FIXED POINTS OF COMPATIBLE MAPPINGS IN COMPLETE MENGER SPACES

Young-Ye Huang* and Chung-Chien Hong

Received November 7, 1995; revised May 30, 1997

Abstract

A common fixed point theorem for four selfmaps on a complete Menger space is established. This result is even new in a metric space setting.

1. Introduction. Seghal and Bharucha-Reid [9] initiated the study of fixed points in Menger spaces, a subclass of probabilistic metric spaces (PM-spaces). In PM-spaces the concept of distance is considered to be probabilistic, rather than deterministic, that is to say, given any two points x and y of a set, a distribution function $F_{x, y}(\varepsilon)$ is introduced which gives the probabilistic interpretation as the distance between x and y is less than $\varepsilon(\varepsilon>0)$. There has been an extensive investigation on fixed point theory in PM-spaces in the last twenty years, cf. [1], [2], [3], [6], [9], [11]. For topological preliminaries on PM-spaces we refer the reader to [7] and [8].

In this paper, we shall prove mainly a common fixed point theorem for four selfmaps on a complete Menger space. This result is new even in a metric space setting. In addition to the above result a generalization of Hadžić fixed point theorem in [3] is also established.

We now recall some basic definitions and results. A mapping $F: \mathbb{R} \rightarrow[0,1]$ is called a distribution function if it is nondecreasing, left continuous and $\lim _{t \rightarrow-\infty} F(t)=0$ and $\lim _{t \rightarrow \infty} F(t)=1$. The set of all distribution functions is denoted by \mathcal{D}. A probabilistic metric space (PM-space) is an ordered pair (X, \mathcal{F}) consisting of a nonempty set X and a mapping $\mathcal{F}: X \times X \rightarrow \mathcal{D}$, whose value $\mathcal{F}(x, y)$ at (x, y) is denoted by $F_{x, y}$, such that the following conditions are satisfied.
(i) $F_{x, y}(a)=1$ for all $a>0$ if and only if $x=y$;
(ii) $F_{x, y}(0)=0$ for all x, y in X;
(iii) $F_{x, y}=F_{y, x}$ for all x, y in X;
(iv) if $F_{x, y}(a)=1$ and $F_{y, z}(b)=1$ then $F_{x, z}(a+b)=1$ for all x, y, z in X and $a, b>0$.

A mapping $t:[0,1] \times[0,1] \rightarrow[0,1]$ is called a t-norm if it is commutative, associative, nondecreasing in each coordinate, and $t(a, 1)=a$ for all $a \in[0,1]$. An important t-norm is the min which is defined by $\min (a, b)=$ minimum of a and b.

A Menger space is a triplet (X, \mathcal{F}, t), where (X, \mathcal{F}) is a PM-space and t is a t-norm such that the generalized triangle inequality

$$
F_{x, z}(a+b) \geq t\left(F_{x, y}(a), F_{y, z}(b)\right)
$$

[^0]holds for all x, y, z in X and $a, b>0$. The concept of neighborhoods in a PM-space (X, \mathcal{F}) was introduced by Schweizer and Sklar [7]. If $x \in X, \varepsilon>0$ and $\lambda \in(0,1)$, then an (ε, λ)-neighborhood of x, denoted by $U_{x}(\varepsilon ; \lambda)$, is defined to be
$$
U_{x}(\varepsilon ; \lambda)=\left\{y \in X: F_{x, y}(\varepsilon)>1-\lambda\right\}
$$

It is well-known that if (X, \mathcal{F}, t) is a Menger space with the continuous t-norm t, then (X, \mathcal{F}, t) is a Hausdorff space in the topology induced by the family $\left\{U_{x}(\varepsilon ; \lambda): x \in X\right.$, $\varepsilon>0, \lambda \in(0,1)\}$ of neighborhoods. A sequence $\left\{x_{n}\right\}$ in a PM-space is said to be Cauchy if for any $\varepsilon>0$ and $\lambda \in(0,1)$ there is $N=N(\varepsilon, \lambda) \in \mathbb{N}$ such that $F_{x_{n}, x_{m}}(\varepsilon)>1-\lambda$ whenever $n, m \geq N$. The sequence $\left\{x_{n}\right\}$ is said to be convergent to a point x in X if for any $\varepsilon>0$ $\lim _{n \rightarrow \infty} F_{x_{n}, x}(\varepsilon)=1$. If every Cauchy sequence in X is convergent, then (X, \mathcal{F}) is called a complete PM-space.

