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A NEW PROOF OF A FIXED POINT THEOREM OF EDELSTEIN
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Abstract. In this paper, we give a new proof of a well known theorem of Edelstein [3]

concerning the �xed point of contractive mappings. The method of the new proof is also used

to prove the related results of Smithson [8] and Park [7].

1. INTRODUCTION.

Let (X; d) be a metric space and f :X ! X. Suppose that there exists a constant
h, 0 � h < 1, such that

(1) d(f(x); f(y))< hd(x; y) for all x; y 2 X;x 6= y:

A classical theorem of Banach states that a mapping f de�ned on a complete metric space
(X; d) that satis�es condition (1) has a unique �xed point in X. Edelstein [3] made signi�-

cant contribution in the area of �xed point theory by considering the contractive condition
in which h is allowed to be 1, -i.e.

(2) d(f(x); f(y)) < d(x; y) for all x; y 2 X;x 6= y:

A mapping satisfying condition (2) is called contractive. It is the purpose of this note to
provide a new proof of this well know result of Edelstein. Two additional related results
of Smithson [8] and Park [7] are quoted and given new proofs to demonstrate that the

technique of new proof provided here can be modi�ed to prove other results. Edelstein
subsequently gave conditions under which a contractive mapping has a �xed point. For an

element x 2 X, the sequence of iterates by f will be called an orbit of x and denoted by
O(x), -i.e. O(x) = fxn : xn = f(xn�1); x0 = xg. Edelstein proved the following result;

Theorem 1.1. If f is a contractive mapping of X and if an orbit O(x) has a cluster point

�, then � is a unique �xed point of f .

The theorem of Edelstein was extended to hold by Smithson [8] in the setting of multi-
valued contractive mappings. We denote the class of all nonempty closed bounded subsets
of X by CB(X). For A,B 2 CB(X), H(A;B) denotes the Hausdor� distance between A

and B. T :X ! CB(X) will be called a multivalued contractive mapping if

(3) H(T (x); T (y)) < d(x; y) for all x; y 2 X; x 6= y:

An orbit O(x) of a multivalued mapping T at x is a sequence fxnjxn 2 Txn�1; x0 = xg.

Moreover, an orbit O(x) is called a regular orbit if

(4) d(xn+1; xn+2) � d(xn; xn+1) and d(xn+1; xn+2) � H(Txn; Txn+1):

The following is the result of Smithson from [8].
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Theorem 1.2. Let (X; d) be a metric space and T :X ! CB(X) a multivalued contractive

mapping. If there is a regular orbit O(x) for T which contains a convergent subsequence
xni ! y0 such that xni+1 ! y1, then y1 = y0 (-i.e. T has a �xed point in X).

Another extension of Edelstein's theorem was made by Park [7]. Park considered Edel-

stein's result in the setting of f -contractive mappings. Let f be a continuous mapping of
X into X. A mapping g:X ! X is said to be f-contractive if

(5) d(g(x); g(y)) < d(f(x); f(y)) for all x; y 2 X; g(x) 6= g(y):

The idea of this extension originates with the paper of Jungck [4] who considered �xed point

theorem for the class of f -contractions that generalizes the Banach contraction mapping
principle. An extension made by Park (Theorem 1.3 below) to the result of Edelstein is

one of numerous �xed point results that were also obtained by many other authors who
studied the classes of f -contractive and f -contraction mappigs. For example, Kaneko [6]
proved a �xed point theorem for f -contraction multi-valued mappings and his result and

that of Smithson mentioned above were recently generalized to multi-valued f -contractive
mappings by Da�er and Kaneko [2]. Let Cf denote the family of all mappings g:X ! X

such that g(X) � f(X) and g � f = f � g. Given x 2 X, and a mapping g 2 Cf , an f-orbit

Of (x) of x under g is de�ned by

Of (x) = fxnjf(xn) = g(xn�1); x0 = xg:

The result of Park [7] is the following;

Theorem 1.3. A continuous self-mapping f of X has a �xed point if and only if there
exists an f contractive mapping g 2 Cf such that for some x0 2 X, there is an f -orbit

Of (x0) which has a cluster point � 2 X. Indeed, f and g have the unique common �xed
point f(�).

In the recent paper [1], the present authors observed that the commutativity condition

imposed upon f and g restricts an application of theorem 1.3 to solving certain classes of
operator equations. It was demonstrated that without the commutativity assumption, it is
still possible to guarantee the existence of a coincidence point of f and g,-i.e., a point x such

that f(x) = g(x). It was also shown in that paper that the existence of such a coincidence
point is all that is required to establish the solvability of certain classes of nonlinear integral

equations.

2. FIXED POINT THEOREMS.

In this section, we present new proofs of theorems 1.1, 1.2 and 1.3 which are described in

Introduction. The current method of proofs is, in our opinion, more succinct and straight-
forward than the original proofs of these theorems.

