FEKETE-SZEGÖ PROBLEM AND LITTLEWOOD-PALEY CONJECTURE FOR POWERS OF CLOSE-TO-CONVEX FUNCTIONS

K. Farahmand and Jay M. Jahangiri

(In the memory of Professor M. J. Shah of Kent State University.)

Received March 21, 1997; revised July 3, 1997

ABSTRACT. We obtain sharp Fekete-Szegö inequalities for powers of a class of close-to-convex functions. We also show that the Littlewood-Paley conjecture fails for these functions. A previous result by the second author is also improved in this paper.

1. Introduction. Let \mathcal{A} be the family of functions f of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \tag{1}$$

that are analytic in the unit disk $\Delta = \{z : |z| < 1\}$ and S be the subfamily of A consisting of functions univalent in Δ . Let $\gamma > 0$. For f of the form (1) and for the Koebe function $k(z) = z/(1-z)^2$, we write

$$\left\{\frac{f(z)}{z}\right\}^{\frac{1}{\gamma}} = 1 + \sum_{n=1}^{\infty} a_n(\gamma) z^n \tag{2}$$

and

$$\left\{\frac{k(z)}{z}\right\}^{\frac{1}{\gamma}} = 1 + \sum_{n=1}^{\infty} b_n(\gamma) z^n.$$
 (3)

By equating the coefficients of the like terms in (2) and (3) we obtain

$$a_1(\gamma) = \frac{1}{\gamma} a_2 \ , \ a_2(\gamma) = \frac{1}{\gamma} \left(a_3 - \frac{\gamma - 1}{2\gamma} a_2^2 \right)$$
 (4)

and

$$b_n(\gamma) = \frac{2(2+\gamma)(2+2\gamma)...(2+(n-1)\gamma)}{(n!)\gamma^n}.$$
 (5)

We consider the inequality

$$|a_n(\gamma)| \le b_n(\gamma) \tag{6}$$

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 30C45; 30C50.

Key words and phrases. Fekete-Szegö Inequalities, Littlewood-Paley Conjecture, Starlike and Close-to-convex Functions.

The work of the second author was supported by the Kent State University Research Council .

and for $-\infty < \mu < \infty$ we write

$$M(\gamma) = |a_2(\gamma) - \mu a_1^2(\gamma)|. \tag{7}$$

The inequality (6) is true [16] if $\gamma \leq 1$ and is false for $\gamma > 1$. For $\gamma = 1$, (6) was conjectured by Bieberbach [3] in 1900+16 and was proved by de Branges [8] in 2000-16. Since then many authors studied alternative approaches to the Bieberbach conjecture. The most recent and shortest is given by Ekhad and Zielberger [12]. For $\gamma = 2$, (6) is the Littlewood-Paley [26] conjecture which was disproved by Fekete-Szegő [13]. In fact, Fekete and Szegő [13] obtained sharp bounds for M(1) when $0 \le \mu \le 1$. The expression $M(\gamma)$ in (7) has many applications and analogous Fekete-Szegö problems for subclasses of \mathcal{A} and \mathcal{S} proved to be of interest. For example, see Kim and Minda [23, Theorems 1 and 2] and Chua [7, Lemma 2]. It is known that (6) holds for functions that are starlike in Δ and does not hold for close-to-convex functions (see [18]) when $\gamma > 3$. It is of interest to see if there exists a subfamily of closeto-convex functions, larger than the class of starlike functions, for which (6) holds. The answer to this question is still open. We note that $M(\gamma)$ of (7) when $\mu = 0$ is an effective tool to check the validity of the inequality (6). The second author in [18 & 20] used $M(\gamma)$ to show that the inequality (6) is false for some subclasses of Bazilevič and close-to-convex functions. The upper bound for $M(\gamma)$ when f belongs to various subclasses of A and S has been studied by many different authors including [1,2,4,7,9,10,13-31]. Recently, Darus and Thomas [9] considered the class $K(\alpha, \beta)$, $0 \le \alpha < 1$, $0 \le \beta < 1$ consisting of functions $f \in \mathcal{A}$ so that

$$Re\frac{zf'(z)}{g(z)} > \alpha, z \in \Delta$$
 (8)

for some $g \in \mathcal{A}$ satisfying the condition

$$Re\frac{zg'(z)}{g(z)} > \beta, \ z \in \Delta.$$
 (9)

