FEKETE-SZEGÖ PROBLEM AND LITTLEWOOD-PALEY CONJECTURE FOR POWERS OF CLOSE-TO-CONVEX FUNCTIONS

K. Farahmand and Jay M. Jahangiri
(In the memory of Professor M. J. Shah of Kent State University.)

Received March 21, 1997; revised July 3, 1997

Abstract

We obtain sharp Fekete-Szegö inequalities for powers of a class of close-to-convex functions. We also show that the Littlewood-Paley conjecture fails for these functions. A previous result by the second author is also improved in this paper.

1. Introduction. Let \mathcal{A} be the family of functions f of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

that are analytic in the unit disk $\Delta=\{z:|z|<1\}$ and \mathcal{S} be the subfamily of \mathcal{A} consisting of functions univalent in Δ. Let $\gamma>0$. For f of the form (1) and for the Koebe function $k(z)=z /(1-z)^{2}$, we write

$$
\begin{equation*}
\left\{\frac{f(z)}{z}\right\}^{\frac{1}{\gamma}}=1+\sum_{n=1}^{\infty} a_{n}(\gamma) z^{n} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\frac{k(z)}{z}\right\}^{\frac{1}{\gamma}}=1+\sum_{n=1}^{\infty} b_{n}(\gamma) z^{n} \tag{3}
\end{equation*}
$$

By equating the coefficients of the like terms in (2) and (3) we obtain

$$
\begin{equation*}
a_{1}(\gamma)=\frac{1}{\gamma} a_{2}, \quad a_{2}(\gamma)=\frac{1}{\gamma}\left(a_{3}-\frac{\gamma-1}{2 \gamma} a_{2}^{2}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
b_{n}(\gamma)=\frac{2(2+\gamma)(2+2 \gamma) \ldots(2+(n-1) \gamma)}{(n!) \gamma^{n}} \tag{5}
\end{equation*}
$$

We consider the inequality

$$
\begin{equation*}
\left|a_{n}(\gamma)\right| \leq b_{n}(\gamma) \tag{6}
\end{equation*}
$$

[^0]and for $-\infty<\mu<\infty$ we write
\[

$$
\begin{equation*}
M(\gamma)=\left|a_{2}(\gamma)-\mu a_{1}^{2}(\gamma)\right| . \tag{7}
\end{equation*}
$$

\]

The inequality (6) is true [16] if $\gamma \leq 1$ and is false for $\gamma>1$. For $\gamma=1,(6)$ was conjectured by Bieberbach [3] in $1900+16$ and was proved by de Branges [8] in 2000-16. Since then many authors studied alternative approaches to the Bieberbach conjecture. The most recent and shortest is given by Ekhad and Zielberger [12]. For $\gamma=2,(6)$ is the Littlewood-Paley [26] conjecture which was disproved by Fekete-Szegə̈ [13]. In fact, Fekete and Szeg̈̈ [13] obtained sharp bounds for $M(1)$ when $0 \leq \mu \leq 1$. The expression $M(\gamma)$ in (7) has many applications and analogous Fekete-Szegö problems for subclasses of \mathcal{A} and \mathcal{S} proved to be of interest. For example, see Kim and Minda [23, Theorems 1 and 2] and Chua [7, Lemma 2]. It is known that (6) holds for functions that are starlike in Δ and does not hold for close-to-convex functions (see [18]) when $\gamma>3$. It is of interest to see if there exists a subfamily of close-to-convex functions, larger than the class of starlike functions, for which (6) holds. The answer to this question is still open. We note that $M(\gamma)$ of (7) when $\mu=0$ is an effective tool to check the validity of the inequality (6). The second author in [18 \& 20] used $M(\gamma)$ to show that the inequality (6) is false for some subclasses of Bazilevič and close-to-convex functions. The upper bound for $M(\gamma)$ when f belongs to various subclasses of \mathcal{A} and \mathcal{S} has been studied by many different authors including [1,2,4,7,9,10,13-31]. Recently, Darus and Thomas [9] considered the class $K(\alpha, \beta), 0 \leq \alpha<1,0 \leq \beta<1$ consisting of functions $f \in \mathcal{A}$ so that

$$
\begin{equation*}
\operatorname{Re} \frac{z f^{\prime}(z)}{g(z)}>\alpha, z \in \Delta \tag{8}
\end{equation*}
$$

for some $g \in \mathcal{A}$ satisfying the condition

$$
\begin{equation*}
\operatorname{Re} \frac{z g^{\prime}(z)}{g(z)}>\beta, z \in \Delta \tag{9}
\end{equation*}
$$

