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Abstract. We obtain sharp Fekete-Szeg�o inequalities for powers of a class of close-to-convex

functions. We also show that the Littlewood-Paley conjecture fails for these functions. A

previous result by the second author is also improved in this paper.

1. Introduction. Let A be the family of functions f of the form

f(z) = z +

1X
n=2

anz
n (1)

that are analytic in the unit disk � = fz : jzj < 1g and S be the subfamily of A consisting
of functions univalent in �: Let  > 0: For f of the form (1) and for the Koebe function
k(z) = z=(1� z)2; we write

�
f(z)

z

� 1



= 1 +

1X
n=1

an()z
n (2)

and �
k(z)

z

� 1



= 1 +

1X
n=1

bn()z
n: (3)

By equating the coe�cients of the like terms in (2) and (3) we obtain

a1() =
1


a2 ; a2() =

1



�
a3 �

 � 1

2
a22

�
(4)

and

bn() =
2(2 + )(2 + 2):::(2 + (n� 1))

(n!)n
: (5)

We consider the inequality
jan()j � bn() (6)
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and for �1 < � <1 we write

M() = ja2()� �a21()j: (7)

The inequality (6) is true [16] if  � 1 and is false for  > 1: For  = 1; (6) was conjectured
by Bieberbach [3] in 1900+16 and was proved by de Branges [8] in 2000-16. Since then many
authors studied alternative approaches to the Bieberbach conjecture. The most recent and
shortest is given by Ekhad and Zielberger [12]. For  = 2; (6) is the Littlewood-Paley [26]
conjecture which was disproved by Fekete-Szeg�o [13]. In fact, Fekete and Szeg�o [13] obtained
sharp bounds forM(1) when 0 � � � 1: The expressionM() in (7) has many applications
and analogous Fekete-Szeg�o problems for subclasses of A and S proved to be of interest. For
example, see Kim and Minda [23, Theorems 1 and 2] and Chua [7, Lemma 2]. It is known
that (6) holds for functions that are starlike in � and does not hold for close-to-convex
functions (see [18]) when  > 3: It is of interest to see if there exists a subfamily of close-
to-convex functions, larger than the class of starlike functions, for which (6) holds. The
answer to this question is still open. We note that M() of (7) when � = 0 is an e�ective
tool to check the validity of the inequality (6). The second author in [18 & 20] used M()
to show that the inequality (6) is false for some subclasses of Bazilevi�c and close-to-convex
functions. The upper bound for M() when f belongs to various subclasses of A and S
has been studied by many di�erent authors including [1,2,4,7,9,10,13-31]. Recently, Darus
and Thomas [9] considered the class K(�; �); 0 � � < 1; 0 � � < 1 consisting of functions
f 2 A so that

Re
zf 0(z)

g(z)
> �; z 2 � (8)

for some g 2 A satisfying the condition

Re
zg0(z)

g(z)
> �; z 2 �: (9)

Draus and Thomas [9] obtained sharp upper bounds for M(1) when f 2 K(�; �): In this
paper we generalize their results to the case  � 1 for M() given by (7). Furthermore, we
disprove the inequality (6) for certain  when f 2 K(�; �): This improves an earlier result
obtained by the second author [18].

2. Fekete-Szeg�o Problem.

To prove our theorem in this section we shall need the following well-known lemmas.

2.1. Lemma. Let p(z) = 1+�1n=1pnz
n be analytic in � so that Refp(z)g > 0 in �: Then

jpnj � 2 (10)

and

jp2 + �p21j � 2 + �jp1j
2 if � � �

1

2
: (11)

2.2. Lemma. For 0 � � < 1 let g(z) = z + b2z
2 + b3z

3 + ::: be in A and satisfy the
condition (9). Then for � real,

jb3 � �b22j � (1� �)maxf1; j3� 2� � 4(1� �)�jg: (12)

The inequality (10) was �rst proved by Carath�eodory [5] (also see Duren [11] page 41) and
the inequality (11) can be found in [18]. The inequality (12) was given by Keogh and Merkes
[22]. We now state and prove our theorem.
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2.3. Theorem. For f given by (1) let f 2 K(�; �) where 0 � � < 1 and 0 � � < 1: Then
for  � 1 and for �1 < � <1 we have the following sharp bounds.