Draus and Thomas [9] obtained sharp upper bounds for M(1) when $f \in K(\alpha, \beta)$. In this paper we generalize their results to the case $\gamma \geq 1$ for $M(\gamma)$ given by (7). Furthermore, we disprove the inequality (6) for certain γ when $f \in K(\alpha, \beta)$. This improves an earlier result obtained by the second author [18].

2. Fekete-Szegő Problem.

To prove our theorem in this section we shall need the following well-known lemmas.

2.1. Lemma. Let $p(z) = 1 + \sum_{n=1}^{\infty} p_n z^n$ be analytic in Δ so that $Re\{p(z)\} > 0$ in Δ . Then

$$|p_n| \le 2 \tag{10}$$

and

$$|p_2 + \lambda p_1^2| \le 2 + \lambda |p_1|^2 \quad if \quad \lambda \ge -\frac{1}{2}.$$
 (11)

2.2. Lemma. For $0 \le \beta < 1$ let $g(z) = z + b_2 z^2 + b_3 z^3 + ...$ be in \mathcal{A} and satisfy the condition (9). Then for μ real,

$$|b_3 - \mu b_2^2| \le (1 - \beta) \max\{1, |3 - 2\beta - 4(1 - \beta)\mu|\}. \tag{12}$$

The inequality (10) was first proved by Carathéodory [5] (also see Duren [11] page 41) and the inequality (11) can be found in [18]. The inequality (12) was given by Keogh and Merkes [22]. We now state and prove our theorem.

2.3. Theorem. For f given by (1) let $f \in K(\alpha, \beta)$ where $0 \le \alpha < 1$ and $0 \le \beta < 1$. Then for $\gamma \ge 1$ and for $-\infty < \mu < \infty$ we have the following sharp bounds.

2.3.1. If
$$\mu \leq \frac{(1-\beta)(\gamma+3)+3(1-\alpha)(1-\gamma)}{6(2-\alpha-\beta)}$$
 then

$$|a_2(\gamma) - \mu a_1^2(\gamma)| \le \frac{(3 - 2\alpha - \beta)[(1 - \beta)(\gamma + 3 - 6\mu) + 2\gamma] + 3(1 - \alpha)^2(1 - \gamma - 2\mu)}{6\gamma^2}.$$

2.3.2. If $\frac{(1-\beta)(\gamma+3)+3(1-\alpha)(1-\gamma)}{6(2-\alpha-\beta)} \le \mu \le \frac{3+\gamma}{6}$ then

$$|a_2(\gamma) - \mu a_1^2(\gamma)| \le \frac{3 - 2\alpha - \beta}{3\gamma} + \frac{2(1 - \beta)^2(\gamma + 3 - 6\mu)}{9\gamma(\gamma - 1 + 2\mu)}.$$

2.3.3. If $\frac{3+\gamma}{6} \le \mu \le \frac{4\alpha\gamma(1-\alpha) + (2-\alpha-\beta)[6(1+\gamma) - (\alpha+\beta)(3+\gamma)]}{6(2-\alpha-\beta)^2}$ then

$$|a_2(\gamma) - \mu a_1^2(\gamma)| \le \frac{3 - 2\alpha - \beta}{3\gamma}.$$

2.3.4. If $\mu \ge \frac{4\alpha\gamma(1-\alpha)+(2-\alpha-\beta)[6(1+\gamma)-(\alpha+\beta)(3+\gamma)]}{6(2-\alpha-\beta)^2}$ then

$$|a_2(\gamma) - \mu a_1^2(\gamma)| \leq \tfrac{3 - 2\alpha - \beta}{3\gamma} + \tfrac{\mu(2 - \alpha - \beta)^2}{\gamma^2} + \tfrac{4\alpha\gamma(\alpha - 1) + (2 - \alpha - \beta)[(\alpha + \beta)(3 + \gamma) - 6(1 + \gamma)]}{6\gamma^2}$$