Draus and Thomas [9] obtained sharp upper bounds for $M(1)$ when $f \in K(\alpha, \beta)$. In this paper we generalize their results to the case $\gamma \geq 1$ for $M(\gamma)$ given by (7). Furthermore, we disprove the inequality (6) for certain γ when $f \in K(\alpha, \beta)$. This improves an earlier result obtained by the second author [18].

2. Fekete-Szegö Problem.

To prove our theorem in this section we shall need the following well-known lemmas.
2.1. Lemma. Let $p(z)=1+\sum_{n=1}^{\infty} p_{n} z^{n}$ be analytic in Δ so that $\operatorname{Re}\{p(z)\}>0$ in Δ. Then

$$
\begin{equation*}
\left|p_{n}\right| \leq 2 \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|p_{2}+\lambda p_{1}^{2}\right| \leq 2+\lambda\left|p_{1}\right|^{2} \quad \text { if } \quad \lambda \geq-\frac{1}{2} \tag{11}
\end{equation*}
$$

2.2. Lemma. For $0 \leq \beta<1$ let $g(z)=z+b_{2} z^{2}+b_{3} z^{3}+\ldots$ be in \mathcal{A} and satisfy the condition (9). Then for μ real,

$$
\begin{equation*}
\left|b_{3}-\mu b_{2}^{2}\right| \leq(1-\beta) \max \{1,|3-2 \beta-4(1-\beta) \mu|\} . \tag{12}
\end{equation*}
$$

The inequality (10) was first proved by Carathéodory [5] (also see Duren [11] page 41) and the inequality (11) can be found in [18]. The inequality (12) was given by Keogh and Merkes [22]. We now state and prove our theorem.
2.3. Theorem. For f given by (1) let $f \in K(\alpha, \beta)$ where $0 \leq \alpha<1$ and $0 \leq \beta<1$. Then for $\gamma \geq 1$ and for $-\infty<\mu<\infty$ we have the following sharp bounds.
2.3.1. If $\mu \leq \frac{(1-\beta)(\gamma+3)+3(1-\alpha)(1-\gamma)}{6(2-\alpha-\beta)}$ then

$$
\left|a_{2}(\gamma)-\mu a_{1}^{2}(\gamma)\right| \leq \frac{(3-2 \alpha-\beta)[(1-\beta)(\gamma+3-6 \mu)+2 \gamma]+3(1-\alpha)^{2}(1-\gamma-2 \mu)}{6 \gamma^{2}}
$$

2.3.2. If $\frac{(1-\beta)(\gamma+3)+3(1-\alpha)(1-\gamma)}{6(2-\alpha-\beta)} \leq \mu \leq \frac{3+\gamma}{6}$ then

$$
\left|a_{2}(\gamma)-\mu a_{1}^{2}(\gamma)\right| \leq \frac{3-2 \alpha-\beta}{3 \gamma}+\frac{2(1-\beta)^{2}(\gamma+3-6 \mu)}{9 \gamma(\gamma-1+2 \mu)}
$$

2.3.3. If $\frac{3+\gamma}{6} \leq \mu \leq \frac{4 \alpha \gamma(1-\alpha)+(2-\alpha-\beta)[6(1+\gamma)-(\alpha+\beta)(3+\gamma)]}{6(2-\alpha-\beta)^{2}}$ then

$$
\left|a_{2}(\gamma)-\mu a_{1}^{2}(\gamma)\right| \leq \frac{3-2 \alpha-\beta}{3 \gamma}
$$

