simple algebras.

All algebras are assumed to be of the same �xed type. Because no confusion will result
we use the same letter, e.g., A, to denote both an algebra and its base set. For notions not
de�ned here, we refer the reader to [4],[8].

For any algebraA, ConA denotes the congruence lattice on A, 1A is the universal congru-

ence and 0A is the trivial congruence on A. We say that the Chinese Remainder Theo-
rem (CHRT, for short) holds in the algebra A if for any �1; : : : ; �n 2 ConA, a1; : : : ; an 2 A,
the condition (ai; aj) 2 �i _ �j for 1 � i; j � n implies the existence of an a 2 A with

(a; ai) 2 �i, for i = 1; : : : ; n. An algebra A veri�es the Chinese Remainder Theorem if and
only if A is arithmetical (i.e., ConA is a distributive lattice and the congruence relations

permute) [8]. A variety composed of algebras with this property is called arithmetical

variety.

Let MaxA denotes the set of maximal congruences on A and RadA = \f�j� 2 MaxAg.
We say that A is semisimple if RadA = 0A (i.e., A is a subdirect product of simple

algebras).

De�nition 1. An algebra A is called semilocal if MaxA is �nite.

Lemma 2. Let A be an algebra that veri�es CHRT. If A is semilocal, then A=RadA is

isomorphic to a �nite direct product of simple algebras.

Proof. Let MaxA = f�1; : : : ; �ng and let be ' : A=RadA!

nQ

i=1

A=�i the morphism given

by '(x=RadA) = (x=�1; : : : ; x=�n). This map is injective. We shall prove that ' is also

surjective; if y = (x=�1; : : : ; x=�n) 2
nQ

i=1

A=�i, then because �i _ �j = 1A for 1 � i; j � n,

i 6= j and A veri�es CHRT there is x 2 A such that x=�i = xi=�i, for i = 1; : : : ; n so
'(x=RadA) = y.

Corollary 3. Let A be an algebra that veri�es CHRT. If A is semisimple and semilocal,

then A is isomorphic to �nite direct product of simple algebras.

De�nition 4. An algebra A is called artinian if every descending chain of congruences

in A eventually stops.

Proposition 5. LetA be an algebra that veri�es CHRT. Then A is semilocal i� A=RadA
is artinian.
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Proof. If A is semilocal, by Lemma 2 it follows thatA=RadA is isomorphic to
nQ

i=1

Ai, where

Ai are simple algebras for i = 1; : : : ; n. Let pi :
nQ

i=1

Ai ! Ai be the canonical projections, for

i = 1; : : : ; n; becauseAi for i = 1; : : : ; n are simple, it is easy to see that kerpi 2Max(
nQ

i=1

Ai).

For � 2 Max(
nQ

i=1

Ai) we have 0 = ker p1 ^ : : : ^ ker pn � �, then there exists i such that

� = ker pi; it follows that Max(
nQ

i=1

Ai) = fker p1; : : : ; ker png. Now let be � 2 Con(
nQ

i=1

Ai)

and suppose � � kerpi for i 2 I � f1; : : : ; ng and for i 2 f1; : : : ; ngnI the previous inclusion

is not valid. Then � = � _ 0 = � _ (ker p1 ^ : : : ^ ker pn) = (� _ ker p1)^ : : : ^ (� _ ker pn) =
^fker piji 2 Ig, because � _ ker pi = 1 for i 2 f1; : : : ; ngnI. In this way we proved that

Con(
nQ

i=1

Ai) is �nite, in particular
nQ

i=1

Ai is artinian, i.e. A=RadA is artinian.

Conversely, suppose that A=RadA is artinian and A is not semilocal. Then there exists

a sequence (�n)n2N of distinct elements in MaxA, and we obtain a descending sequence
�1 � �2 � �3 � : : : , �n 6= �n+1, for all n 2 N , where �n = �1 ^ �2 ^ : : : ^ �n. Then the

sequence (�n=RadA)n2N is an in�nite descending chain in A=RadA, a contradiction.

Remarks.

1) The proof of the previous proposition shows that the following assertions are true
for an algebra A which veri�es CHRT:

a) A is semilocal i� Con(A=RadA) is �nite;

b) If A is semisimple then A is semilocal i� ConA is �nite.
2) Theorem 2.6 of [9] is a particular case of the previous proposition.

De�nition 6.

a) LetA be an algebra. We shall say that the family f(xi; �i)ji 2 Ig, xi 2 A, �i 2 ConA
has the property (�) if for any �nite subset 4 of I there exists x4 2 A such that

(x4; xi) 2 �i for any i 2 4.
b) The algebra A will be called maximal if for any family f(xi; �i)ji 2 Ig having

property (�) there exists x 2 A such that (x; xi) 2 �i for any i 2 I.

Lemma 7. If A is an algebra such that ConA is �nite then A is maximal.

Proof. Let f(xi; �i)ji 2 Ig be a family having property (�). If (xi; �i) and (xj; �j) are two
elements such that �i = �j it follows by (�) that (xi; xj) 2 �i. Because ConA is �nite and

the family f(xi; �i)ji 2 Ig has the property (�) it follows that there exists x 2 A such that
(x; xi) 2 �i for any i 2 I.

Proposition 8. Let A be an algebra that veri�es CHRT. If A is maximal then A is

semilocal.

Proof. We start the proof with the remark that any family f(x�; �)j� 2 MaxAg has the

property (�), because A veri�es CHRT and for �; �0 2 MaxA, � 6= �0 we have � _ �0 = 1A.
A being maximal there exists x� 2 A such that (x�; x�) 2 � for any � 2 MaxA.