Proof. For some $g(z) = z + b_2 z^2 + b_3 z^3 + ...$ in \mathcal{A} and satisfying the condition (9) we let f(z) of the form (1) to be in $K(\alpha, \beta)$. Then we can write

$$\frac{zg'(z)}{g(z)} = \beta + (1 - \beta)p(z),\tag{13}$$

and

$$\frac{zf'(z)}{g(z)} = \alpha + (1 - \alpha)q(z),\tag{14}$$

where both $p(z) = 1 + p_1 z + p_2 z^2 + ...$ and $q(z) = 1 + q_1 z + q_2 z^2 + ...$ are analytic in Δ and $Re\{p(z)\} > 0$ and $Re\{q(z)\} > 0$ in Δ . Equating the coefficients of the like terms in (13) and (14) we obtain

$$b_2 = (1 - \beta)p_1,\tag{15}$$

$$2b_3 = (1 - \beta)(p_2 + b_2 p_1), \tag{16}$$

$$2a_2 = (1 - \alpha)q_1 + (1 - \beta)p_1,\tag{17}$$

and

$$6a_3 = 2(1-\alpha)[q_2 + (1-\beta)p_1q_1] + (1-\beta)[p_2 + (1-\beta)p_1^2].$$
(18)

Substituting for a_2 and a_3 in (4) yields

$$a_1(\gamma) = \frac{a_2}{\gamma} = \frac{(1-\alpha)q_1 + (1-\beta)p_1}{2\gamma},$$
 (19)

and

$$a_2(\gamma) = \frac{1}{\gamma} \left(a_3 + \frac{1 - \gamma}{2\gamma} a_2^2 \right) \tag{20}$$

$$= \frac{1}{\gamma} \left\{ \frac{1-\alpha}{3} \left[q_2 + \frac{3(1-\gamma)(1-\alpha)}{8\gamma} q_1^2 \right] + \frac{1-\beta}{6} \left[p_2 + \frac{(1-\beta)(3+\gamma)}{4\gamma} p_1^2 \right] + \frac{(1-\alpha)(1-\beta)(3+\gamma)}{12\gamma} p_1 q_1 \right\}.$$

Consequently $M(\gamma)$ of (7) can be written as follows:

$$\begin{split} &\gamma M(\gamma) = \gamma |a_2(\gamma) - \mu a_1^2(\gamma)| \\ &= \left| \frac{1-\alpha}{3} \left[q_2 + \frac{3(1-\alpha)(1-\gamma-2\mu)}{8\gamma} q_1^2 \right] + \frac{1-\beta}{6} \left[p_2 + \frac{(1-\beta)(\gamma+3-6\gamma)}{4\gamma} p_1^2 \right] + \frac{(1-\alpha)(1-\beta)(\gamma+3-6\gamma)}{12\gamma} p_1 q_1 \right. \\ &= \left| \frac{1-\alpha}{3} \left[q_2 + A q_1^2 \right] + \frac{1-\beta}{6} \left[p_2 + B p_1^2 \right] + C p_1 q_1 \right|. \end{split}$$

Note that if $\mu \leq [1/2 + \gamma(1+3\alpha)/6(1-\alpha)] = \mu_1$ and $\mu \leq [1/2 + \gamma(3-\beta)/6(1-\beta)] = \mu_2$ then $A \geq -1/2$ and $B \geq -1/2$, respectively. Also if $\mu \leq (3+\gamma)/6 = \mu_3$ then $C \geq 0$. We observe that $\mu_3 \leq \mu_1$ and $\mu_3 \leq \mu_2$. So we can use Lemma 2.1 if we let $\mu \leq \mu_3$.

