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ABSTRACT. A common fixed point theorem for four selfmaps on a complete Menger space is
established. This result is even new in a metric space setting.

1. Introduction. Seghal and Bharucha Reid [9] initiated the study of fixed points in
Menger spaces, a subclass of probabilistic metric spaces (PM—spaces). In PM-spaces the
concept of distance is considered to be probabilistic, rather than deterministic, that is to
say, given any two points & and y of a set, a distribution function F; ,(z) is introduced which
gives the probabilistic interpretation as the distance between x and y is less than £ (¢ > 0).
There has been an extensive investigation on fixed point theory in PM spaces in the last
twenty years, cf. [1], [2], [3], [6], [9], [11]. For topological preliminaries on PM-spaces we
refer the reader to [7] and [8].

In this paper, we shall prove mainly a common fixed point theorem for four selfmaps on
a complete Menger space. This result is new even in a metric space setting. In addition to
the above result a generalization of Hadzi¢ fixed point theorem in [3] is also established.

We now recall some basic definitions and results. A mapping F : R — [0,1] is called
a distribution function if it is nondecreasing, left continuous and tEl}]QQF(f,‘) = 0 and
/13131C F(t) = 1. The set of all distribution functions is denoted by D. A probabilistic
metric space (PM—space) is an ordered pair (X, F) consisting of a nonempty set X and a
mapping F : X x X — D, whose value F(z,y) at (x.y) is denoted by F, ,, such that the
following conditions are satisfied.

(i) F, y(a) =1 for all a > 0 if and only if » = y;
(ii) Fpy(0) =0 for all ,y in X;
(i) F, = Fy, for all 2,y in X;
(iv) if F, y(a) =1 and F, .(b) = 1 then F, .(a+b) =1 for all w,y,z in X and a,b > 0.

A mapping ¢ : [0,1] x [0,1] — [0,1] is called a t—norm if it is commutative, associative,
nondecreasing in each coordinate, and #(a,1) = a for all a € [0,1]. An important t—norm is
the min which is defined by min (a,b) = minimum of a and b.

A Menger space is a triplet (X, F.t), where (X, F) is a PM-space and ¢ is a t-norm such
that the generalized triangle inequality

Fos(a+b) > ¢ (Fyy(a). Fy 2(0)
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holds for all z,y,z in X and a,b > 0. The concept of neighborhoods in a PM—space (X, F)
was introduced by Schweizer and Sklar [7]. If + € X, ¢ > 0 and A € (0,1), then an
(g, A\)—neighborhood of z, denoted by U, (z; A), is defined to be

Us(ssA) ={y e X : Fp y(s) > 1= A}

It is well-known that if (X, F,t) is a Menger space with the continuous t—norm ¢, then
(X,F,t) is a Hausdorff space in the topology induced by the family {U,(s;A) @ @ € X,
e>0,X€(0,1)} of neighborhoods. A sequence {,} in a PM-space is said to be Cauchy if
for any ¢ > 0 and X € (0,1) thereis N = N(=,A) € N such that F, , () > 1—\ whenever
n,m > N. The sequence {x,} is said to be convergent to a point = in X if for any = > 0
wli_I}IéQ F,, .(e) = 1. If every Cauchy sequence in X is convergent, then (X,F) is called a

complete PM—space.
The following result is a special case of Schweizer and Sklar [7, Theorems 8.1 and 8.2].

Lemma 1.1. Suppose (X, F,min) is a Menger space then for any ¢ > 0 lim F, ., ()
n—od0
> F, 4(¢) provided that z, = 2 and y, — y. Moreover, if F, , is continuous at ¢, then

nlgrolo Fip oy, (2) = Fey(2).
2. A New Fixed Point Theorem in Menger Spaces. To start with, suppose

¢ :]0,00) = [0,00) is an upper semicontinuous function with ¢(0) = 0 and () < ¢ for all

t > 0. Then T.H. Chang [2] showed there exists a strictly increasing continuous function

a:[0,00) = [0,00) such that a(0) = 0 and ¢(t) < aft) < ¢ for all £ > 0. The function « is

invertible and for any ¢ > 0 lim a~"(t) = oo, where a™" denotes the n—th iterates of o™

n—roo
(™! composed with itself n times) and a1 denotes the inverse of a.

In order to prove our main result we need some lemmas.

Lemma 2.1. Suppose (X, F, min) is a complete Menger space and ¢ : [0,00) — [0, 20)
is an upper semicontinuous function with ¢(0) = 0 and ¢(¢) < ¢ for all + > 0. If {y,} is a
sequence in X such that for any £ > 0 and any n € N

Fy v (p(2) = Fy, ) . ()

then {y,} is a Cauchy sequence in X.