The following result is a special case of Schweizer and Sklar [7, Theorems 8.1 and 8.2].
Lemma 1.1. Suppose (X, \mathcal{F}, \min) is a Menger space then for any $\varepsilon>0 \underset{n \rightarrow \infty}{\lim _{n}} F_{x_{n}, y_{n}}(\varepsilon)$ $\geq F_{x, y}(\varepsilon)$ provided that $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$. Moreover, if $F_{x, y}$ is continuous at ε, then $\lim _{n \rightarrow \infty} F_{x_{n}, y_{n}}(\varepsilon)=F_{x, y}(\varepsilon)$.
2. A New Fixed Point Theorem in Menger Spaces. To start with, suppose $\varphi:[0, \infty) \rightarrow[0, \infty)$ is an upper semicontinuous function with $\varphi(0)=0$ and $\varphi(t)<t$ for all $t>0$. Then T.H. Chang [2] showed there exists a strictly increasing continuous function $\alpha:[0, \infty) \rightarrow[0, \infty)$ such that $\alpha(0)=0$ and $\varphi(t) \leq \alpha(t)<t$ for all $t>0$. The function α is invertible and for any $t>0 \lim _{n \rightarrow \infty} \alpha^{-n}(t)=\infty$, where α^{-n} denotes the $n-$ th iterates of α^{-1} (α^{-1} composed with itself n times) and α^{-1} denotes the inverse of α.

In order to prove our main result we need some lemmas.
Lemma 2.1. Suppose (X, \mathcal{F}, \min) is a complete Menger space and $\varphi:[0, \infty) \rightarrow[0, \infty)$ is an upper semicontinuous function with $\varphi(0)=0$ and $\varphi(t)<t$ for all $t>0$. If $\left\{y_{n}\right\}$ is a sequence in X such that for any $\varepsilon>0$ and any $n \in \mathbb{N}$

$$
F_{y_{n}, y_{n+1}}(\varphi(\varepsilon)) \geq F_{y_{n-1}, y_{n}}(\varepsilon)
$$

then $\left\{y_{n}\right\}$ is a Cauchy sequence in X.
Proof. Choose a strictly increasing continuous function $\alpha:[0, \infty) \rightarrow[0, \infty)$ such that $\alpha(0)=0$ and $\varphi(t) \leq \alpha(t)<t$ for all $t>0$. Then for any $\varepsilon>0$ and any $n \in \mathbb{N}$ one has $F_{y_{n}, y_{n+1}}(\alpha(\varepsilon)) \geq F_{y_{n}, y_{n+1}}(\varphi(\varepsilon)) \geq F_{y_{n-1}, y_{n}}(\varepsilon)$, so

$$
\begin{align*}
F_{y_{n}, y_{n-1}}\left(\alpha^{-1}\left(\frac{\varepsilon-\alpha(\varepsilon)}{2}\right)\right) \geq & F_{y_{n-1}, y_{n-2}}\left(\alpha^{-2}\left(\frac{\varepsilon-\alpha(\varepsilon)}{2}\right)\right) \\
& \vdots \tag{1}\\
& \geq F_{y_{1}, y_{0}}\left(\alpha^{-n}\left(\frac{\varepsilon-\alpha(\varepsilon)}{2}\right)\right)
\end{align*}
$$

Since $\lim _{n \rightarrow \infty} \alpha^{-n}\left(\frac{\varepsilon-\alpha(\varepsilon)}{2}\right)=\infty$, we have $\lim _{n \rightarrow \infty} F_{y_{1}, y_{0}}\left(\alpha^{-n}\left(\frac{\varepsilon-\alpha(\varepsilon)}{2}\right)\right)=1$, and hence (1) shows that $\lim _{n \rightarrow \infty} F_{y_{n}, y_{n-1}}\left(\alpha^{-1}\left(\frac{\varepsilon-\alpha(\varepsilon)}{2}\right)\right)=1$, which says that for any $\varepsilon>0$ and $\lambda \in(0,1)$ there is $N \in \mathbb{N}$ such that

$$
\begin{equation*}
F_{y_{n}, y_{n-1}}\left(\alpha^{-1}\left(\frac{\varepsilon-\alpha(\varepsilon)}{2}\right)\right)>1-\lambda \quad \text { whenever } n \geq N \tag{2}
\end{equation*}
$$

We now prove by induction that for $n \geq N$ and $m \in \mathbb{N}$,

$$
\begin{equation*}
F_{y_{n}, y_{n+m}}(\varepsilon)>1-\lambda \tag{3}
\end{equation*}
$$

When $m=1$, it follows from (2) that

$$
\begin{aligned}
F_{y_{n}, y_{n+1}}(\varepsilon) \geq F_{y_{n-1}, y_{n}}\left(\alpha^{-1} \varepsilon\right) & \geq F_{y_{n-1}, y_{n}}\left(\alpha^{-1}\left(\frac{\varepsilon-\alpha(\varepsilon)}{2}\right)\right) \\
& >1-\lambda, \quad \forall n \geq N .
\end{aligned}
$$

Suppose (3) holds for any $n \geq N$ and for any $m=1,2, \ldots, r$. Then when $m=r+1$, we have for all $n \in \mathbb{N}$ that