2.3.4. If $\mu \geq \frac{4 \alpha \gamma(1-\alpha)+(2-\alpha-\beta)[6(1+\gamma)-(\alpha+\beta)(3+\gamma)]}{6(2-\alpha-\beta)^{2}}$ then
$\left|a_{2}(\gamma)-\mu a_{1}^{2}(\gamma)\right| \leq \frac{3-2 \alpha-\beta}{3 \gamma}+\frac{\mu(2-\alpha-\beta)^{2}}{\gamma^{2}}+\frac{4 \alpha \gamma(\alpha-1)+(2-\alpha-\beta)[(\alpha+\beta)(3+\gamma)-6(1+\gamma)]}{6 \gamma^{2}}$.
Proof. For some $g(z)=z+b_{2} z^{2}+b_{3} z^{3}+\ldots$ in \mathcal{A} and satisfying the condition (9) we let $f(z)$ of the form (1) to be in $K(\alpha, \beta)$. Then we can write

$$
\begin{equation*}
\frac{z g^{\prime}(z)}{g(z)}=\beta+(1-\beta) p(z) \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{g(z)}=\alpha+(1-\alpha) q(z) \tag{14}
\end{equation*}
$$

where both $p(z)=1+p_{1} z+p_{2} z^{2}+\ldots$ and $q(z)=1+q_{1} z+q_{2} z^{2}+\ldots$ are analytic in Δ and $\operatorname{Re}\{p(z)\}>0$ and $\operatorname{Re}\{q(z)\}>0$ in Δ. Equating the coefficients of the like terms in (13) and (14) we obtain

$$
\begin{gather*}
b_{2}=(1-\beta) p_{1} \tag{15}\\
2 b_{3}=(1-\beta)\left(p_{2}+b_{2} p_{1}\right) \tag{16}\\
2 a_{2}=(1-\alpha) q_{1}+(1-\beta) p_{1} \tag{17}
\end{gather*}
$$

and

$$
\begin{equation*}
6 a_{3}=2(1-\alpha)\left[q_{2}+(1-\beta) p_{1} q_{1}\right]+(1-\beta)\left[p_{2}+(1-\beta) p_{1}^{2}\right] . \tag{18}
\end{equation*}
$$

Substituting for a_{2} and a_{3} in (4) yields

$$
\begin{equation*}
a_{1}(\gamma)=\frac{a_{2}}{\gamma}=\frac{(1-\alpha) q_{1}+(1-\beta) p_{1}}{2 \gamma} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{2}(\gamma)=\frac{1}{\gamma}\left(a_{3}+\frac{1-\gamma}{2 \gamma} a_{2}^{2}\right) \tag{20}
\end{equation*}
$$

$=\frac{1}{\gamma}\left\{\frac{1-\alpha}{3}\left[q_{2}+\frac{3(1-\gamma)(1-\alpha)}{8 \gamma} q_{1}^{2}\right]+\frac{1-\beta}{6}\left[p_{2}+\frac{(1-\beta)(3+\gamma)}{4 \gamma} p_{1}^{2}\right]+\frac{(1-\alpha)(1-\beta)(3+\gamma)}{12 \gamma} p_{1} q_{1}\right\}$.
Consequently $M(\gamma)$ of (7) can be written as follows:
$\gamma M(\gamma)=\gamma\left|a_{2}(\gamma)-\mu a_{1}^{2}(\gamma)\right|$
$=\left|\frac{1-\alpha}{3}\left[q_{2}+\frac{3(1-\alpha)(1-\gamma-2 \mu)}{8 \gamma} q_{1}^{2}\right]+\frac{1-\beta}{6}\left[p_{2}+\frac{(1-\beta)(\gamma+3-6 \gamma)}{4 \gamma} p_{1}^{2}\right]+\frac{(1-\alpha)(1-\beta)(\gamma+3-6 \gamma)}{12 \gamma} p_{1} q_{1}\right|$
$=\left|\frac{1-\alpha}{3}\left[q_{2}+A q_{1}^{2}\right]+\frac{1-\beta}{6}\left[p_{2}+B p_{1}^{2}\right]+C p_{1} q_{1}\right|$.
Note that if $\mu \leq[1 / 2+\gamma(1+3 \alpha) / 6(1-\alpha)]=\mu_{1}$ and $\mu \leq[1 / 2+\gamma(3-\beta) / 6(1-\beta)]=\mu_{2}$ then $A \geq-1 / 2$ and $B \geq-1 / 2$, respectively. Also if $\mu \leq(3+\gamma) / 6=\mu_{3}$ then $C \geq 0$. We observe that $\mu_{3} \leq \mu_{1}$ and $\mu_{3} \leq \mu_{2}$. So we can use Lemma 2.1 if we let $\mu \leq \mu_{3}$.
First we let $\mu \leq \frac{3+\gamma}{6}$. Then
$\gamma M(\gamma)=\gamma\left|a_{2}(\gamma)-\mu a_{1}^{2}(\gamma)\right|$
$\leq \frac{(1-\alpha)^{2}(1-\gamma-2 \mu)}{8 \gamma}\left|p_{1}\right|^{2}+\frac{(1-\alpha)(1-\beta)(\gamma+3-6 \mu)}{6 \gamma}\left|q_{1}\right|+\frac{4(1-\alpha) \gamma+2(1-\beta) \gamma+(1-\beta)^{2}(\gamma+3-6 \mu)}{6 \gamma}$
$=R\left(\left|q_{1}\right|\right)$.
Calculating $\frac{d R\left(\left|q_{1}\right|\right)}{d\left|q_{1}\right|}=R^{\prime}\left(\left|q_{1}\right|\right)=0$ we obtain