First we let $\mu \leq \frac{3+\gamma}{6}$. Then

$$\begin{split} & \gamma M(\gamma) = \gamma |a_2(\gamma) - \mu a_1^2(\gamma)| \\ & \leq \frac{(1-\alpha)^2(1-\gamma-2\mu)}{8\gamma} \left| p_1 \right|^2 + \frac{(1-\alpha)(1-\beta)(\gamma+3-6\mu)}{6\gamma} \left| q_1 \right| + \frac{4(1-\alpha)\gamma+2(1-\beta)\gamma+(1-\beta)^2(\gamma+3-6\mu)}{6\gamma} \\ & = R(|q_1|). \end{split}$$

Calculating $\frac{dR(|q_1|)}{d|q_1|} = R'(|q_1|) = 0$ we obtain

$$|q_1^o| = \frac{2(1-\beta)(\gamma+3-6\mu)}{3(1-\alpha)(\gamma-1+2\mu)}. (21)$$

If $\mu \leq \frac{(1-\beta)(\gamma+3)+3(1-\alpha)(1-\gamma)}{6(2-\alpha-\beta)}$ we observe that $|q_1^o| \notin (0,2)$. In this case the maximum of $R(|q_1|)$ occurs at the end points, i.e., when $|q_1|=0$ or when $|q_1|=2$. Calculating R(0) and R(2) we observe that R(0) < R(2). Therefore we obtain Theorem 2.3.1 that

$$\left| a_2(\gamma) - \mu a_1^2(\gamma) \right| \le \frac{(3 - 2\alpha - \beta)[(1 - \beta)(\gamma + 3 - 6\mu) + 2\gamma] + 3(1 - \alpha)^2(1 - \gamma - 2\mu)}{6\gamma^2}.$$

Equality is attained on choosing $p_1 = p_2 = q_1 = q_2 = 2$.

If $\frac{(1-\beta)(\gamma+3)+3(1-\alpha)(1-\gamma)}{6(2-\alpha-\beta)} \le \mu \le \frac{3+\gamma}{6}$ then $0 \le |q_1^o| \le 2$ and so $R(|q_1^o|)$ is a maximum since $R''(|q_1^o|) \le 0$. Therefore we obtain Theorem 2.3.2 that

$$|a_2(\gamma) - \mu a_1^2(\gamma)| \le \frac{3 - 2\alpha - \beta}{3\gamma} + \frac{2(1 - \beta)^2(\gamma + 3 - 6\mu)}{9\gamma(\gamma - 1 + 2\mu)}.$$

Choosing $p_1 = p_2 = q_2 = 2$ and $q_1 = |q_1^o|$ as given by (21) shows that the result is sharp.

Next we let $\mu \geq (3 + \gamma)/6$. We deal first with the case

$$\mu = \frac{4\alpha\gamma(1-\alpha) + (2-\alpha-\beta)[6(1+\gamma) - (\alpha+\beta)(3+\gamma)]}{6(2-\alpha-\beta)^2}.$$

It follows from (11), (12), (15)-(20) and a simple calculation that

$$\begin{aligned} & \left| a_2(\gamma) - \frac{4\alpha\gamma(1-\alpha) + (2-\alpha-\beta)[6(1+\gamma) - (\alpha+\beta)(3+\gamma)]}{6(2-\alpha-\beta)^2} a_1^2(\gamma) \right| \\ & = \left| \frac{1-\alpha}{3\gamma} \left[q_2 - \frac{(1-\alpha)(2-\beta)(3-2\alpha-\beta)}{2(2-\alpha-\beta)^2} q_1^2 \right] \end{aligned}$$