Proof.  Choose a strictly increasing continuous function « : [0,00) — [0,00) such that
a(0) = 0 and ¢(t) < aft) < ¢ for all t > 0. Then for any = > 0 and any n € N one has

Fymynﬂ (a(g)) 2 Fymyn+1 (99(5)) 2 Fyn—l:yn (g)" 80

P (07 D) 2 By (07 (E2D))

ZFylsyU (a_"(g_Ta(E))>' (1)

Since "11_1%1C a™ " (6_3(5)) = 00, we have “11_1}131C Fy v (a_” (6_(2&)) = 1, and hence (1) shows
that lim F, , . (a7! (5_(2’(5) )) = 1, which says that for any ¢ > 0 and A € (0,1) there is
n—r00 ’

N € N such that

I (ail (#)) >1— X whenever n > N (2)
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We now prove by induction that for n > N and m € N,
Ey g (8) > 1= X (3)
When n = 1, it follows from (2) that
A L e—afe)
Fypys (8) Z Fy oy, (07 ) > Fy, . (O’ (T))
>1—-X, Vn>N.

Suppose (3) holds for any n > N and for any m = 1,2,... ,r. Then when m = r + 1, we
have for all n € N that

Fyn yYn+r+1 (5)

Zmin{Fyn,yn+1 (6_—Q(E))F LQ(:‘))}

<
2 Yn+1,:Yn+r+1 ( 2

{Fym 1 yr( ](#))*Fynwywwwl (%O‘(g))}
{1 IHIH{ . yn“(g_;(E)),Fynﬁyywrw (a(a))}}
n{l mm{ Yo Yt 1 (ail(#)),Fynﬂyywy‘(a‘)}}
> min {1 A, min { = ANEy s (c)}}

:min{l —A Fyr-H Y (nt1)+(r— 1)( )}
> min {l - A1 /\} by induction hypothesis
=1-A

> min

> min

Therefore {y, } is a Cauchy sequence in X. ///

The following Lemma 2.2 is well known, cf. [2].

Lemma 2.2. Suppose (X, F)is a PM space and a : [0,00) — [0,00) is strictly increas-
ing and satisfies a(0) = 0 and «a(t) < t for all ¢+ > 0. If 2,y are two members in X such
that

Fyy(a(e)) > Fry(2)

for all £ > 0, then z = y.

The commutative notion was first generalized by Sessa [10] in the following way:
Two selfmaps f,g on a metric space (X,d) are said to be weakly commutative if

d(fgz,gfz) < d(fa,gz) for all x € X.

Later Jungck [4] made a further generalization:

Two selfmaps f,g on a metric space (X,d) are said to be compatible if whenever {x,}
is a sequence in X such that both {fx,} and {gz,} are convergent to a same point x in X
then d(fgxn,gfzn) — 0.

The counterpart of the compatibility in a PM—space is the following

Definition 2.3. Two selfmaps S, 4 on a PM-space (X,F) are compatible if

lim Fsap, se,(e) =1 for all £ > 0 whenever {z,} is a sequence in X such that {Aa,}
n—roo L

and {S%,} are convergent to some point x in X.
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By taking x,, = « for all n it follows from the compatibility of A and S that ASxz = SAx
if Az = Sz.

We are now in a position to prove our main result.

Theorem 2.4. Suppose (X, F,min) is a complete Menger space and 5,7, A,B : X —
X are four selfimaps on X satisfying the following conditions:

(i) SXCBX and TX C AX;
(i) (S, A) and (T, B) are compatible pairs;
(iii) one of S,T, A, B is continuous;

(iv) there exists an upper semicontinuous function ¢ : [0,00) — [0,00) with »(0) = 0 and
p(t) < t for all £ > 0 such that

2
(F‘?,I:,’Ty (’}9(5))) Z min {F/\:l;,ﬁ‘,lz(E)FBJI,’TJI('S)a F/\,’l‘,T]/(QE)FB;I/,S:I;(25)-,

FAQE,Sm(f)FAJj,Ty(Zg)a FBy,Sm (ZE)FBy,Ty(f)}

for all z,y in X and £ > 0.

Then S,T, A and B have a unique common fixed point.