$$
\begin{equation*}
\left|q_{1}^{o}\right|=\frac{2(1-\beta)(\gamma+3-6 \mu)}{3(1-\alpha)(\gamma-1+2 \mu)} \tag{21}
\end{equation*}
$$

If $\mu \leq \frac{(1-\beta)(\gamma+3)+3(1-\alpha)(1-\gamma)}{6(2-\alpha-\beta)}$ we observe that $\left|q_{1}^{o}\right| \notin(0,2)$. In this case the maximum of $R\left(\left|q_{1}\right|\right)$ occurs at the end points, i.e., when $\left|q_{1}\right|=0$ or when $\left|q_{1}\right|=2$. Calculating $R(0)$ and $R(2)$ we observe that $R(0)<R(2)$. Therefore we obtain Theorem 2.3.1 that

$$
\left|a_{2}(\gamma)-\mu a_{1}^{2}(\gamma)\right| \leq \frac{(3-2 \alpha-\beta)[(1-\beta)(\gamma+3-6 \mu)+2 \gamma]+3(1-\alpha)^{2}(1-\gamma-2 \mu)}{6 \gamma^{2}}
$$

Equality is attained on choosing $p_{1}=p_{2}=q_{1}=q_{2}=2$.
If $\frac{(1-\beta)(\gamma+3)+3(1-\alpha)(1-\gamma)}{6(2-\alpha-\beta)} \leq \mu \leq \frac{3+\gamma}{6}$ then $0 \leq\left|q_{1}^{o}\right| \leq 2$ and so $R\left(\left|q_{1}^{o}\right|\right)$ is a maximum since $R^{\prime \prime}\left(\left|q_{1}^{o}\right|\right) \leq 0$. Therefore we obtain Theorem 2.3.2 that

$$
\left|a_{2}(\gamma)-\mu a_{1}^{2}(\gamma)\right| \leq \frac{3-2 \alpha-\beta}{3 \gamma}+\frac{2(1-\beta)^{2}(\gamma+3-6 \mu)}{9 \gamma(\gamma-1+2 \mu)}
$$

Choosing $p_{1}=p_{2}=q_{2}=2$ and $q_{1}=\left|q_{1}^{o}\right|$ as given by (21) shows that the result is sharp.
Next we let $\mu \geq(3+\gamma) / 6$. We deal first with the case

$$
\mu=\frac{4 \alpha \gamma(1-\alpha)+(2-\alpha-\beta)[6(1+\gamma)-(\alpha+\beta)(3+\gamma)]}{6(2-\alpha-\beta)^{2}}
$$

It follows from (11), (12), (15)-(20) and a simple calculation that
$\left|a_{2}(\gamma)-\frac{4 \alpha \gamma(1-\alpha)+(2-\alpha-\beta)[6(1+\gamma)-(\alpha+\beta)(3+\gamma)]}{6(2-\alpha-\beta)^{2}} a_{1}^{2}(\gamma)\right|$
$=\left\lvert\, \frac{1-\alpha}{3 \gamma}\left[q_{2}-\frac{(1-\alpha)(2-\beta)(3-2 \alpha-\beta)}{2(2-\alpha-\beta)^{2}} q_{1}^{2}\right]\right.$