$$+ \frac{1-\beta}{6\gamma} \left[p_2 - \frac{(1-\beta)(2-\alpha^2-\beta)}{(2-\alpha-\beta)^2} p_1^2 \right] - \frac{(1-\alpha)(1-\beta)(2-\alpha^2-\beta)}{3\gamma(2-\alpha-\beta)^2} p_1 q_1 |$$

$$\leq \frac{3 - 2\alpha - \beta}{3\gamma} - \frac{(1 - \alpha)(1 - \beta)(2 - \alpha^2 - \beta)}{6\gamma(2 - \alpha - \beta)^2} (|q_1| - |p_1|)^2 - \frac{\alpha(1 - \alpha)(1 - \beta)}{6\gamma(2 - \alpha - \beta)} (|q_1|^2 - |p_1|^2) \leq \frac{3 - 2\alpha - \beta}{3\gamma} + \frac{\alpha(1 - \alpha)(1 - \beta)}{6\gamma(2 - \alpha - \beta)} (|q_1|^2 - |q_1|^2) \leq \frac{3 - 2\alpha - \beta}{3\gamma} + \frac{\alpha(1 - \alpha)(1 - \beta)(1 - \beta)}{6\gamma(2 - \alpha - \beta)^2} (|q_1|^2 - |q_1|^2) \leq \frac{3 - 2\alpha - \beta}{3\gamma} + \frac{\alpha(1 - \alpha)(1 - \beta)(1 - \beta)(1 - \beta)}{6\gamma(2 - \alpha - \beta)^2} (|q_1|^2 - |q_1|^2) \leq \frac{3 - 2\alpha - \beta}{3\gamma} + \frac{\alpha(1 - \alpha)(1 - \beta)(1 - \beta)}{6\gamma(2 - \alpha - \beta)^2} (|q_1|^2 - |q_1|^2) \leq \frac{3 - 2\alpha - \beta}{3\gamma} + \frac{\alpha(1 - \alpha)(1 - \beta)(1 - \beta)}{6\gamma(2 - \alpha - \beta)^2} (|q_1|^2 - |q_1|^2) \leq \frac{3 - 2\alpha - \beta}{3\gamma} + \frac{\alpha(1 - \alpha)(1 - \beta)(1 - \beta)}{6\gamma(2 - \alpha - \beta)^2} (|q_1|^2 - |q_1|^2) \leq \frac{3 - 2\alpha - \beta}{3\gamma} + \frac{\alpha(1 - \alpha)(1 - \beta)(1 - \beta)}{6\gamma(2 - \alpha - \beta)} (|q_1|^2 - |q_1|^2) \leq \frac{3 - 2\alpha - \beta}{3\gamma} + \frac{\alpha(1 - \alpha)(1 - \beta)(1 - \beta)}{6\gamma(2 - \alpha - \beta)} (|q_1|^2 - |q_1|^2) \leq \frac{3 - 2\alpha - \beta}{3\gamma} + \frac{\alpha(1 - \alpha)(1 - \beta)(1 - \beta)}{6\gamma(2 - \alpha - \beta)} (|q_1|^2 - |q_1|^2) \leq \frac{3 - 2\alpha - \beta}{3\gamma} + \frac{\alpha(1 - \alpha)(1 - \beta)(1 - \beta)}{6\gamma(2 - \alpha - \beta)} (|q_1|^2 - |q_1|^2) \leq \frac{3 - 2\alpha - \beta}{3\gamma} + \frac{\alpha(1 - \alpha)(1 - \beta)(1 - \beta)}{(1 - \alpha)(1 - \beta)} (|q_1|^2 - |q_1|^2) \leq \frac{3 - 2\alpha - \beta}{3\gamma} + \frac{\alpha(1 - \alpha)(1 - \beta)(1 - \beta)}{(1 - \alpha)(1 - \beta)} (|q_1|^2 - |q_1|^2) \leq \frac{3 - 2\alpha - \beta}{3\gamma} + \frac{\alpha(1 - \alpha)(1 - \beta)(1 - \beta)}{(1 - \alpha)(1 - \beta)} (|q_1|^2 - |q_1|^2) \leq \frac{3 - 2\alpha - \beta}{3\gamma} + \frac{\alpha(1 - \alpha)(1 - \beta)(1 - \beta)}{(1 - \alpha)(1 - \beta)} (|q_1|^2 - |q_1|^2)$$

In this case, we need to consider the following two subcases.