Proof. In view of condition (iv) and the remark at the begining of this section, we may
assumne that ¢ is a strictly increasing continuous function with »(0) = 0 and @(t) < ¢ for
t > 0. Fix an x¢ € X and define a sequence {y, } recursively by

Yon = Sz n — Bz n
’ ’ 2 n e NU{0}.
Yong1 = T®opq1 = AZony2,
We shall prove that for any n € N and £ > 0
Fy2n+1 yYon42 (5‘9(8)) 2 Fy2n,y2n+| (8) (1)

Suppose (1) is not true. Then there exist n € N and ¢ > 0 such that

Fy2n+17'y2n+2 (3‘9(5)) < Fyzmy2n+1 (5) (2)
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It follows from (iv) and (2) that

2
(Fy2n+1=y2n+2 (99(5)))
2
= (FS-’I‘2n+2 T xon41 (*9(5)))
> min {FArszrz,sznJrz (5)F3r27b+141’1‘2n+1 (5)7
FAT2n+2J'$2n+1 (25)FL"1‘2¢L+175T271+2 (25)7
FAl‘QnJrzySwnJrz (E)F/4w2n+2,7',1:2”+1 (25),

FB,I72”+1.S»I72H+2 (25)FB%271+177_»"271+1 (5 }
=min {Fy2n+1 wanto (E)F g yanis (5)s Fyonin yonsr (26) Fyarnyansn (22,
Fyironse O Fysnis wonss (26)s Fyoryogs (26) oo (C)}
= min {Fy2n+1 wont (P) Fyan o (8 Py (28),

R/27z+1 yYan+2 (*9(5)) ’ Fﬁ'/2m!/2n+2 (2€)Rl2717!/2n+1 (g)}, since #9(5) <eg

and F'is nondecreasing,

Z min {Fy2n+1 yY2nt2 (¢(8))Fy27uyzn+1 (5)7 min {Fymyyzwrl (5)7 Fy2n+1 sY2n+2 (5)}7
Fy2n+| yYon42 (19(5)) s Illill {Fyzn,,yZn,+\ (E)‘/ FyZn,-H s Y2an42 (E)}FyZn,yy2n+l (E)} (3)

Now, note that

2
(@) Fysrit yomyo (99(5))5/2”,:1/2”“ (e) > (E/zn+1-,!/zn+2 (79(5)))
(b) min {F.U?n;yZnJrl (5)7 Fy2n+17'y2n+2 (5)} Z Fy2n+1<y2n+2 (79(5))*

(C) IIliIl {Fyzmyzn+1 (8)‘ Fy2n+1 yYon42 (8)}Fy2n,yzn+1 (5)
2 E/271+1~?/271+2 (@(E))Rmmyznﬂ ()

2
> (Fy2n+1vy2n+2 (50(5))) :
So we get from (3) that

2

2 N . .
(Fy2n+1 Yonis (,9(:‘))) > (Fy2n+1 Yomis (g(s))) , a contradiction.

Therefore, (1) holds, for any n € N and £ > 0. Using a similar argument we obtain that for
any n € Nand £ > 0

FyZnyy2n+l (5‘9(8)) 2 Fyz;q—l;yzn(f)' (4)

Thus putting (1) and (4) together, we see that F, , . (p(c)) > F,, ., (c) for any n € N
and ¢ > 0, and hence by Lemma 2.1 {y,} is a Cauchy sequence in X. Since X is complete,
there exists z in X such that
SéL’Qn — Z
B;l?2n+l — Z
as n — oo.
Taonts — 2

z4,772,,+2 — Z,
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Now, suppose A is continuous. Then
A%z, = Az and ASza, = Az as n = oo. (5)

Since both of {Axs,} and {Sxs,} are convergent to z, the compatibility of 4 and S implies
that lim Fasz,, sA4z,, (£) = 1. This in conjunction with (5) and the inequality

)}

shows that SAwy, — Az asn — oco. Let E = {¢ > 0: Fa. . is continuous at }. Since
F4. . is nondecreasing, it can be discontinuous at only denumerably many points. We now
show that Fa. .(g) > Fa..(¢ '(2)) for any = € E. By (iv).

Fsan,, a-(2) > min{Fsae,, 450, (5), Fases, 4z

N |

Do

2 . _
(FSA‘T?”*T"??”‘H (E)) 2 min {F/12»172ms/4%2n (Q_l(g))FBl,%_'_] L xn41 (79 1(5))»

FAQxZn,,Tx2,7+1 (29971(6))}7’3’1‘27&1 '5‘/\"‘271( 7971( ))
F42»172ms/1-’l‘2n( ( ))F4 Ton, Toany1 (25/ 1(5))‘

iy s (207 () Fbayis Tons (7' (2D ). (6)

It is easy to see that we can choose a subsequence {n;} of natural numbers such that all
the limits in (6) exist as j = oo and satify