$$
\begin{array}{r}
\left.+\frac{1-\beta}{6 \gamma}\left[p_{2}-\frac{(1-\beta)\left(2-\alpha^{2}-\beta\right)}{(2-\alpha-\beta)^{2}} p_{1}^{2}\right]-\frac{(1-\alpha)(1-\beta)\left(2-\alpha^{2}-\beta\right)}{3 \gamma(2-\alpha-\beta)^{2}} p_{1} q_{1} \right\rvert\, \\
\leq \frac{3-2 \alpha-\beta}{3 \gamma}-\frac{(1-\alpha)(1-\beta)\left(2-\alpha^{2}-\beta\right)}{6 \gamma(2-\alpha-\beta)^{2}}\left(\left|q_{1}\right|-\left|p_{1}\right|\right)^{2}-\frac{\alpha(1-\alpha)(1-\beta)}{6 \gamma(2-\alpha-\beta)}\left(\left|q_{1}\right|^{2}-\left|p_{1}\right|^{2}\right) \leq \frac{3-2 \alpha-\beta}{3 \gamma}
\end{array}
$$

In this case, we need to consider the following two subcases.
For $\frac{3+\gamma}{6} \leq \mu \leq \frac{4 \alpha \gamma(1-\alpha)+(2-\alpha-\beta)[6(1+\gamma)-(\alpha+\beta)(3+\gamma)]}{6(2-\alpha-\beta)^{2}}$ we write

$$
\begin{aligned}
a_{2}(\gamma)-\mu a_{1}^{2}(\gamma)=\frac{(2-\alpha-\beta)^{2}(6 \mu-\gamma-3)}{4 \gamma\left(2-\alpha^{2}-\beta\right)} & {\left[a_{2}(\gamma)-\frac{4 \alpha \gamma(1-\alpha)+(2-\alpha-\beta)[6(1+\gamma)-(\alpha+\beta)(3+\gamma)]}{6(2-\alpha-\beta)^{2}} a_{1}^{2}(\gamma)\right] } \\
+ & +\frac{4 \gamma\left(2-\alpha^{2}-\beta\right)-(2-\alpha-\beta)(6 \mu-\gamma-3)}{4 \gamma\left(2-\alpha^{2}-\beta\right)}\left[a_{2}(\gamma)-\frac{3+\gamma}{6} a_{1}^{2}(\gamma)\right]
\end{aligned}
$$

Using the bounds obtained for $M(\mu)$ when $\mu=\frac{4 \alpha \gamma(1-\alpha)+(2-\alpha-\beta)[6(1+\gamma)-(\alpha+\beta)(3+\gamma)]}{6(2-\alpha-\beta)^{2}}$ and $\mu=\frac{3+\gamma}{6}$ we obtain Theorem 2.3.3 that

$$
\begin{aligned}
\left|a_{2}(\gamma)-\mu a_{1}^{2}(\gamma)\right| & \leq\left(\frac{3-2 \alpha-\beta}{3 \gamma}\right)\left(\frac{(2-\alpha-\beta)^{2}(6 \mu-\gamma-3)}{4 \gamma\left(2-\alpha^{2}-\beta\right)}+\frac{4 \gamma\left(2-\gamma^{2}-\beta\right)-(2-\alpha-\beta)^{2}(6 \mu-\gamma-3)}{4 \gamma\left(2-\gamma^{2}-\beta\right)}\right) \\
& =\frac{3-2 \alpha-\beta}{3 \gamma}
\end{aligned}
$$

Equality is attained on choosing $p_{1}=q_{1}=0$ and $p_{2}=q_{2}=2$.
Finally, we let $\mu \geq \frac{4 \alpha \gamma(1-\alpha)+(2-\alpha-\beta)[6(1+\gamma)-(\alpha+\beta)(3+\gamma)]}{6(2-\alpha-\beta)^{2}}$. In this case we write

$$
\begin{aligned}
a_{2}(\gamma)-\mu a_{1}^{2}(\gamma)= & a_{2}(\gamma)-\frac{4 \alpha \gamma(1-\alpha)+(2-\alpha-\beta)[6(1+\gamma)-(\alpha+\beta)(3+\gamma)]}{6(2-\alpha-\beta)^{2}} a_{1}^{2}(\gamma) \\
& +\left[\frac{4 \alpha \gamma(1-\alpha)+(2-\alpha-\beta)[6(1+\gamma)-(\alpha+\beta)(3+\gamma)]}{6(2-\alpha-\beta)^{2}}-\mu\right] a_{1}^{2}(\gamma)
\end{aligned}
$$

