ON A CLASS OF BOUNDED ANALYTIC FUNCTIONS

O. P. Ahuja and Jay M. Jahangiri

Received February 4, 1997; revised July 3, 1997

Abstract

We obtain inclusion relations and convolution characterization for functions that are analytic in the open unit disk and are bounded above by $1+(1-\alpha)\left(\pi^{2}-6\right) / 3, \alpha<1$. We also show that the class of such functions is invariant under convolution with convex functions.

1. Introduction. Let \mathcal{A} denote the family of functions f that are analytic in the open unit disk $\Delta=\{z:|z|<1\}$ and are of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

For $\alpha<1$ and for n a whole number we define

$$
\begin{equation*}
M_{n}(\alpha):=\left\{f \in \mathcal{A}: \operatorname{Re}\left(D^{n} f\right)^{\prime}>\alpha,|z|<1\right\} \tag{1.2}
\end{equation*}
$$

where $D^{n} f$ is the Ruscheweyh derivative [5] of f defined by

$$
D^{n} f(z)=\frac{z\left(z^{n-1} f(z)\right)^{(n)}}{n!}=f(z) * \frac{z}{(1-z)^{n+1}}
$$

The operator $*$ stands for the Hadamard product or convolution of two power series $f(z)=$ $\sum_{k=o}^{\infty} a_{k} z^{k}$ and $g(z)=\sum_{k=o}^{\infty} b_{k} z^{k}$, that is, $(f * g)(z)=f(z) * g(z)=\sum_{k=o}^{\infty} a_{k} b_{k} z^{k}$. From (1.2) it is easy to see that $f \in M_{n}(\alpha)$ if and only if $D^{n} f \in M_{o}(\alpha)$, and $M_{n}(\beta) \subset M_{n}(\alpha)$ whenever $\alpha<\beta$. We also know [4] that $M_{n+1}(\alpha) \subset M_{n}(\alpha)$. In [1] the authors showed that if $f \in M_{n}(\alpha)$ then

$$
\begin{equation*}
|f(z)| \leq 1+2(1-\alpha) \sum_{k=2}^{\infty} \frac{n!(k-1)!}{(k+n-1)!k} \tag{1.3}
\end{equation*}
$$

From (1.3) when $n=1$ it follows that if $f \in M_{n}(\alpha) \subset M_{1}(\alpha)$ then

$$
\begin{equation*}
|f(z)| \leq 1+2(1-\alpha)\left(\frac{\pi^{2}}{6}-1\right) \tag{1.4}
\end{equation*}
$$

The inequality (1.4) for $M_{1}(\alpha)$ was also obtained in [1] and [8]. The above inequality (1.4) shows that if $n \geq 1$ then the family $M_{n}(\alpha)$ is bounded in Δ for all real $\alpha, \alpha<1$. Note that, by (1.3), the functions in $M_{o}(\alpha)$ need not be bounded. Alexander [3] showed that $M_{o}(0)$ is

[^0]a subfamily of analytic univalent functions. We conclude that if $0 \leq \alpha<1$ then $M_{n}(\alpha)$ is a subfamily of analytic univalent function. Note that the functions in $M_{n}(\alpha)$ when $\alpha<0$ need not be univalent. Singh and Singh [9] proved that the functions in $M_{1}(0)$ are starlike in Δ and in [10] they showed that a function in $M_{1}(0)$ need not be convex in Δ. For $0 \leq \beta<1$ and for suitable $\alpha=\alpha(\beta)$ and $n=n(\alpha, \beta)$ we will show that $M_{n}(\alpha) \subset K(\beta)$ where
$$
K(\beta)=\left\{f \in \mathcal{A}: \operatorname{Re} \frac{\left(z f^{\prime}\right)^{\prime}}{f^{\prime}}>\beta, \quad|z|<1\right\}
$$
is the well-known class of convex functions of order β. Note that $K(\beta) \subset K(0)$ for $0<\beta<1$. We also show that the functions in $M_{n}(\alpha)$ are invariant under convolution with convex functions. Finally, a convolution characterization for functions in $M_{n}(\alpha)$ is introduced.
2. Main Results. The first theorem is on the convexity of the functions in $M_{n}(\alpha)$.
2.1. Theorem. Let $0 \leq \beta<1$. If $\alpha \leq \alpha_{o}=\frac{41+23 \beta}{64}$ and if $n \geq n_{o}=\frac{15+\beta-16 \alpha}{1-\beta}$ then
$$
M_{n}(\alpha) \subset K(\beta)
$$