For
$$\frac{3+\gamma}{6} \leq \mu \leq \frac{4\alpha\gamma(1-\alpha)+(2-\alpha-\beta)[6(1+\gamma)-(\alpha+\beta)(3+\gamma)]}{6(2-\alpha-\beta)^2}$$
 we write

$$a_2(\gamma) - \mu a_1^2(\gamma) = \frac{(2 - \alpha - \beta)^2 (6\mu - \gamma - 3)}{4\gamma(2 - \alpha^2 - \beta)} \left[a_2(\gamma) - \frac{4\alpha\gamma(1 - \alpha) + (2 - \alpha - \beta)[6(1 + \gamma) - (\alpha + \beta)(3 + \gamma)]}{6(2 - \alpha - \beta)^2} a_1^2(\gamma) \right]$$

$$+ \tfrac{4\gamma(2-\alpha^2-\beta)-(2-\alpha-\beta)(6\mu-\gamma-3)}{4\gamma(2-\alpha^2-\beta)} \left[a_2(\gamma) - \tfrac{3+\gamma}{6}a_1^2(\gamma)\right].$$

Using the bounds obtained for $M(\mu)$ when $\mu = \frac{4\alpha\gamma(1-\alpha)+(2-\alpha-\beta)[6(1+\gamma)-(\alpha+\beta)(3+\gamma)]}{6(2-\alpha-\beta)^2}$ and $\mu = \frac{3+\gamma}{6}$ we obtain Theorem 2.3.3 that

$$\begin{split} \left|a_2(\gamma)-\mu a_1^2(\gamma)\right| &\leq \left(\frac{3-2\alpha-\beta}{3\gamma}\right) \left(\frac{(2-\alpha-\beta)^2(6\mu-\gamma-3)}{4\gamma(2-\alpha^2-\beta)} + \frac{4\gamma(2-\gamma^2-\beta)-(2-\alpha-\beta)^2(6\mu-\gamma-3)}{4\gamma(2-\gamma^2-\beta)}\right) \\ &= \frac{3-2\alpha-\beta}{3\gamma}. \end{split}$$
 Equality is attained on choosing $p_1=q_1=0$ and $p_2=q_2=2$.

Finally, we let $\mu \geq \frac{4\alpha\gamma(1-\alpha)+(2-\alpha-\beta)[6(1+\gamma)-(\alpha+\beta)(3+\gamma)]}{6(2-\alpha-\beta)^2}$. In this case we write

$$\begin{split} a_2(\gamma) - \mu a_1^2(\gamma) &= a_2(\gamma) - \frac{4\alpha\gamma(1-\alpha) + (2-\alpha-\beta)[6(1+\gamma) - (\alpha+\beta)(3+\gamma)]}{6(2-\alpha-\beta)^2} a_1^2(\gamma) \\ &\quad + \left[\frac{4\alpha\gamma(1-\alpha) + (2-\alpha-\beta)[6(1+\gamma) - (\alpha+\beta)(3+\gamma)]}{6(2-\alpha-\beta)^2} - \mu \right] a_1^2(\gamma). \end{split}$$