Taking the absolute values we obtain Theorem 2.3.4 that

$$
\begin{aligned}
& \left|a_{2}(\gamma)-\mu a_{1}^{2}(\gamma)\right| \leq\left|a_{2}(\gamma)-\frac{4 \alpha \gamma(1-\alpha)+(2-\alpha-\beta)[6(1+\gamma)-(\alpha+\beta)(3+\gamma)]}{6(2-\alpha-\beta)^{2}} a_{1}^{2}(\gamma)\right| \\
& +\left[\mu-\frac{4 \alpha \gamma(1-\alpha)+(2-\alpha-\beta)[6(1+\gamma)-(\alpha+\beta)(3+\gamma)]}{6(2-\alpha-\beta)^{2}}\right]\left|a_{1}(\gamma)\right|^{2} \\
& \quad \leq \frac{3-2 \alpha-\beta}{3 \gamma}+\frac{4 \alpha \gamma(\alpha-1)+(2-\alpha-\beta)[(\alpha+\beta)(3+\gamma)-6(1+\gamma)]}{6 \gamma^{2}}+\frac{\mu(2-\alpha-\beta)^{2}}{\gamma^{2}}
\end{aligned}
$$

where we have used the fact that $\left|a_{1}(\gamma)\right|=\left|\left[(1-\alpha) q_{1}+(1-\beta) p_{1}\right] / 2 \gamma\right| \leq(2-\alpha-\beta) / \gamma$. Choosing $p_{1}=q_{1}=2 i$ and $p_{2}=q_{2}=-2$ concludes the sharpness.

3. Littlewood-Paley Conjecture.

As mentioned earlier, letting $\mu=0$ in $M(\gamma)$ given by (7) we may obtain bounds for $\left|a_{2}(\gamma)\right|$ which is a good criterion to check the validity of $\left|a_{2}(\gamma)\right| \leq b_{2}(\gamma)$ given by (6). Now for $\mu=0$ and for $\left|q_{1}^{o}\right|=\frac{2(1-\beta)(\gamma+3)}{3(1-\alpha)(\gamma-1)}$ we obtain

$$
\begin{equation*}
\left|a_{2}(\gamma)\right|=\frac{R\left(\left|q_{1}^{o}\right|\right)}{\gamma}=\frac{3-2 \alpha-\beta}{3 \gamma}+\frac{2(1-\beta)^{2}(\gamma+3)}{9 \gamma(\gamma-1)} \tag{22}
\end{equation*}
$$

It is easy to see that there are α, β and γ in (22) so that $\left|a_{2}(\gamma)\right|>b_{2}(\gamma)$. For example, for $\gamma=4$ and for $28 \beta^{2}-74 \beta-36 \alpha+1>0$ we have

$$
\begin{equation*}
\left|a_{2}(4)\right|=\frac{82-74 \beta+28 \beta^{2}-36 \alpha}{216}>\frac{81}{216} \tag{23}
\end{equation*}
$$

We see that the inequality (6) is false, by the condition (23). Furthermore, this result is an improvement of an earlier result obtained by the second author $[18]$ for $f \in K(0,0)$.