$$
\begin{aligned}
& F_{y_{n}, y_{n+r+1}}(\varepsilon) \\
\geq & \min \left\{F_{y_{n}, y_{n+1}}\left(\frac{\varepsilon-\alpha(\varepsilon)}{2}\right), F_{y_{n+1}, y_{n+r+1}}\left(\frac{\varepsilon+\alpha(\varepsilon)}{2}\right)\right\} \\
\geq & \min \left\{F_{y_{n-1}, y_{n}}\left(\alpha^{-1}\left(\frac{\varepsilon-\alpha(\varepsilon)}{2}\right)\right), F_{y_{n+1}, y_{n+r+1}}\left(\frac{\varepsilon+\alpha(\varepsilon)}{2}\right)\right\} \\
\geq & \min \left\{1-\lambda, \min \left\{F_{y_{n+1}, y_{n+2}}\left(\frac{\varepsilon-\alpha(\varepsilon)}{2}\right), F_{y_{n+2}, y_{n+r+1}}(\alpha(\varepsilon))\right\}\right\} \\
\geq & \min \left\{1-\lambda, \min \left\{F_{y_{n}, y_{n+1}}\left(\alpha^{-1}\left(\frac{\varepsilon-\alpha(\varepsilon)}{2}\right)\right), F_{y_{n+1}, y_{n+r}}(\varepsilon)\right\}\right\} \\
\geq & \min \left\{1-\lambda, \min \left\{1-\lambda, F_{y_{n+1}, y_{n+r}}(\varepsilon)\right\}\right\} \\
= & \min \left\{1-\lambda, F_{y_{n+1}, y_{(n+1)+(r-1)}}(\varepsilon)\right\} \\
\geq & \min \{1-\lambda, 1-\lambda\} \quad \text { by induction hypothesis } \\
= & 1-\lambda
\end{aligned}
$$

Therefore $\left\{y_{n}\right\}$ is a Cauchy sequence in X.
The following Lemma 2.2 is well-known, cf. [2].
Lemma 2.2. Suppose (X, \mathcal{F}) is a PM-space and $\alpha:[0, \infty) \rightarrow[0, \infty)$ is strictly increasing and satisfies $\alpha(0)=0$ and $\alpha(t)<t$ for all $t>0$. If x, y are two members in X such that

$$
F_{x, y}(\alpha(\varepsilon)) \geq F_{x, y}(\varepsilon)
$$

for all $\varepsilon>0$, then $x=y$.
The commutative notion was first generalized by Sessa [10] in the following way:
Two selfmaps f, g on a metric space (X, d) are said to be weakly commutative if $d(f g x, g f x) \leq d(f x, g x)$ for all $x \in X$.

Later Jungck [4] made a further generalization:
Two selfmaps f, g on a metric space (X, d) are said to be compatible if whenever $\left\{x_{n}\right\}$ is a sequence in X such that both $\left\{f x_{n}\right\}$ and $\left\{g x_{n}\right\}$ are convergent to a same point x in X then $d\left(f g x_{n}, g f x_{n}\right) \rightarrow 0$.

The counterpart of the compatibility in a PM-space is the following
Definition 2.3. Two selfmaps S, A on a PM-space (X, \mathcal{F}) are compatible if $\lim _{n \rightarrow \infty} F_{S A x_{n}, A S x_{n}}(\varepsilon)=1$ for all $\varepsilon>0$ whenever $\left\{x_{n}\right\}$ is a sequence in X such that $\left\{A x_{n}\right\}$ and $\left\{S x_{n}\right\}$ are convergent to some point x in X.

By taking $x_{n}=x$ for all n it follows from the compatibility of A and S that $A S x=S A x$ if $A x=S x$.

We are now in a position to prove our main result.

Theorem 2.4. Suppose ($X, \mathcal{F}, \mathrm{~min}$) is a complete Menger space and $S, T, A, B: X \rightarrow$ X are four selfmaps on X satisfying the following conditions:
(i) $S X \subseteq B X$ and $T X \subseteq A X$;
(ii) (S, A) and (T, B) are compatible pairs;
(iii) one of S, T, A, B is continuous;
(iv) there exists an upper semicontinuous function $\varphi:[0, \infty) \rightarrow[0, \infty)$ with $\varphi(0)=0$ and $\varphi(t)<t$ for all $t>0$ such that

$$
\begin{aligned}
\left(F_{S x, T y}(\varphi(\varepsilon))\right)^{2} \geq & \min \left\{F_{A x, S x}(\varepsilon) F_{B y, T y}(\varepsilon), F_{A x, T y}(2 \varepsilon) F_{B y, S x}(2 \varepsilon),\right. \\
& \left.F_{A x, S x}(\varepsilon) F_{A x, T y}(2 \varepsilon), F_{B y, S x}(2 \varepsilon) F_{B y, T y}(\varepsilon)\right\}
\end{aligned}
$$

for all x, y in X and $\varepsilon>0$.
Then S, T, A and B have a unique common fixed point.

Proof. In view of condition (iv) and the remark at the begining of this section, we may assume that φ is a strictly increasing continuous function with $\varphi(0)=0$ and $\varphi(t)<t$ for $t>0$. Fix an $x_{0} \in X$ and define a sequence $\left\{y_{n}\right\}$ recursively by

$$
\left\{\begin{array}{l}
y_{2 n}=S x_{2 n}=B x_{2 n+1} \\
y_{2 n+1}=T x_{2 n+1}=A x_{2 n+2},
\end{array} \quad n \in \mathbb{N} \cup\{0\}\right.
$$

We shall prove that for any $n \in \mathbb{N}$ and $\varepsilon>0$

$$
\begin{equation*}
F_{y_{2 n+1}, y_{2 n+2}}(\varphi(\varepsilon)) \geq F_{y_{2 n}, y_{2 n+1}}(\varepsilon) \tag{1}
\end{equation*}
$$