Taking the absolute values we obtain Theorem 2.3.4 that

$$\begin{split} \left| a_2(\gamma) - \mu a_1^2(\gamma) \right| & \leq \left| a_2(\gamma) - \frac{4\alpha\gamma(1-\alpha) + (2-\alpha-\beta)[6(1+\gamma) - (\alpha+\beta)(3+\gamma)]}{6(2-\alpha-\beta)^2} a_1^2(\gamma) \right| \\ & + \left[\mu - \frac{4\alpha\gamma(1-\alpha) + (2-\alpha-\beta)[6(1+\gamma) - (\alpha+\beta)(3+\gamma)]}{6(2-\alpha-\beta)^2} \right] \left| a_1(\gamma) \right|^2 \\ & \leq \frac{3-2\alpha-\beta}{3\gamma} + \frac{4\alpha\gamma(\alpha-1) + (2-\alpha-\beta)[(\alpha+\beta)(3+\gamma) - 6(1+\gamma)]}{6\gamma^2} + \frac{\mu(2-\alpha-\beta)^2}{\gamma^2}, \end{split}$$

where we have used the fact that $|a_1(\gamma)| = |[(1-\alpha)q_1 + (1-\beta)p_1]/2\gamma| \le (2-\alpha-\beta)/\gamma$. Choosing $p_1 = q_1 = 2i$ and $p_2 = q_2 = -2$ concludes the sharpness.

3. Littlewood-Paley Conjecture.

As mentioned earlier, letting $\mu = 0$ in $M(\gamma)$ given by (7) we may obtain bounds for $|a_2(\gamma)|$ which is a good criterion to check the validity of $|a_2(\gamma)| \leq b_2(\gamma)$ given by (6). Now for $\mu = 0$ and for $|q_1^o| = \frac{2(1-\beta)(\gamma+3)}{3(1-\alpha)(\gamma-1)}$ we obtain

$$|a_2(\gamma)| = \frac{R(|q_1^o|)}{\gamma} = \frac{3 - 2\alpha - \beta}{3\gamma} + \frac{2(1 - \beta)^2(\gamma + 3)}{9\gamma(\gamma - 1)}.$$
 (22)

It is easy to see that there are α , β and γ in (22) so that $|a_2(\gamma)| > b_2(\gamma)$. For example, for $\gamma = 4$ and for $28\beta^2 - 74\beta - 36\alpha + 1 > 0$ we have

$$|a_2(4)| = \frac{82 - 74\beta + 28\beta^2 - 36\alpha}{216} > \frac{81}{216}.$$
 (23)

We see that the inequality (6) is false, by the condition (23). Furthermore, this result is an improvement of an earlier result obtained by the second author [18] for $f \in K(0,0)$.