2.3.1. If � � (1��)(+3)+3(1��)(1�)

6(2����)
then

ja2()� �a21()j �
(3� 2�� �)[(1� �)( + 3� 6�) + 2] + 3(1� �)2(1�  � 2�)

62
:

2.3.2. If (1��)(+3)+3(1��)(1�)

6(2����)
� � � 3+

6
then

ja2()� �a21()j �
3� 2� � �

3
+

2(1� �)2( + 3� 6�)

9( � 1 + 2�)
:

2.3.3. If 3+

6
� � �

4�(1��)+(2����)[6(1+)�(�+�)(3+)]

6(2����)2
then

ja2()� �a21()j �
3� 2�� �

3
:

2.3.4. If � � 4�(1��)+(2����)[6(1+)�(�+�)(3+)]

6(2����)2
then

ja2()� �a21()j �
3�2���

3
+ �(2����)2

2
+ 4�(��1)+(2����)[(�+�)(3+)�6(1+)]

62
:

Proof. For some g(z) = z + b2z
2 + b3z

3 + ::: in A and satisfying the condition (9) we let
f(z) of the form (1) to be in K(�; �): Then we can write

zg0(z)

g(z)
= � + (1� �)p(z); (13)

and
zf 0(z)

g(z)
= � + (1� �)q(z); (14)

where both p(z) = 1+ p1z + p2z
2 + ::: and q(z) = 1+ q1z+ q2z

2 + ::: are analytic in � and
Refp(z)g > 0 and Refq(z)g > 0 in �: Equating the coe�cients of the like terms in (13)
and (14) we obtain

b2 = (1� �)p1; (15)

2b3 = (1� �)(p2 + b2p1); (16)

2a2 = (1� �)q1 + (1� �)p1; (17)

and
6a3 = 2(1� �)[q2 + (1� �)p1q1] + (1� �)[p2 + (1� �)p21]: (18)

Substituting for a2 and a3 in (4) yields

a1() =
a2


=

(1� �)q1 + (1� �)p1
2

; (19)

and

a2() =
1



�
a3 +

1� 

2
a22

�
(20)
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= 1


n
1��
3

h
q2 +

3(1�)(1��)

8
q21

i
+ 1��

6

h
p2 +

(1��)(3+)

4
p21

i
+ (1��)(1��)(3+)

12
p1q1

o
:

Consequently M() of (7) can be written as follows:

M() = ja2()� �a21()j

=
��� 1��3

h
q2 +

3(1��)(1��2�)

8
q21

i
+ 1��

6

h
p2 +

(1��)(+3�6)

4
p21

i
+ (1��)(1��)(+3�6)

12
p1q1

���
=
��� 1��3 �

q2 +Aq21
�
+ 1��

6

�
p2 +Bp21

�
+ Cp1q1

��� :
Note that if � � [1=2 + (1 + 3�)=6(1� �)] = �1 and � � [1=2 + (3� �)=6(1� �)] = �2
then A � �1=2 and B � �1=2, respectively. Also if � � (3 + )=6 = �3 then C � 0: We
observe that �3 � �1 and �3 � �2: So we can use Lemma 2.1 if we let � � �3:

First we let � � 3+

6
: Then

M() = ja2()� �a21()j

�
(1��)2(1��2�)

8
jp1j

2
+ (1��)(1��)(+3�6�)

6
jq1j +

4(1��)+2(1��)+(1��)2(+3�6�)

6

= R(jq1j):

Calculating dR(jq1 j)

djq1j
= R0(jq1j) = 0 we obtain

jqo1 j =
2(1� �)( + 3� 6�)

3(1� �)( � 1 + 2�)
: (21)

If � �
(1��)(+3)+3(1��)(1�)

6(2����)
we observe that jqo1j =2 (0; 2): In this case the maximum of

R(jq1j) occurs at the end points, i.e., when jq1j = 0 or when jq1j = 2: Calculating R(0) and
R(2) we observe that R(0) < R(2): Therefore we obtain Theorem 2.3.1 that

��a2()� �a21()
�� � (3� 2� � �)[(1� �)( + 3� 6�) + 2] + 3(1� �)2(1�  � 2�)

62
:

Equality is attained on choosing p1 = p2 = q1 = q2 = 2:

If (1��)(+3)+3(1��)(1�)

6(2����)
� � � 3+

6
then 0 � jqo1 j � 2 and so R(jqo1 j) is a maximum since

R00(jqo1j) � 0: Therefore we obtain Theorem 2.3.2 that

��a2()� �a21()
�� � 3� 2�� �

3
+

2(1� �)2( + 3� 6�)

9( � 1 + 2�)
:

Choosing p1 = p2 = q2 = 2 and q1 = jqo1 j as given by (21) shows that the result is sharp.