Suppose (1) is not true. Then there exist $n \in \mathbb{N}$ and $\varepsilon>0$ such that

$$
\begin{equation*}
F_{y_{2 n+1}, y_{2 n+2}}(\varphi(\varepsilon))<F_{y_{2 n}, y_{2 n+1}}(\varepsilon) . \tag{2}
\end{equation*}
$$

It follows from (iv) and (2) that

$$
\begin{align*}
& \left(F_{y_{2 n+1}, y_{2 n+2}}(\varphi(\varepsilon))\right)^{2} \\
=(& \left.F_{S x_{2 n+2}, T x_{2 n+1}}(\varphi(\varepsilon))\right)^{2} \\
\geq \min \{ & F_{A x_{2 n+2}, S x_{2 n+2}}(\varepsilon) F_{B x_{2 n+1}, T x_{2 n+1}}(\varepsilon), \\
& F_{A x_{2 n+2}, T x_{2 n+1}}(2 \varepsilon) F_{B x_{2 n+1}, S x_{2 n+2}}(2 \varepsilon), \\
& F_{A x_{2 n+2}, S x_{2 n+2}}(\varepsilon) F_{A x_{2 n+2}, T x_{2 n+1}}(2 \varepsilon), \\
& \left.F_{B x_{2 n+1}, S x_{2 n+2}}(2 \varepsilon) F_{B x_{2 n+1}, T x_{2 n+1}}(\varepsilon)\right\} \\
\geq & \min \left\{F_{y_{2 n+1}, y_{2 n+2}}(\varepsilon) F_{y_{2 n}, y_{2 n+1}}(\varepsilon), F_{y_{2 n+1}, y_{2 n+1}}(2 \varepsilon) F_{y_{2 n}, y_{2 n+2}}(2 \varepsilon),\right. \\
& \left.F_{y_{2 n+1}, y_{2 n+2}}(\varepsilon) F_{y_{2 n+1}, y_{2 n+1}}(2 \varepsilon), F_{y_{2 n}, y_{2 n+2}}(2 \varepsilon) F_{y_{2 n}, y_{2 n+1}}(\varepsilon)\right\} \\
& \left.F_{y_{2 n+1}, y_{2 n+2}}(\varphi(\varepsilon)), F_{y_{2 n}, y_{2 n+2}}(2 \varepsilon) F_{y_{2 n}, y_{2 n+1}}(\varepsilon)\right\}, \quad \text { since } \varphi(\varepsilon)<\varepsilon \\
\quad & F_{y_{2 n+1}, y_{2 n+2}}(\varphi(\varepsilon)) F_{y_{2 n}, y_{2 n+1}}(\varepsilon), F_{y_{2 n}, y_{2 n+2}}(2 \varepsilon), \\
\geq \min \{ & F F_{y_{2 n+1}, y_{2 n+2}}(\varphi(\varepsilon)) F_{y_{2 n}, y_{2 n+1}}(\varepsilon), \min \left\{F_{y_{2 n}, y_{2 n+1}}(\varepsilon), F_{y_{2 n+1}, y_{2 n+2}}(\varepsilon)\right\}, \\
& \left.F_{y_{2 n+1}, y_{2 n+2}}(\varphi(\varepsilon)), \min \left\{F_{y_{2 n}, y_{2 n+1}}(\varepsilon), F_{y_{2 n+1}, y_{2 n+2}}(\varepsilon)\right\} F_{y_{2 n}, y_{2 n+1}}(\varepsilon)\right\} .
\end{align*}
$$

Now, note that

$$
\begin{aligned}
& \left\{\begin{array}{l}
(a) F_{y_{2 n+1}, y_{2 n+2}}(\varphi(\varepsilon)) F_{y_{2 n}, y_{2 n+1}}(\varepsilon)>\left(F_{y_{2 n+1}, y_{2 n+2}}(\varphi(\varepsilon))\right)^{2} \\
(b) \min \left\{F_{y_{2 n}, y_{2 n+1}}(\varepsilon), F_{y_{2 n+1}, y_{2 n+2}}(\varepsilon)\right\} \geq F_{y_{2 n+1}, y_{2 n+2}}(\varphi(\varepsilon)) \\
(c) \min \left\{F_{y_{2 n}, y_{2 n+1}}(\varepsilon), F_{y_{2 n+1}, y_{2 n+2}}(\varepsilon)\right\} F_{y_{2 n}, y_{2 n+1}}(\varepsilon)
\end{array}\right. \\
& \geq F_{y_{2 n+1}, y_{2 n+2}}(\varphi(\varepsilon)) F_{y_{2 n}, y_{2 n+1}}(\varepsilon) \\
& >\left(F_{y_{2 n+1}, y_{2 n+2}}(\varphi(\varepsilon))\right)^{2} .
\end{aligned}
$$

So we get from (3) that

$$
\left(F_{y_{2 n+1}, y_{2 n+2}}(\varphi(\varepsilon))\right)^{2}>\left(F_{y_{2 n+1}, y_{2 n+2}}(\varphi(\varepsilon))\right)^{2}, \quad \text { a contradiction. }
$$