2
.11111 (FSAGCQW yT‘T?’H,j-F‘ (E))

j—roo
Z IIliIl { ]lll)lolo (FA2T2nj y‘SArZIL]‘ (pil(g))FBﬁzn‘j-H:Tl‘znj +1 (/7‘971(5)) 5
111>H319 F421‘)n NEPTY +1(299 ( ))Fszanrl,SAfznj (25971(5)))7

JIEIDIC (F 1271j WS AL (’79_] (5))FA2T2nj 20541 (2(19_1 (8)) 4
111>H319 (FUTM +1,5A% 20 (Qpil(g))FUerJrl41’1‘2nj+1 (7971(6)))}

ZIIlill{ lim Axyn,S /11271(5‘/ ( ))FszmH Txongi (99_1 (E))),

n—00

liHl F/\Z'2n7/r'2n+l( _1( ))FB$277+|,<49@M (25/ (E))>‘
liHl F’\ Ton,S /11271(5‘/ ( )) A? »1727“7_»'72n+1(299_1(6))
n—o00

;)’
iz )]

>min { Fae 4 ()P (67 (), Fas (207 () Feas(207(2)),

Fae (67 () Fae (2071 (2), oo (267 () (67 (9)) }

Fb’12n+17“AT2n (25" ( ))FsznJrl,TT?nJrl (79

(F
Jim (
(
(

O]

where the penultimate inequality follows from Lemma 1.1.
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Also, since = € E, it follows from Lemma 1.1 that lim Fsae,, Tzsn. (¢) = Fa, (), which
n—oo :

in conjunction with (7) shows that
Fa..(2) > FAZ’Z(LPil(E)) for = € E. (8)

To conclude that Az = z we must show that FA,:;,,:;(&“) =1 for any € > 0. For this, let ¢ be
any member in I/ and put 1 = €. Then we have

s < e <) << (e) < vy and lim T (g)) = o (9)
n—0o0

Let 1 > 0 be any given positive number. Since Fy. . is left continuous at p~%(21), there is
0 > 0 such that n

for all w € (p72(1) — 6,07 %(=1)).

By the continuity of o' at ¢ ~!(£1), we can choose g3 € (21, ! (21))NE so that o~ !(22) €
(p7%(51) — 6, 2(£1)), and hence with the aid of (10)

_ ~ _ N/ ;
Fa--(¢ '(22)) 2 Faz (9 (1)) — 7 (11)
By induction, for any n € N we can choose z,4; € E so that

¢ " (e1) < e <9 "(e1), and

- —(n Yl
Fa..(¢7 (eng1)) > Fa - (¢ (1 (2)) = —

(12)

2n
So we have
FA,(E) :FA(gl)

ZF/4Z,Z(L}971(€]))
ZFAZ,Z(€2)
>Fa. (9 '(22)), since 2 € B

e s
ZFAZ,Z(LP 2(51) - 51 by (11)
2F4(€3) - g

—1 n
2Fqz (07 (53)) = 5

_ 7 7
>Fa. (¢ (e1)) - 2—'2 -7 (13)

—;1, n n R
>Fu. (¢ "(e1)) — (%71 + 503 4o

1
=FAz4z("197n(51))_77(1_2n—_1)7 VneN

Letting n — oo in (13) and noting lim ¢~ "(gy) = oo, we obtain that
n—roo

Fa..(e)>1—n forany n> 0.
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Since n > 0 is arbitrary, we conclude that FAZ,Z(E) =1 for any ¢ € E. Since F is dense in
(0,00) and F. . is left continuous on (0, 00), we see that F4. .(s) = 1 for all ¢ > 0, and
so Az = z. Asfor Sz = z, using (Fs..(¢))? = lim (FSZ‘T,,,,MH(E)) and (iv), we can just

n—oo
follow as before to obtain Fs. .(g) > Fs. .(¢'(2)) for any = > 0 where Fj. . is continuous.
Then in a similar argument as before, we conclude Fgs. .(¢) =1 Ve > 0, and so Sz = z.
Since SX C BX, there exists y in X such that By = Sz = z. So for any ¢ > 0

(f“ﬁ‘z,Ty(s@(‘:‘)D2 I(FSZ,Ty(P(‘:‘)))Q
> min { Fa s:(2) Finy 1y (2), Fasry (26) Fiy s(2),
Facs2(6)Fas 1y(26), Fiy5:(29) Fiy 1y (4) |
=min { . 1, (=), F. 1y (22) }

Z(Fz,Ty(g))—'

Thus F, T,,(’ (C)) > F. py(¢), and hence Ty = z. Up to now we have shown that Sz
Az = z = By = T'y. We are now going to show that z is a common fixed point of 5,7, A
and B. Since T and B are compatible, we have BTy = T'By, that is , Bz = T'z. Therefore,
for € > 0, we have the following inequalities:

(For (o)) =(Fser(e(e)))
Zlnin{FA:,S;;(g)FBz,Tz(f):FA,::,T (22)Fp.,s:(2¢),
Fu.s:(6)Fa-7:(22),Fp. 5.(2¢)Fp. 1-(c )}

=min { (sz‘z(zg))?v FZ‘TZ(ZS)}

> (F,‘,T:(g))z.