References

- 1. Abdel-Gawad, H.R. and Thomas, D.K., A subclass of close-to-convex functions, Publ. de L'Inst. Math. Nouvelle série tome 49 (63) (1991), 61-66.
- Abdel-Gawad, H.R. and Thomas, D.K., The Fekete-Szegö problem for strongly close-to-convex functions, Proc. Amer. Math. Soc. 114 (2) (1992), 345-349.
- Bieberbach, L., Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitten, S.B. Preuss. Wiss. (1916), 940-955.
- 4. Bshouty, D. and Hengartner, W., Criteria for the extremality of the Koebe mapping, Proc. Amer. Math. Soc. 11 (2) (1991), 403-411.
- Carathéodory, C., Über den Variabilitätsbbereich der Fourierschen Konstanten von positiven harmonischen Funktionen, Rend. Circ. Mat. Palermo, 32 (1911), 193-217.
- Chonweerayoot, A., Thomas, D.K., and Upakarnitikaset, W., On the coefficients of close-to-convex functions, Math. Japon. 36 (5) (1991), 819-826.
- Chua, K.S., Derivatives of univalent functions and the hyperbolic metric, Rocky Mountain J. Math. 26 (1) (1996), 63-75.
- 8. de Branges, L., A proof of the Bieberbach conjecture, Preprint E-5-84, Steklov Math. Institute, LOMI, Leningrad (1984), 1-12 or Acta Math. 154 (1985), 137-152.
- Darus, M. and Thomas, D.K., On the Fekete-Szegő theorem for close-to-convex functions, Math. Japon. 44 (3) (1996), 507-511.
- 10. Dinggong, Y., Properties of a class of analytic functions, Math. Japon. 41 (2) (1995), 371-381.
- 11. Duren, P.L., Univalent Functions, Springer-Verlag, New York, 1983.
- Ekhad, S.B. and Zeilberger, D., A high-school algebra, formal calculus, proof of the Bieberbach conjecture, Contem. Math. 178 (1994), 113-115.
- 13. Fekete, M. and Szegö, G., Eine Bemerkungüber ungerade schlichte Funktionen, J. London Math. Soc. 8 (1933), 85-89.
- Gao, Y.C., The Fekete-Szegö problem for a class of close-to-convex functions, Chinese Annals Math. Ser. A 15 (6) (1994), 650-656.
- 15. Goel, R.M. and Mehrok, B.S., A coefficient inequality for certain classes of analytic functions, Tamkang J. Math. 22 (2) (1991), 153-163.
- 16. Hayman, W.K. and Hummel, J.A., Coefficients of powers of univalent functions, Complex Variables Theory Appl. 7 (1986), 51-70.
- 17. Hummel, J.A., The coefficient regions for starlike functions, Pacific J. Math. 7 (1957), 1381-1389.
- Jahangiri, M., On the coefficients of powers of a class of Bazilevič functions, Indian J. Pure Appl. Math. 17 (9) (1986), 1140-1144.
- Jahangiri, M., Disproof of a coefficient estimate related to Bazilevič functions, Bull. Aust. Math. Soc. 42 (1990), 121-124.
- Jahangiri, M., Extremality of Koebe mapping for a class of Bazilevič functions, Math. Japon. 38 (2) (1993), 211-215.
- Jahangiri, M., A coefficient inequality for a class of close-to-convex functions, Math. Japon. 41 (3) (1995), 557-559.
- 22. Keogh, F.R. and Merkes, E.R., A coefficient inequality for certain class of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8-12.
- 23. Kim, S.A. and Minda, D., Two-point distortion theorems for univalent functions, Pacific J. Math. 163 (1) (1994), 137-157.
- Koepf, W., On the Fekete-Szegő problem for close-to-convex functions, Proc. Amer. Math. Soc. 101 (1987), 89-95.
- Koepf, W., On the Fekete-Szegö problem for close-to-convex functions II, Arch. Math. 49 (1987), 420-433.
- Littlewood, J.E. and Paley, R.E.A.C., A proof that an odd schlicht function has bounded coefficients,
 J. London Math. Soc. 7 (1932), 167-169.
- London, R.R., Fekete-Szegö inequalities for close-to-convex functions, Proc. Amer. Math. Soc. 117 (4) (1993), 947-950.
- 28. Ma, W. and Minda, D., Uniformly convex functions II, Ann. Polon. Math. 58 (3) (1993), 275-285.
- Nasr, M.A. and El-Gawad, H.R., On the Fekete-Szegö problem for close-to-convex functions of order ρ, New Trends in Geometric Function Theory and Applications, World Sci. Publ., River Edge, NJ. (1991), 66-74.
- Pfluger, A., The Fekete-Szegö inequality for complex parameters, Complex Variables Theory Appl. 7 (1986), 149-160.

31. Trimble, S.Y., A coefficient inequality for convex univalent functions, Proc. Amer. Math. Soc. 48 (1) (1975), 266-267.

Department of Mathematics, University of Ulster, Jordanstwon, Co. Antrim, BT37 0QH, U.K.

 $E\text{-}mail: \ kfarahmand@ulst.ac.uk~jay@geauga.kent.edu$

Department of Mathematics, Kent State University, Burton, Ohio $44021-9500,\,\mathrm{U.S.A.}$

 $E ext{-}mail$: jay@geauga.kent.edu