Therefore, (1) holds, for any $n \in \mathbb{N}$ and $\varepsilon>0$. Using a similar argument we obtain that for any $n \in \mathbb{N}$ and $\varepsilon>0$

$$
\begin{equation*}
F_{y_{2 n}, y_{2 n+1}}(\varphi(\varepsilon)) \geq F_{y_{2 n-1}, y_{2 n}}(\varepsilon) \tag{4}
\end{equation*}
$$

Thus putting (1) and (4) together, we see that $F_{y_{n}, y_{n+1}}(\varphi(\varepsilon)) \geq F_{y_{n-1}, y_{n}}(\varepsilon)$ for any $n \in \mathbb{N}$ and $\varepsilon>0$, and hence by Lemma $2.1\left\{y_{n}\right\}$ is a Cauchy sequence in X. Since X is complete, there exists z in X such that

$$
\left\{\begin{aligned}
S x_{2 n} & \rightarrow z \\
B x_{2 n+1} & \rightarrow z \\
T x_{2 n+1} & \rightarrow z \\
A x_{2 n+2} & \rightarrow z
\end{aligned} \quad \text { as } n \rightarrow \infty .\right.
$$

Now, suppose A is continuous. Then

$$
\begin{equation*}
A^{2} x_{2 n} \rightarrow A z \text { and } A S x_{2 n} \rightarrow A z \text { as } n \rightarrow \infty \tag{5}
\end{equation*}
$$

Since both of $\left\{A x_{2 n}\right\}$ and $\left\{S x_{2 n}\right\}$ are convergent to z, the compatibility of A and S implies that $\lim _{n \rightarrow \infty} F_{A S x_{2 n}, S A x_{2 n}}(\varepsilon)=1$. This in conjunction with (5) and the inequality

$$
F_{S A x_{2 n}, A z}(\varepsilon) \geq \min \left\{F_{S A x_{2 n}, A S x_{2 n}}\left(\frac{\varepsilon}{2}\right), F_{A S x_{2 n}, A z}\left(\frac{\varepsilon}{2}\right)\right\}
$$

shows that $S A x_{2 n} \rightarrow A z$ as $n \rightarrow \infty$. Let $E=\left\{\varepsilon>0: F_{A z, z}\right.$ is continuous at $\left.\varepsilon\right\}$. Since $F_{A z, z}$ is nondecreasing, it can be discontinuous at only denumerably many points. We now show that $F_{A z, z}(\varepsilon) \geq F_{A z, z}\left(\varphi^{-1}(\varepsilon)\right)$ for any $\varepsilon \in E$. By (iv).

$$
\begin{align*}
\left(F_{S A x_{2 n}, T x_{2 n+1}}(\varepsilon)\right)^{2} \geq \min \{ & F_{A^{2} x_{2 n}, S A x_{2 n}}\left(\varphi^{-1}(\varepsilon)\right) F_{B x_{2 n+1}, T x_{2 n+1}}\left(\varphi^{-1}(\varepsilon)\right), \\
& F_{A^{2} x_{2 n}, T x_{2 n+1}}\left(2 \varphi^{-1}(\varepsilon)\right) F_{B x_{2 n+1}, S A x_{2 n}}\left(2 \varphi^{-1}(\varepsilon)\right), \\
& F_{A^{2} x_{2 n}, S A x_{2 n}}\left(\varphi^{-1}(\varepsilon)\right) F_{A^{2} x_{2 n}, T x_{2 n+1}}\left(2 \varphi^{-1}(\varepsilon)\right), \\
& \left.F_{B x_{2 n+1}, S A x_{2 n}}\left(2 \varphi^{-1}(\varepsilon)\right) F_{B x_{2 n+1}, T x_{2 n+1}}\left(\varphi^{-1}(\varepsilon)\right)\right\} . \tag{6}
\end{align*}
$$

It is easy to see that we can choose a subsequence $\left\{n_{j}\right\}$ of natural numbers such that all the limits in (6) exist as $j \rightarrow \infty$ and satify