So Tz = z by Lemma 2.2. This completes the proof for z being the common fixed point
of §,T, A and B provided that A is continuous. By symmetry, if B is continuous, we can
prove that S, T, A and B have a common fixed point in a similar way.

Next, assume that S is continuous. Then SAxzs, — Sz and SBxg,4+1 — Sz as n —
oo, and, since S and A are compatible and both of {Azy,} and {Szs,} are conver-
gent to z, nlijroloFA*"f"mSAwn(5) = 1 for ¢ > 0. Noting that for ¢ > 0 Fasa,, s:(2) >
Inin{FASMMSAJCM(%),FS*AMWSZ(%)} and both of {Fasq,, s42,,(5)} and {Fsae,, s:(5)}

are convergent to 1, we see that lim Fag,,, s.(¢) =1 for all £ > 0, and so 11111 AS Top =
n—oo o

Sz. In the inequality

2
(ESUfszrlJ'fszrl(s)) > min {F‘U-"T?wrl sUﬁl2n+1( 1(:))FUI?2”+14TT271+1 (3‘971(5))7
—1
(

FABI2n+1yTI2n+1 (27‘9 FBLH-H SVBJC)n+1 (2‘19_] 5))*

(=)
FABT?rHrl S BTap41 (9971( ))FABJQHJrl,l Topt1 (29971(5)),
( ))FBmvn-H T x9,41 (99_1(6))}:

FBI‘QHH ,SBxyn41 (2&,9_1
we can imitate the procedure for the case that A is continuous to show that Fg. .(<) 2
Fb‘z,z(?f%g)) for any £ > 0 where F. . is continuous, and then show that Fs. . (e ) —1f
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any £ > 0. So Sz = z. Since SX C BX, we can choose y € X such that By = Sz = z.
Then for any € > 0 and n € N we have

2
(FSBi"szruT!/(g)) > min {F/\Bl2n+175312n+1 (3‘“ ( ))FB'/ T'/(vpil(g)
F4B73277+] ,Ty(z‘/‘tﬁ_ (‘))FB@/ SBxy,41 (279_1(

FABvZn+1 bBizr-H( FABIzn-H Ty(299_ (8))7
Fpy sBry, (207 (2) Fpyry(97 ' (2))
=min {FA gy 5229, (0 HENEe Ty 7 (E)),

Y
Fusu,,, T,,(2gu (5)) . Sy, (2~ 1(5)),
Frsuy, 5209, (7)) Fase,, Ty(207H(

N e ) N O] 8

)

[0

As the case that A is continuous, we can take limit via a suitable subsequence {n;} of
natural numbers to get

(FzyTy«p(f))z Znﬁn{szTy( Y(2), oy (2 (6))}

Z(FzyTy(cp_l(e)))z, for any ¢ > 0 where F, r, is continuous.

Thus Ty = z. In summary we have shown that By =Ty = Sz = z. Now, since TX C AX,
there exists @ € X such that z = Sz = By = Ty = Ax. Then we get Ax = Sa from the
following inequalities:

>min {FArﬁr(g)FBy T y( )7 FAT,’I'y(ZCA)FBy,Sr(QS)v
Fau,50()F a2 1y(2¢), Fpy 50(22 )FBy,Ty(f)}
=min {FAr“Sr(g)a FAT,S:ﬁ(QE)}

Z(FAxygx(f))z for any £ > 0.

Let £ = Ax = Sx = Ty = By. Since § and A are compatible and since Az = Sz, we get
ASx = SAux, that is, A§ = S¢. Then for any = > 0,

2

(FSE,s(s@(t‘)))z I(F%,Ty(dé)))
> min { Fag,se(2) Fry (<), Fac ry(22) iy se(22),
Fag,se(2) Fagry(29), Fuy,‘%(?f)FuyJ‘y(ﬁ)}

= win { (Fse(22))", Fsas(?é)}

> (Fsee()),
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which implies that S¢€ = £ = A, Next, choose v € X such that Bv = S¢ = €. Then

2

(Fero(0() = (Fsera (01))
2miﬂ{FAs,szs(cA)FBu,Tu(f):FAE;TU(%)FBU,SE(ZE),
Fag se(e)Fagro(22), Fm,s‘f(2€)FBU,TU(5)}

=min { Fe 1o (¢), Fe ro(22) }

>(Fero(2))” for any = > 0.