References

1. Abdel-Gawad, H.R. and Thomas, D.K., A subclass of close-to-convex functions, Publ. de L'Inst. Math. Nouvelle série tome 49 (63) (1991), 61-66.
2. Abdel-Gawad, H.R. and Thomas, D.K., The Fekete-Szegö problem for strongly close-to-convex functions, Proc. Amer. Math. Soc. 114 (2) (1992), 345-349.
3. Bieberbach, L., Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitten, S.B. Preuss. Wiss. (1916), 940-955.
4. Bshouty, D. and Hengartner, W., Criteria for the extremality of the Koebe mapping, Proc. Amer. Math. Soc. 11 (2) (1991), 403-411.
5. Carathéodory, C., Über den Variabilitätsbbereich der Fourieŕschen Konstanten von positiven harmonischen Funktionen, Rend. Circ. Mat. Palermo, 32 (1911), 193-217.
6. Chonweerayoot, A., Thomas, D.K., and Upakarnitikaset, W., On the coefficients of close-to-convex functions, Math. Japon. 36 (5) (1991), 819-826.
7. Chua, K.S., Derivatives of univalent functions and the hyperbolic metric, Rocky Mountain J. Math. 26 (1) (1996), 63-75.
8. de Branges, L., A proof of the Bieberbach conjecture, Preprint E-5-84, Steklov Math. Institute, LOMI, Leningrad (1984), 1-12 or Acta Math. 154 (1985), 137-152.
9. Darus, M. and Thomas, D.K., On the Fekete-Szegö theorem for close-to-convex functions, Math. Japon. 44 (3) (1996), 507-511.
10. Dinggong, Y., Properties of a class of analytic functions, Math. Japon. 41 (2) (1995), 371-381.
11. Duren, P.L., Univalent Functions, Springer-Verlag, New York, 1983.
12. Ekhad, S.B. and Zeilberger, D., A high-school algebra, formal calculus, proof of the Bieberbach conjecture, Contem. Math. 178 (1994), 113-115.
13. Fekete, M. and Szegö, G., Eine Bemerkungüber ungerade schlichte Funktionen, J. London Math. Soc. 8 (1933), 85-89.
14. Gao, Y.C., The Fekete-Szegö problem for a class of close-to-convex functions, Chinese Annals Math. Ser. A 15 (6) (1994), 650-656.
15. Goel, R.M. and Mehrok, B.S., A coefficient inequality for certain classes of analytic functions, Tamkang J. Math. 22 (2) (1991), 153-163.
16. Hayman, W.K. and Hummel, J.A., Coefficients of powers of univalent functions, Complex Variables Theory Appl. 7 (1986), 51-70.
17. Hummel, J.A., The coefficient regions for starlike functions, Pacific J. Math. 7 (1957), 1381-1389.
18. Jahangiri, M., On the coefficients of powers of a class of Bazilevič functions, Indian J. Pure Appl. Math. 17 (9) (1986), 1140-1144.
19. Jahangiri, M., Disproof of a coefficient estimate related to Bazilevič functions, Bull. Aust. Math. Soc. 42 (1990), 121-124.
20. Jahangiri, M., Extremality of Koebe mapping for a class of Bazilevič functions, Math. Japon. 38 (2) (1993), 211-215.
21. Jahangiri, M., A coefficient inequality for a class of close-to-convex functions, Math. Japon. 41 (3) (1995), 557-559.
22. Keogh, F.R. and Merkes, E.R., A coefficient inequality for certain class of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8-12.
23. Kim, S.A. and Minda, D., Two-point distortion theorems for univalent functions, Pacific J. Math. 163 (1) (1994), 137-157.
24. Koepf, W., On the Fekete-Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc. 101 (1987), 89-95.
25. Koepf, W., On the Fekete-Szegö problem for close-to-convex functions II, Arch. Math. 49 (1987), 420-433.
26. Littlewood, J.E. and Paley, R.E.A.C., A proof that an odd schlicht function has bounded coefficients, J. London Math. Soc. 7 (1932), 167-169.
27. London, R.R., Fekete-Szegö inequalities for close-to-convex functions, Proc. Amer. Math. Soc. 117 (4) (1993), 947-950.
28. Ma, W. and Minda, D., Uniformly convex functions II, Ann. Polon. Math. 58 (3) (1993), 275-285.
29. Nasr, M.A. and El-Gawad, H.R., On the Fekete-Szegö problem for close-to-convex functions of order ρ, New Trends in Geometric Function Theory and Applications, World Sci. Publ., River Edge, NJ. (1991), 66-74.
30. Pfluger, A., The Fekete-Szegö inequality for complex parameters, Complex Variables Theory Appl. 7 (1986), 149-160.
31. Trimble, S.Y., A coefficient inequality for convex univalent functions, Proc. Amer. Math. Soc. 48 (1) (1975), 266-267.

Department of Mathematics, University of Ulster, Jordanstwon, Co. Antrim, BT37 0QH, U.K.

E-mail: kfarahmand@ulst.ac.uk jay@geauga.kent.edu

Department of Mathematics, Kent State University, Burton, Ohio 44021-9500, U.S.A.
E-mail: jay@geauga.kent.edu

[^0]: 1980 Mathematics Subject Classification (1985 Revision). Primary 30C45; 30C50.
 Key words and phrases. Fekete-Szegö Inequalities, Littlewood-Paley Conjecture, Starlike and Close-toconvex Functions.

 The work of the second author was supported by the Kent State University Research Council .