$$
\begin{align*}
& \lim _{j \rightarrow \infty}\left(F_{S A x_{2 n_{j}}, T x_{2 n_{j}+1}}(\varepsilon)\right)^{2} \\
& \geq \min \left\{\lim _{j \rightarrow \infty}\left(F_{A^{2} x_{2 n_{j}}, S A x_{2 n_{j}}}\left(\varphi^{-1}(\varepsilon)\right) F_{B x_{2 n_{j}+1}, T x_{2 n_{j}+1}}\left(\varphi^{-1}(\varepsilon)\right)\right),\right. \\
& \lim _{j \rightarrow \infty}\left(F_{A^{2} x_{2 n_{j}}, T x_{2 n_{j}+1}}\left(2 \varphi^{-1}(\varepsilon)\right) F_{B x_{2 n_{j}+1}, S A x_{2 n_{j}}}\left(2 \varphi^{-1}(\varepsilon)\right)\right), \\
& \lim _{j \rightarrow \infty}\left(F_{A^{2} x_{2 n_{j}}, S A x_{2 n_{j}}}\left(\varphi^{-1}(\varepsilon)\right) F_{A^{2} x_{2 n_{j}}, T x_{2 n_{j}+1}}\left(2 \varphi^{-1}(\varepsilon)\right)\right), \\
& \left.\lim _{j \rightarrow \infty}\left(F_{B x_{2 n_{j}+1}, S A x_{2 n_{j}}}\left(2 \varphi^{-1}(\varepsilon)\right) F_{B x_{2 n_{j}+1}, T x_{2 n_{j}+1}}\left(\varphi^{-1}(\varepsilon)\right)\right)\right\} \\
& \geq \min \left\{\underset{n \rightarrow \infty}{\underline{\lim }}\left(F_{A^{2} x_{2 n}, S A x_{2 n}}\left(\varphi^{-1}(\varepsilon)\right) F_{B x_{2 n+1}, T x_{2 n+1}}\left(\varphi^{-1}(\varepsilon)\right)\right),\right. \tag{7}\\
& \underline{\varliminf_{n \rightarrow \infty}}\left(F_{A^{2} x_{2 n}, T x_{2 n+1}}\left(2 \varphi^{-1}(\varepsilon)\right) F_{B x_{2 n+1}, S A x_{2 n}}\left(2 \varphi^{-1}(\varepsilon)\right)\right), \\
& \underset{n \rightarrow \infty}{\varliminf_{n}}\left(F_{A^{2} x_{2 n}, S A x_{2 n}}\left(\varphi^{-1}(\varepsilon)\right) F_{A^{2} x_{2 n}, T x_{2 n+1}}\left(2 \varphi^{-1}(\varepsilon)\right)\right) \text {, } \\
& \left.\varliminf_{n \rightarrow \infty}\left(F_{B x_{2 n+1}, S A x_{2 n}}\left(2 \varphi^{-1}(\varepsilon)\right) F_{B x_{2 n+1}, T x_{2 n+1}}\left(\varphi^{-1}(\varepsilon)\right)\right)\right\} \\
& \geq \min \left\{F_{A z, A z}\left(\varphi^{-1}(\varepsilon)\right) F_{z, z}\left(\varphi^{-1}(\varepsilon)\right), F_{A z, z}\left(2 \varphi^{-1}(\varepsilon)\right) F_{z, A z}\left(2 \varphi^{-1}(\varepsilon)\right)\right. \text {, } \\
& \left.F_{A z, A z}\left(\varphi^{-1}(\varepsilon)\right) F_{A z, z}\left(2 \varphi^{-1}(\varepsilon)\right), F_{z, A z}\left(2 \varphi^{-1}(\varepsilon)\right) F_{z, z}\left(\varphi^{-1}(\varepsilon)\right)\right\} \\
& \geq\left(F_{A z, z}\left(\varphi^{-1}(\varepsilon)\right)\right)^{2},
\end{align*}
$$

where the penultimate inequality follows from Lemma 1.1.

Also, since $\varepsilon \in E$, it follows from Lemma 1.1 that $\lim _{n \rightarrow \infty} F_{S A x_{2 n}, T x_{2 n+1}}(\varepsilon)=F_{A z, z}(\varepsilon)$, which in conjunction with (7) shows that

$$
\begin{equation*}
F_{A z, z}(\varepsilon) \geq F_{A z, z}\left(\varphi^{-1}(\varepsilon)\right) \text { for } \varepsilon \in E \tag{8}
\end{equation*}
$$

To conclude that $A z=z$ we must show that $F_{A z, z}(\varepsilon)=1$ for any $\varepsilon>0$. For this, let ε be any member in E and put $\varepsilon_{1}=\varepsilon$. Then we have

$$
\begin{equation*}
\varepsilon_{1}<\varphi^{-1}\left(\varepsilon_{1}\right)<\varphi^{-2}\left(\varepsilon_{1}\right)<\cdots<\varphi^{-n}\left(\varepsilon_{1}\right)<\cdots, \text { and } \lim _{n \rightarrow \infty} \varphi^{-n}\left(\varepsilon_{1}\right)=\infty \tag{9}
\end{equation*}
$$

Let $\eta>0$ be any given positive number. Since $F_{A z, z}$ is left continuous at $\varphi^{-2}\left(\varepsilon_{1}\right)$, there is $\delta>0$ such that

$$
\begin{equation*}
F_{A z, z}\left(\varphi^{-2}\left(\varepsilon_{1}\right)\right) \leq F_{A z, z}(\omega)+\frac{\eta}{2} \tag{10}
\end{equation*}
$$

for all $\omega \in\left(\varphi^{-2}\left(\varepsilon_{1}\right)-\delta, \varphi^{-2}\left(\varepsilon_{1}\right)\right)$.
By the continuity of φ^{-1} at $\varphi^{-1}\left(\varepsilon_{1}\right)$, we can choose $\varepsilon_{2} \in\left(\varepsilon_{1}, \varphi^{-1}\left(\varepsilon_{1}\right)\right) \cap E$ so that $\varphi^{-1}\left(\varepsilon_{2}\right) \in$ $\left(\varphi^{-2}\left(\varepsilon_{1}\right)-\delta, \varphi^{-2}\left(\varepsilon_{1}\right)\right)$, and hence with the aid of (10)

$$
\begin{equation*}
F_{A z, z}\left(\varphi^{-1}\left(\varepsilon_{2}\right)\right) \geq F_{A z, z}\left(\varphi^{-2}\left(\varepsilon_{1}\right)\right)-\frac{\eta}{2} \tag{11}
\end{equation*}
$$