Hence Tv = €. Since T and B are compatible and Tv = Bv, we have TBv = BT v, that is,
T¢ = BE. Then we conclude that T¢ = £ from the following inequalities:

2

(F&Tﬁ(’?(g)))Z =(Fser¢(4()))
> min {FAéysé(f)Fﬂf,’lf(g)v Fagre(22)Fie s¢(2¢),
Fag,se(e)Fae re(22), FBf,ss(%)FBs,Ts(f)}

=min { (Fere(22))", F&Tf(%)}

>(Fere(s))? Ve 0.

Thus £ is a common fixed point of 5,7, A and B provided that S is continuous. By
symmetry, if T' is continuous we can prove that S, 7T, A and B have a common fixed point in
a similar way. This completes the proof for the existence of common fixed points of S, T, A
and B. It remains to show the uniqueness of the common fixed point. Assume y and z are
two common fixed points of S, T, A and B. Since

2

(Fy,z (99(@)))2 = (FS,,,TZ (%(‘)))
> min { Fay,sy/(2) P 1-(2), Fay.r(29) i 5/(22),
Faysy(e)Fayr:(22), FBZ,S;I,(QE)FBZ,'TZ(E)}
= min {(F, -(22))". F, -(22) }
>(F, () forall => 0,
we conclude that y = z by virtue of Lemma 2.2. /]
3. Connection with Metric Spaces. Every metric space (M, d) is a Menger space

(M. F,min), where the mapping F(z,y) = F, y is defined by F, ,(¢) = H(c — d(z,y)), and
H is the distribution function defined by

H() 0, if=<0,
oL, ife>o.

The space (M, F,min) is called the induced Menger space.
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Lemma 3.1. Suppose (M, F,min) is the induced complete Menger space associated
with the complete metric space (M, d) and ¢ : [0,00) — [0, 00) is an upper semicontinuous
function satisfying that ¢(0) = 0 and () < t for each t > 0. If S,7,4,B : X — X are
four selfmaps on M then the following two statements are equivalent:

(1) For 2,y in M and & > 0, if p(g) < d(S=z, Ty) then either ¢ < max{d(Axz, Sx),d(By,Ty)}
or 2¢ < max{d(Az,Ty),d(By, Sz)}.

(i) ‘)

Z min {FAQCVSJC(S)FBijy(g), FAm,Ty(Qg)FBy,Sx(QE),

FA$,5'QU(5)FA,U,'Ty(2€)7 FBy,S$(28)FBy,Ty(5)}

(Fe 1y (2(2)))

for all z,y in M and & > 0.

Proof. TFor simplicity put

Then (ii) says that
w? > min{af,vd, ay, 36}

for all ,y in M and = > 0.

Now, assume (i) holds and suppose z,y are any two points in M and = is any positive
number. Then either ¢(g) > d(Sx,Ty) or () < d(Sz,Ty). For the case that ¢(z) >
d(Sz,Ty) we have w? = (H(p(z) — d(Sm,Ty)))z = 1> min{ag, v, ay,36}. On the other
hand, if ¢(¢) < d(Sz,Ty) then by (i) we have either ¢ < max{d(Az,Sz), d(By,Ty)} or
2z < max{d(Ax,Ty),d(By,Sx)}, and so we see that at least one of the following four
inequalities

(a) & < d(Ax,Sr)
(b) =< d(By,Ty)
(¢) 2= < d(Ax,Ty)
(d) 2= < d(By, Sx)

occurs. Hence at least one of a, 3,7, is zero. Consequently, w? = 0 = min{a/3, vd, a~y, 3}.
Thus (i) implies (ii).

Next, suppose (ii) holds. Let = > 0 and x, y be any two points in M satisfying that ¢(g) <
d(Sxz,Ty). Then w = H(p(z) —d(Sx,Ty)) = 0, and so (ii) implies that min{a/3, 4, av, 35}
= 0. Thus at least one of «,3,7,d is zero, that is, at least one of (a), (b), (¢), (d) in
the previous paragraph holds. Therefore we have either ¢ < max{d(Ax, Sx),d(By,Ty)} or
2e < max{d(Ax,Ty),d(By,Sz)}. So (i) implies (i). /]

In view of Theorem 2.4 and Lemma 3.1 the following theorem follows immediately.