To prove the above theorem we shall need the following two lemmas, the first of which is given in [1] and the second one can be deduced from a result of Silverman [7].
2.2. Lemma. If f is of the form (1.1) and belongs to $M_{n}(\alpha)$ then

$$
\left|a_{k}\right| \leq \frac{2(1-\alpha)(n!)(k-1)!}{(k+n-1)!k}
$$

2.3. Lemma. Let f be of the form (1.1). Then f belongs to $K(\beta)$ if

$$
\sum_{k=2}^{\infty} k^{2}\left|a_{k}\right| \leq 1-\beta, \quad z \in \Delta
$$

Proof of Theorem 2.1. Let $f \in M_{n}(\alpha)$. To show that $f \in K(\beta)$, by Lemmas 2.2 and 2.3 it suffices to show that if $\alpha \leq \alpha_{o}$ and $n \geq n_{o}$ then

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{2}\left|a_{k}\right| \leq \sum_{k=2}^{\infty} \frac{2(1-\alpha)(n!)(k!)}{(k+n-1)!} \leq 1-\beta \tag{2.1}
\end{equation*}
$$

Here we will use an argument similar to that used by the first author and Silverman ([2] Theorem 1). Since $\sum_{k=2}^{\infty} 1 / k^{2}<1,(2.1)$ is true if we can show that

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{2(n!)(k!)}{(k+n-1)!} \leq \frac{1-\beta}{1-\alpha} \sum_{k=2}^{\infty} \frac{1}{k^{2}} \tag{2.2}
\end{equation*}
$$

Note that (2.2) holds if

$$
d_{k}=\frac{2 k^{3}(n!)(k-1)!}{(k+n-1)!} \leq \frac{1-\beta}{1-\alpha}, \quad k \geq 2
$$

Since $d_{2} \leq \frac{1-\beta}{1-\alpha}$ when $n \geq n_{o}$ and since $n!(k-1)!/(k+n-1)$! is a decreasing function of n, the proof is complete if we can show that d_{k} is a decreasing function of k. To show that
$d_{k+1} \leq d_{k}$ we are required to have $(n-3) k^{2}-3 k-1 \geq 0$ when $n \geq n_{o}$. This is true since for $\alpha \leq \alpha_{o}$ and $k \geq 2$ we have

$$
(n-3) k^{2}-3 k-1 \geq\left(n_{o}-3\right) k^{2}-3 k-1 \geq \frac{7}{4} k^{2}-3 k-1 \geq 13 k^{2}-3 k-1>0
$$

The following lemma which is due to Ruscheweyh and Sheil-Small [6] will be used to prove our next theorem.
2.4. Lemma. If $\phi \in K(0)$ and if $g \in \mathcal{A}$ is starlike in Δ, then the function $(\phi * g F) /(\phi * g)$ takes values in the convex hull of $F(\Delta)$ for every function F in \mathcal{A}.
2.5. Theorem. $M_{n}(\alpha)$ is closed under convolution with convex functions.

Proof. Let $g(z)=z$ and $F(z)=\left(D^{n} f\right)^{\prime}$. Then for $\phi \in K(0)$ we have

$$
\frac{\phi * z F}{\phi * z}=\frac{\phi * z\left(D^{n} f\right)^{\prime}}{z}=\left(\phi * D^{n} f\right)^{\prime}=\left(D^{n}(\phi * f)\right)^{\prime}
$$

By Lemma 2.4 we conclude that $\left(D^{n}(\phi * f)\right)^{\prime} \in M_{o}(\alpha)$. This means that $\phi * f \in M_{n}(\alpha)$. So the proof is complet.