By induction, for any $n \in \mathbb{N}$ we can choose $\varepsilon_{n+1} \in E$ so that

$$
\begin{align*}
& \varphi^{-n+1}\left(\varepsilon_{1}\right)<\varepsilon_{n+1}<\varphi^{-n}\left(\varepsilon_{1}\right), \quad \text { and } \\
& F_{A z, z}\left(\varphi^{-1}\left(\varepsilon_{n+1}\right)\right) \geq F_{A z, z}\left(\varphi^{-(n+1)}\left(\varepsilon_{1}\right)\right)-\frac{\eta}{2^{n}} \tag{12}
\end{align*}
$$

So we have

$$
\begin{align*}
& F_{A z, z}(\varepsilon)=F_{A z, z}\left(\varepsilon_{1}\right) \\
& \geq F_{A z, z}\left(\varphi^{-1}\left(\varepsilon_{1}\right)\right) \\
& \geq F_{A z, z}\left(\varepsilon_{2}\right) \\
& \geq F_{A z, z}\left(\varphi^{-1}\left(\varepsilon_{2}\right)\right), \quad \text { since } \varepsilon_{2} \in E \\
& \geq F_{A z, z}\left(\varphi^{-2}\left(\varepsilon_{1}\right)\right)-\frac{\eta}{2} \quad \text { by }(11) \\
& \geq F_{A z, z}\left(\varepsilon_{3}\right)-\frac{\eta}{2} \\
& \geq F_{A z, z}\left(\varphi^{-1}\left(\varepsilon_{3}\right)\right)-\frac{\eta}{2} \\
& \geq F_{A z, z}\left(\varphi^{-3}\left(\varepsilon_{1}\right)\right)-\frac{\eta}{2^{2}}-\frac{\eta}{2} \tag{13}\\
& \quad \vdots \\
& \geq F_{A z, z}\left(\varphi^{-n}\left(\varepsilon_{1}\right)\right)-\left(\frac{\eta}{2^{n-1}}+\frac{\eta}{2^{n-2}}+\cdots \frac{\eta}{2}\right) \\
&=F_{A z, z}\left(\varphi^{-n}\left(\varepsilon_{1}\right)\right)-\eta\left(1-\frac{1}{2^{n-1}}\right), \quad \forall n \in \mathbb{N} .
\end{align*}
$$

Letting $n \rightarrow \infty$ in (13) and noting $\lim _{n \rightarrow \infty} \varphi^{-n}\left(\varepsilon_{1}\right)=\infty$, we obtain that

$$
F_{A z, z}(\varepsilon) \geq 1-\eta \quad \text { for any } \eta>0
$$

Since $\eta>0$ is arbitrary, we conclude that $F_{A z, z}(\varepsilon)=1$ for any $\varepsilon \in E$. Since E is dense in $(0, \infty)$ and $F_{A z, z}$ is left continuous on $(0, \infty)$, we see that $F_{A z, z}(\varepsilon)=1$ for all $\varepsilon>0$, and so $A z=z$. As for $S z=z$, using $\left(F_{S z, z}(\varepsilon)\right)^{2}=\lim _{n \rightarrow \infty}\left(F_{S z, T x_{2 n+1}}(\varepsilon)\right)^{2}$ and (iv), we can just follow as before to obtain $F_{S z, z}(\varepsilon) \geq F_{S z, z}\left(\varphi^{-1}(\varepsilon)\right)$ for any $\varepsilon>0$ where $F_{S z, z}$ is continuous. Then in a similar argument as before, we conclude $F_{S z, z}(\varepsilon)=1 \forall \varepsilon>0$, and so $S z=z$. Since $S X \subseteq B X$, there exists y in X such that $B y=S z=z$. So for any $\varepsilon>0$

$$
\begin{aligned}
\left(F_{z, T y}(\varphi(\varepsilon))\right)^{2}= & \left(F_{S z, T y}(\varphi(\varepsilon))\right)^{2} \\
\geq & \min \left\{F_{A z, S z}(\varepsilon) F_{B y, T y}(\varepsilon), F_{A z, T y}(2 \varepsilon) F_{B y, S z}(2 \varepsilon)\right. \\
& \left.F_{A z, S z}(\varepsilon) F_{A z, T y}(2 \varepsilon), F_{B y, S z}(2 \varepsilon) F_{B y, T y}(\varepsilon)\right\} \\
= & \min \left\{F_{z, T y}(\varepsilon), F_{z, T y}(2 \varepsilon)\right\} \\
\geq & \left(F_{z, T y}(\varepsilon)\right)^{2}
\end{aligned}
$$