Theorem 3.2. Suppose (M,d) is a complete metric space and S,T, A, B are four self-
maps on M satisfying the following conditions:
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SM C BM and TM C AM;

(S, A) and (T, B) are compatible pairs;

one of S,T, A, B is continuous;

there exists an upper semicontinuous function ¢ : [0,00) — [0,00) with »(0) = 0 and
p(t) < t for t > 0 such that for ¢ > 0 and x,y in M if p(g) < d(Sz,Ty) then either
¢ < max{d(Ax, Sz),d(By,Ty)} or 2¢ < max{d(Az,Ty),d(By, Sx)}.

Then S,T, A and B have a unique common fixed point.

All notations are just as in Lemma 3.1. Assume that for any ¢ > 0 and for any z,y in
M if £ > max{d(A=z, Sz),d(By,Ty)} then ¢(s) > d(Swx,Ty). We now check that condition
(ii) of Lemma 3.1 holds for any x,y in M and any = > 0. Indeed, let 2,y be any two points
in M and e be any positive number. In case ¢ > max{d(Ax, Sz).d(By,Ty)}. Then we
have H (s — d(Az,Sz)) = 1 = H(c — d(By,Ty)) and ¢(z) > d(Sz,Ty). So the following

inequalities hold:

2e —d(Ax,Ty) > 2e — d(Awx, Sv) — d(Sz, Ty)
> 2 —=— e

Thus H(2: — d(Az,Ty)) = 1. Similarly, H(2z — d(By. Sz)) = 1. Hence,

2
(FS%TU (S‘Q(C))> =1=min {FA-’I‘,S% (£)FBy,ry(€)s Fae,my(25) Fipy 50(22),

F iz 52(6)Fax 1y(22), FBy,Sx(2€)FBy,Ty(€)}-

On the other hand, if ¢ < max {d(Axz, Sx),d(By,Ty)}. then we

2
(EST,’I'y (5‘9(5))) Z 0 = min {FAT,ST(g)FBy,’[y(CA)a FA:ﬁ,'l’y(QE)FBy“Sr(:zg)a

Far,s2()Faz1y(22), FBy,Sw(Zﬁ)FBy,Ty(g)}-

Therefore, the following corollary follows from Theorem 2.4.

Corollary 3.3. Except condition (iv) of Theorem 3.2 is replaced by
(iv)" For x,y in M and & > 0 if & > max{d(Ax, Sz),d(By, Ty)} then (=) > d(Sxz, Ty),

assume all assumptions are just as in Theorem 3.2. Then S, T, A, B have a unique common
fixed point.

In the remainder of this section we give a concrete example for Corollary 3.3.

Example 3.4. Let M = [0,1] with the usual Euclidean distance d(z,y) = |# — y| and
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let A,B.S,T:[0,1] = [0, 1] be four functions defined by

3 1 1
Ar = 11 )
5, 1f§<7‘§1,
1 1 1
§L+Z lfOSIS;
Br = . 1 -
9 .
{ g, 1f§<7‘§1,
1 3 1
ZL—Fg lfOSIS;
Sr = ) -
-, if=<ax<1,
( 3 My
and ) )
-, ifo<e< =
T = 27 2
Y7 3 1
=, if-<ae<1
3’ 1 T <
Then

(i) TM C AM and SM C BM,

(i) d(ASz,SAz) = 0 < d(Sz,Ax) for 0 < z
0<z< % and d(TBz,BTx) = % < % =
are compatible pairs.

(iii) A is continuous,

< 1; d(TBz,BTz) = 0 < d(Bwz,Tx) for
)

for £ <2 < 1. So (4,5) and (B,T)

(iv)
(1 1 1
1——T, 110§T§§
d(Az,Sx) = )
0, if —<a<1
2
1 1 1
1 ¥ H0=y=ss
d(By,Ty) = ) )
{ Zq 1f§<y§1,
1 1 1 1
- — - fo<ae<—-,0<y< -
3 4T, i 0_1?_2,0_;/_2
1 1 1
5 1f0§;r§5,5<y§1
d(Ty,Sz) = ) - )
0, if§<m§1 0§y§§
1 .1 1
g, lf§<L§1.E<y§1

So if we put ¢ : [0,00) = [0,00) : p(2) = 32, then it is easy to check that for = > 0 and
x,y in M if £ > max{d(Ax, Sx),d(By, Ty)} then ¢(e) > d(Sxz, Ty).

Thus the conditions in Corollary 3.3 are satisfied and in this case % is the unique common
fixed point of A, B, S and T.
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4. A Generalization of Hadzi¢ Fixed Point Theorem. In [3] the following fixed
point theorem is proved.