Next we let � � (3 + )=6: We deal �rst with the case

� =
4�(1� �) + (2� � � �)[6(1 + )� (� + �)(3 + )]

6(2� � � �)2
:

It follows from (11), (12), (15)-(20) and a simple calculation that���a2()� 4�(1��)+(2����)[6(1+)�(�+�)(3+)]

6(2����)2
a21()

���
= j 1��

3

h
q2 �

(1��)(2��)(3�2���)

2(2����)2
q21

i
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+ 1��

6

h
p2 �

(1��)(2��2��)

(2����)2
p21

i
�

(1��)(1��)(2��2��)

3(2����)2
p1q1j

�
3�2���

3
�

(1��)(1��)(2��2��)

6(2����)2
(jq1j � jp1j)

2
�

�(1��)(1��)

6(2����)

�
jq1j

2 � jp1j
2
�
�

3�2���

3
:

In this case, we need to consider the following two subcases.

For 3+

6
� � � 4�(1��)+(2����)[6(1+)�(�+�)(3+)]

6(2����)2
we write

a2()� �a21() =
(2����)2(6���3)

4(2��2��)

h
a2()�

4�(1��)+(2����)[6(1+)�(�+�)(3+)]

6(2����)2
a21()

i

+ 4(2��2��)�(2����)(6���3)

4(2��2��)

�
a2()�

3+

6
a21()

�
:

Using the bounds obtained for M(�) when � = 4�(1��)+(2����)[6(1+)�(�+�)(3+)]

6(2����)2
and

� = 3+

6
we obtain Theorem 2.3.3 that

��a2()� �a21()
�� � �

3�2���

3

��
(2����)2(6���3)

4(2��2��)
+ 4(2�2��)�(2����)2(6���3)

4(2�2��)

�

= 3�2���

3
:

Equality is attained on choosing p1 = q1 = 0 and p2 = q2 = 2:

Finally, we let � � 4�(1��)+(2����)[6(1+)�(�+�)(3+)]

6(2����)2
: In this case we write

a2()� �a21() = a2()�
4�(1��)+(2����)[6(1+)�(�+�)(3+)]

6(2����)2
a21()

+
h
4�(1��)+(2����)[6(1+)�(�+�)(3+)]

6(2����)2
� �

i
a21():

Taking the absolute values we obtain Theorem 2.3.4 that

��a2()� �a21()
�� � ���a2()� 4�(1��)+(2����)[6(1+)�(�+�)(3+)]

6(2����)2
a21()

���
+
h
��

4�(1��)+(2����)[6(1+)�(�+�)(3+)]

6(2����)2

i
ja1()j

2

�
3� 2�� �

3
+

4�(�� 1) + (2� � � �)[(�+ �)(3 + )� 6(1 + )]

62
+
�(2� � � �)2

2
;

where we have used the fact that ja1()j = j[(1 � �)q1 + (1� �)p1]=2j � (2� � � �)=:
Choosing p1 = q1 = 2i and p2 = q2 = �2 concludes the sharpness.

3. Littlewood-Paley Conjecture.

As mentioned earlier , letting � = 0 in M() given by (7) we may obtain bounds for ja2()j
which is a good criterion to check the validity of ja2()j � b2() given by (6). Now for � = 0

and for jqo1 j =
2(1��)(+3)

3(1��)(�1)
we obtain

ja2()j =
R(jqo1 j)


=

3� 2� � �

3
+

2(1� �)2( + 3)

9( � 1)
: (22)

It is easy to see that there are �; � and  in (22) so that ja2()j > b2(): For example, for
 = 4 and for 28�2 � 74� � 36�+ 1 > 0 we have

ja2(4)j =
82� 74� + 28�2 � 36�

216
>

81

216
: (23)

We see that the inequality (6) is false, by the condition (23). Furthermore, this result is an
improvement of an earlier result obtained by the second author [18] for f 2 K(0; 0):
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