Next we introduce a convolution characterization for the functions in $M_{n}(\alpha)$.
2.6. Theorem. A function $f \in \mathcal{A}$ belongs to $M_{n}(\alpha)$ if and only if

$$
\frac{f(z)}{z} * \frac{1+\frac{n(x+\alpha)+x+2 \alpha-1}{1-\alpha} z-\frac{x+2 \alpha-1}{2(1-\alpha)} \Sigma_{k=2}^{n+2}(-1)^{k}\binom{n+2}{k} z^{k}}{(1-z)^{n+2}} \neq 0, \quad|x|=1, z \in \Delta .
$$

Proof. Let $f \in M_{n}(\alpha)$. Since $\left(D^{n} f\right)^{\prime}=1$ at the origin, we can write $f \in M_{n}(\alpha)$ if and only if

$$
\frac{\left(D^{n} f\right)^{\prime}-\alpha}{1-\alpha} \neq \frac{x-1}{x+1}, \quad|x|=1, z \in \Delta
$$

This is equivalent to

$$
\begin{equation*}
(1+x)\left(D^{n} f\right)^{\prime}+(1-2 \alpha-x) \neq 0 \tag{2.3}
\end{equation*}
$$

Writing $g(z)=z /(1-z)^{n+1}$ we observe that

$$
z\left(D^{n} f\right)^{\prime}=z(g * f)^{\prime}=z f^{\prime} * g=f *(z g)^{\prime}
$$

From this and (2.3) we conclude that $f \in M_{n}(\alpha)$ if and only if

$$
\frac{1}{z}\left[f *\left\{(1+x) z g^{\prime}+(1-2 \alpha-x) z\right\}\right] \neq 0
$$

or if and only if

$$
\frac{1}{z}\left[f * \frac{(1+x)\left(z+n z^{2}\right)+(1-2 \alpha-x) z(1-z)^{n+2}}{(1-z)^{n+2}}\right] \neq 0
$$

which implies the theorem.
2.7. Corollaries. Let $|x|=1$ and $z \in \Delta-\{0\}$. Then
2.7.1. $f \in M_{o}(0)$ if and only if $f * \frac{z+((x-1) / 2)\left(2 z^{2}-z^{3}\right)}{(1-z)^{2}} \neq 0$.
2.7.2. $f \in M_{1}(0)$ if and only if $f * \frac{z+(2 x-1) z^{2}-((x-1) / 2)\left(3 z^{3}-z^{4}\right)}{(1-z)^{3}} \neq 0$.

References

1. Ahuja, O.P. and Jahangiri, M., On the derivatives of a family of analytic functions, Math. Japon. 46 (1997).
2. Ahuja, O.P. and Silverman, H., Function classes related to Ruscheweyh derivatives, J. Austral. Math. Soc. Ser. A, 47 (1989), 438-444.
3. Alexander, J.W., Functions wich map the interior of the unit circle upon simple regions, Ann. Math. 17 (1915), 12-22.
4. Noor, K.I., On some applications of the Ruscheweyh derivatives, Math. Japon. 36 (1991), 869-874.
5. Ruscheweyh, St., New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115.
6. Ruscheweyh, St. and Sheil-Small, T.B., Hadamard products of schlicht functions and the Pólya-Schoenberg conjecture, Comment. Math. Helv. 48 (1973), 119-135.
7. Silverman, H., Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116.
8. Silverman, H., A class of bounded starlike functions, Intenat. J. Math. Math. Sci. 17 (2) (1994), 249-252.
9. Singh, R. and Singh, S., Starlikeness and convexity of certain integrals, Ann. Univ. Mariae Curi-Skłodowska, Sct. A, 35 (1981), 45-47.
10. Singh, R. and Singh, S., Convolution properties of a class of starlike functions, Proc. Amer. Math. Soc. 106 (1989), 145-152.

Nanyang Technological University, National Institute of Education, Singapore 1025
E-mail: ahujaop@nievax.nie.ac.sg
Kent State University, Burton, Ohio 44021, USA
E-mail: jay@geauga.kent.edu

[^0]: 1980 Mathematics Subject Classification (1985 Revision). Primary 30C45; Secondary 30C50.
 Key words and phrases. Analytic Functions, Hadamard Product, Convex, Starlike, and Univalent Functions.

 The work of the second author was supported by the Kent State University Research Council.