Hadzi¢ Fixed Point Theorem: Suppose ¢ € [0,1) is a constant and (X, F,¢) is a
complete Menger space with continuous t—norm ¢ and f is a selfimap on X such that for
each x in X thereis n{x) € N so that for all y € X

Fpnto) @), gt (02) 2 Fry(2)

for all ¢ > 0. If there is 29 in X such that sup G4, (2) = 1, where G, (¢) = inf { Fje,, ., (2)
£>0
ke N}, then f has a unique fixed point £ and for any « € X "11_1%1C f(z)=¢.
In what follows we shall show that this theorem holds true if the constant ¢ € [0,1) is
replaced by an upper semicontinuous function ¢ : [0,00) — [0, 00) such that ¢(0) = 0 and
©(t) < tfor all t > 0. Actually we have the following theorem.

Theorem 4.1. Suppose (X, F,t) is a complete Menger space with continuous t—norm
t and f is a selfinap on X. If there is an upper semicontinuous function ¢ : [0,00) — [0, c0)
with ¢(0) = 0 and () < t for all t > 0 such that for each x in X there is n(x) € N so that
for all y in X Fpu) (), fno) () (,9(5)) > F, ,(2) for all € > 0 and if there exists a point x
in X such that sup Gay(2) = 1, where Gy, () = inf {Fpi(4) 2,(2) i k € N}, then f has a
£>
unique fixed point £ in X and for any x in X HIEI;O () =¢.
Proof.  Choose a continuous function o : [0,00) — [0,00) such that
(1) « is strictly increasing,
(ii) «(0) =0, and
(iii) o(t) < aft) < tforall t > 0.
Then for any ¢ > 0 we have

Fpnte) @), pr0 () (@) 2 Frntoriay, prior () (9(6)) 2 Fi y(2) (1)

for all y € X.
Define the sequence {z,,} recursively in the following way:

T, = '/;n($77,—1)<:ﬁn71)7 neN.

Then for any n,p € N,

frlontp—1) prlongp—2) L pnlent) ey fren—1) (g, ) (“)

(a~'2)

NE

Zan(x

ntp—1) . fnlen) (g, 1) 20 1

ZE[n(a‘nerfl).“fn,(,rn):';owo (Q’ing)
ZG»”o(ainE). (2)

Since sup G, (2) = 1, it follows from (2) that {z,} is a Cauchy sequence in X. Since X
>0

is complete, there is £ in X such that nlglgo 2z, = & Then in view of an(&)(r”)‘fniﬁ)(’g) () >
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F,, ¢(a™1s) we see that lim f™(x,) = 79 (). Now

Tn
s n—o0

Frneg)(2)
Zt{Ffmf)(g):fn(g) (xn) (6 — (1’(8)) , an(f)(xn) < (a

2t{Fe, (07 = D)t Fpoia, ., (O

)}

) Frne (C50))
(<)

:t{F@T”(ail(s_ (8))) t F?Ur |)( 1) f”(‘lm 1) [n(E)(Jn 1)( 9 )7Fm§(h2( )}}

o =

2t Fen, (07! (6 = (@) H{ Fryypric oy (07 (F59)) o (50} - (3)

Noting that ﬂlLHéo Feoo (a7 (e —a(e))) = 1 and hm F,, e )(a_”(g)) =1 and
lim F,, 5(%) =1, it follows from (3) that f" © (f) = ¢. We claim that ¢ is the unique

n—o00

fixed point of f*€ . Suppose y is another fixed point of 7€ . Then, for any = > 0,
Fe y(2) = Fpntore pnter,(€) > Fe (a7t 2), which by Lemma 2.2 implies that £ = y. Now,
since f(&) = f(f"(‘f)(f)) = fUE(£(€)), we see that f(£) is a fixed point of f*(¢). By the
uniqueness of the fixed point of f"€), we get that f(&) = £. For the uniqueness of the fixed
point of f, assume y is another fixed point of f. Then for any £ > 0

Fey(e) =Fpueie) prioy(2)
>Fc y(ﬂ f),

which implies that £ = y.
Finally, we show that for any # in X, lim f"(2) = . For any m € N choose k € N so
n—oo

that
kn(&) <m < (k+ 1)n(€).

Then, for any £ > 0,

Frm(p)e(8) =Fpm () priere(€)
ZFfm—n(z)({v),g(a_lg)

ks \
ZFfm—kn(f)(m,é:(Cl' 5) (4)

Since 0 < m — kn(§) < n(§) and each of Fy,) (a7 ), Fpy, 6(0_'5),... and

Ff7z(§)1}7§(ﬂ_k5) converges to 1 as n — oo, we obtain that mlgnOO From—knie) (2, ela™ ko) =1,

and hence (4) gives us that Lim Fjym(,) ¢(2) = 1for any ¢ > 0. This means lim f™(x) = ¢.
m—o0 m—o0

/1]
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