Proof of Theorem 1.1. Let fxnkg be a convergent subsequence of O(x) = fxng such

that xnk ! �. If anywhere along the orbit O(x), we have d(xn�1; xn) = 0, this means
that f(xn�1) = xn�1 and xn�1 is a �xed point of f . Thus without loss of generality we

assume that d(xn�1; xn) > 0, for all n. Since f is contractive, it is continuous on X and the
sequence fcng de�ned by cn = d(xn; xn+1) is monotonically strictly decreasing. Hence

lim
k!1

cnk = lim
k!1

d(xnk ; xnk+1)

= lim
k!1

d(xnk ; f(xnk))

= d(�; f(�)) = c:
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If c > 0, since f is contractive, we get

c
0 = d(f(�); f(f(�)))< d(�; f(�)) = c:

By continuity, limk!1 d(f(xnk); f(f(xnk))) = c
0. Thus

d(f(xnk); f(f(xnk))) = d(xnk+1; xnk+2) < c;

for almost all k. This is a contradiction, since

c < d(xnk+2 ; xnk+2+1) = d(xnk+2 ; f(xnk+2 )) < d(xnk+1; xnk+2) < c:

Hence c = 0 and f(�) = �. The uniqueness of � follows since if f(�) = �, f(�) = � and
� 6= �, then we obtain a contradiction by d(�; �) = d(f(�); f(�)) < d(�; �). Q.E.D.

The proof of theorem 1.2 given by Smithson [8], for most of its part, is based upon the

proof of Edelstein in [3]. A new and shorter proof is now presented.

Proof of Theorem 1.2. As in the proof of theorem 1.1 given above, if, for some n,
d(xn�1; xn) = 0 , then d(xn�1; T (xn�1)) � d(xn�1; xn) = 0. Since T (xn�1) is closed,

xn�1 2 T (xn�1) and xn�1 is a �xed point of T . Hence assume that d(xn�1; xn) > 0 for all
n. Since T is contractive and O(x) is regular, cn = d(xn; xn+1) is monotonically strictly
decreasing. Let c = limn!1 cn. By assumption,

lim
k!1

cnk = lim
k!1

d(xnk ; xnk+1) = d(y0; y1) = c:

If c > 0, then since T is contractive,

c
0 = H(T (y0); T (y1)) < d(y0; y1) = c:

By the continuity of T , given � > 0,c0 + � < c, there exists N such that for all k � N ,

H(T (xnk); T (xnk+1)) � c
0 + � < c:

Thus we obtain a contradiction that

c < d(xnk+1 ; xnk+1+1) � d(xnk+1; xnk+2) � H(T (xnk); T (xnk+1)) < c:

Thus y0 = y1 and y0 2 T (y0). Q.E.D.

We are now ready to prove theorem 1.3. To put a special emphasis on a coincidence point

whose importance was mentioned in the comments following Theorem 1.3, we restate the
theorem in a slightly di�erent way. Without the commutativity condition, one can guarantee

the existence of a coincidence point. Our proof, however, requires stronger conditions on
f . We recall from [5] the de�nition of compatible mappings. Self mappings f and g of a

metric space (X; d) are compatible if and only if whenever fxng is a sequence in X such
that f(xn), g(xn)! t 2 X, then d(f(g(xn)); g(f(xn)))! 0.
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Theorem 2.1. Let X be a metric space and g an f -contractive self-mapping of X with

g(X) � f(X). Let f be continuous and one-to-one with f
�1 also continuous on f(X). If,

for some x 2 X, an f -orbit of x under g has a cluster point, then f and g have a coincidence

point x�,-i.e., g(x�) = f(x�). Moreover, if f and g are compatible and if fn(x�)! y, then
y is the unique common �xed point of f and g.

Proof. Let cn = d(f(xn+1); f(xn)) for each n = 0; 1; � � � , x0 = x. If cn = 0, then cm = 0
for all m � n. To see this, let cn = 0 but cn+1 > 0. Then since g is f -contractive,

0 < d(f(xn+2); f(xn+1)) = d(g(xn+1); g(xn)) < d(f(xn+1); f(xn)) = cn:

This is a contradiction. Now if cn = 0 for some n, then 0 = cn = d(f(xn+1); f(xn))
= d(g(xn); f(xn)), and xn is a coincidence point of f and g, (hence also xm for all m � n).
We therefore assume that cn > 0, for all n. First observe that fcng is monotonically strictly

decreasing, since

cn+1 = d(f(xn+2); f(xn+1)) = d(g(xn+1); g(xn)) < d(f(xn+1); f(xn)) = cn:

Thus limn!1 cn = c � 0: we need to show that c = 0. By hypothesis, there is a subsequence

fxnkg of the f -orbit that converges, say limk!1 xnk = x
�. It follows from the hypotheses

that g is continuous. We thus have

c = lim
k!1

cnk = lim
k!1

d(f(xnk+1); f(xnk))

= lim
k!1

d(g(xnk); f(xnk))

= d(g(x�); f(x�)):

Now if c > 0, then since g(X) � f(X) we obtain the following contradiction.

c = d(g(x�); f(x�)) = d(f(f�1(g(x�))); f(x�))

> d(g(f�1(g(x�))); g(x�))

= lim
k!1

d(g(f�1(g(xnk))); g(xnk))

= lim
k!1

d(g(f�1(f(xnk+1))); g(xnk))

= lim
k!1

d(g(xnk+1); g(xnk))

= lim
k!1

d(f(xnk+2); f(xnk+1))

= lim
k!1

cnk+1 = c:

Thus, c = 0 and we have g(x�) = f(x�):

If f and g are compatible, then by Proposition 2.2 of [5], they commute at their coinci-
dence point. Hence fn(g(x�)) = g(fn(x�)) = f

n+1(x�) for all n, and if limn!1 f
n(x�) = y,

then g(y) = y = f(y). If f and g have a common �xed point z 6= y, then d(f(y); f(z)) > 0,
because f is one-to-one. Hence by contractivity, d(y; z) = d(g(y); g(z)) < d(f(y); f(z)) =
d(y; z). This contradiction leads to conclude that y is a unique common �xed point. Q.E.D.
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