Consider the binary relation on A given by:
�� = f(x; y) 2 A�Ajf� 2MaxAj(x; y) 62 �g is �nite g.

Then �� is a congruence on A, because:

-�� is obviously an equivalence relation on A;
- if f is an p-ary operation on A and (ai; bi) 2 �� for i = 1; : : : ; p, denoting by Ii = f� 2

MaxAj(ai; bi) 2 �g and using the de�nition of �� we obtain MaxAnIi is �nite for i = 1; : : : ; p.
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For � 2 \fIiji = 1; : : : ; pg it follows that (ai; bi) 2 �, hence (f(a1; : : : ; ap); f(b1; : : : ; bp)) 2

� so f� 2 MaxAj(f(a1; : : : ; ap); f(b1; : : : ; bp)) 62 �g � MaxAn(\fIiji = 1; : : : ; pg) =
[fMaxAnIiji = 1; : : : ; pg. The last set being �nite we obtain (f(a1; : : : ; ap); f(b1; : : : ; bp)) 2
��.

Let be a 2 A �xed; for each � 2MaxA there exists b� 2 A such that (a; b�) 62 �, because
� 6= 1A. The family f(a; ��)g[f(b�; �)j� 2MaxAg has the property (�). In fact if we consider

a �nite subfamily f(a; ��)g[f(b1; �1); : : : ; (bn; �n)g of the given family, using the de�nition of
�� we obtain \f�j� 2MaxAnf�1; : : : ; �ngg � ��. Let be the family f(b1; �1); : : : ; (bn; �n)g[
f(a; �)j� 2 MaxAnf�1; : : : ; �ngg. Using the start of the proof there exists x� 2 A such

that (x�; bi) 2 �i for i = 1; : : : ; n and (x�; a) 2 � for any � 2 MaxAnf�1; : : : ; �ng, hence
(x�; a) 2 \f�j� 2 MaxAnf�1; : : : ; �ngg and by the de�nition of �� we obtain (x�; a) 2 ��,

so the given family has property (�).

The algebra A being maximal there is a� 2 A such that (a�; a) 2 �� and (a�; b�) 2 � for

any � 2MaxA. But (a; b�) 62 �, for any � 2MaxA, hence (a; a�) 62 � for any � 2MaxA. So
MaxA = f� 2MaxAj(a; a�) 62 �g and using the de�nition of �� and the fact that (a�; a) 2 ��

we obtain that MaxA is �nite, i.e. the algebra A is semilocal.

Lemma 9. Let V be a congruence distributive variety. A �nite direct product of
maximal algebras of V is maximal.

Proof. LetA1; A2 2 V be two maximal algebras andA = A1�A2. Consider f((ai1; ai2); �i)ji 2
Ig ai1 2 A1, ai2 2 A2, �i 2 ConA a family in A having property (�). For � 2 ConA we

denote by �1 the congruence on A1 given by the following stipulation: (a; b) 2 �1 if there
exist c; d 2 A2 such that ((a; c); (b; d)) 2 �_kerp1, where p1 : A1�A2 ! A1 is the canonical

projection; similarly we associate to � the congruence �2 on A2.

Now consider the family f(ai1; �i1)ji 2 Ig in A1 which obviously has property (�). Be-
cause A1 is maximal there is x 2 A1 such that (x; ai1) 2 �i1 for any i 2 I. Similarly there

is y 2 A2 such that (y; ai2) 2 �i2 for any i 2 I. By construction of �i1 and �i2 there exist
ci; di 2 A2 and si; ti 2 A1 such that:

((x; ci); (ai1; di)) 2 �i _ ker p1 and ((si; y); (ti; ai2)) 2 �i _ ker p2 for any i 2 I. Then
((x; y); (ai1; ai2)) 2 �i _ ker p1 and ((x; y); (ai1; ai2)) 2 �i _ ker p2 for any i 2 I. Hence

((x; y); (ai1; ai2)) 2 (�i_ker p1)^ (�i_kerp2) for any i 2 I; but (�i_ker p1)^ (�i_kerp2) =
�i _ (ker p1 ^ ker p2) = �i _ 0A = �i. Finally A = A1 � A2 is maximal.

Theorem 10. Let V be an aritmethical variety and A 2 V . The following assertions
are equivalent:

1) A is semisimple and maximal;
2) A is isomorphic to �nite direct product of simple algebras.

Proof. 1)) 2) By proposition 8 A is semilocal and then we apply Corollary 3.

2)) 1) Each simple algebra is maximal by Lemma 8, hence by Lemma 9 it follows that
A is maximal.

Now we give some applications of the previous theorem in concrete varieties of algebras.
The varieties B of Boolean algebras, LM-n of n-valued Lukasiewicz-Moisil algebras (see

[2]), MV of MV-algebras (see [6]), 1-Ab of abelian 1-groups (see [1]), are aritmethical
varieties. Any algebra of B or LM-n is semisimple. In these particular varieties, using

Theorem 10 we obtain the following results:

Corollary 11.

1) Let A 2 B. Then A is maximal i� there is a natural number n such that A �= 2n

where 2 = f0; 1g.
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2) Let be A 2 LM-n. Then A is maximal i� A is isomorphic to a �nite direct product

of subalgebras of Ln = f0; 1=n� 1; : : : ; n � 2=n� 1; 1g.
3) Let be G 2 1-Ab an archimedean group. Then G is maximal i� G is isomorphic

to a �nite direct product of real groups.

4) Let be A 2MV. Then A is semisimple and maximal i� A is isomorphic to a �nite
direct product of locally-�nite MV-algebras.
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