Thus $F_{z, T y}(\varphi(\varepsilon)) \geq F_{z, T y}(\varepsilon)$, and hence $T y=z$. Up to now we have shown that $S z=$ $A z=z=B y=T y$. We are now going to show that z is a common fixed point of S, T, A and B. Since T and B are compatible, we have $B T y=T B y$, that is, $B z=T z$. Therefore, for $\varepsilon>0$, we have the following inequalities:

$$
\begin{aligned}
\left(F_{z, T z}(\varphi(\varepsilon))\right)^{2}= & \left(F_{S z, T z}(\varphi(\varepsilon))\right)^{2} \\
\geq & \min \left\{F_{A z, S z}(\varepsilon) F_{B z, T z}(\varepsilon), F_{A z, T z}(2 \varepsilon) F_{B z, S z}(2 \varepsilon)\right. \\
& \left.F_{A z, S z}(\varepsilon) F_{A z, T z}(2 \varepsilon), F_{B z, S z}(2 \varepsilon) F_{B z, T z}(\varepsilon)\right\} \\
= & \min \left\{\left(F_{z, T z}(2 \varepsilon)\right)^{2}, F_{z, T z}(2 \varepsilon)\right\} \\
\geq & \left(F_{z, T z}(\varepsilon)\right)^{2}
\end{aligned}
$$

So $T z=z$ by Lemma 2.2. This completes the proof for z being the common fixed point of S, T, A and B provided that A is continuous. By symmetry, if B is continuous, we can prove that S, T, A and B have a common fixed point in a similar way.

Next, assume that S is continuous. Then $S A x_{2 n} \rightarrow S z$ and $S B x_{2 n+1} \rightarrow S z$ as $n \rightarrow$ ∞, and, since S and A are compatible and both of $\left\{A x_{2 n}\right\}$ and $\left\{S x_{2 n}\right\}$ are convergent to $z, \lim _{n \rightarrow \infty} F_{A S x_{2 n}, S A x_{2 n}}(\varepsilon)=1$ for $\varepsilon>0$. Noting that for $\varepsilon>0 F_{A S x_{2 n}, S z}(\varepsilon) \geq$ $\min \left\{F_{A S x_{2 n}, S A x_{2 n}}\left(\frac{\varepsilon}{2}\right), F_{S A x_{2 n}, S z}\left(\frac{\varepsilon}{2}\right)\right\}$ and both of $\left\{F_{A S x_{2 n}, S A x_{2 n}}\left(\frac{\varepsilon}{2}\right)\right\}$ and $\left\{F_{S A x_{2 n}, S z}\left(\frac{\varepsilon}{2}\right)\right\}$ are convergent to 1 , we see that $\lim _{n \rightarrow \infty} F_{A S x_{2 n}, S z}(\varepsilon)=1$ for all $\varepsilon>0$, and so $\lim _{n \rightarrow \infty} A S x_{2 n}=$ $S z$. In the inequality

$$
\begin{aligned}
\left(F_{S B x_{2 n+1}, T x_{2 n+1}}(\varepsilon)\right)^{2} \geq \min \{ & F_{A B x_{2 n+1}, S B x_{2 n+1}}\left(\varphi^{-1}(\varepsilon)\right) F_{B x_{2 n+1}, T x_{2 n+1}}\left(\varphi^{-1}(\varepsilon)\right), \\
& F_{A B x_{2 n+1}, T x_{2 n+1}}\left(2 \varphi^{-1}(\varepsilon)\right) F_{B x_{2 n+1}, S B x_{2 n+1}}\left(2 \varphi^{-1}(\varepsilon)\right), \\
& F_{A B x_{2 n+1}, S B x_{2 n+1}}\left(\varphi^{-1}(\varepsilon)\right) F_{A B x_{2 n+1}, T x_{2 n+1}}\left(2 \varphi^{-1}(\varepsilon)\right), \\
& \left.F_{B x_{2 n+1}, S B x_{2 n+1}}\left(2 \varphi^{-1}(\varepsilon)\right) F_{B x_{2 n+1}, T x_{2 n+1}}\left(\varphi^{-1}(\varepsilon)\right)\right\},
\end{aligned}
$$

we can imitate the procedure for the case that A is continuous to show that $F_{S z, z}(\varepsilon) \geq$ $F_{S z, z}\left(\varphi^{-1}(\varepsilon)\right)$ for any $\varepsilon>0$ where $F_{S z, z}$ is continuous, and then show that $F_{S z, z}(\varepsilon)=1$ for
any $\varepsilon>0$. So $S z=z$. Since $S X \subseteq B X$, we can choose $y \in X$ such that $B y=S z=z$. Then for any $\varepsilon>0$ and $n \in \mathbb{N}$ we have

$$
\begin{aligned}
\left(F_{S B x_{2 n+1}, T y}(\varepsilon)\right)^{2} \geq \min \{ & F_{A B x_{2 n+1}, S B x_{2 n+1}}\left(\varphi^{-1}(\varepsilon)\right) F_{B y, T y}\left(\varphi^{-1}(\varepsilon)\right), \\
& F_{A B x_{2 n+1}, T y}\left(2 \varphi^{-1}(\varepsilon)\right) F_{B y, S B x_{2 n+1}}\left(2 \varphi^{-1}(\varepsilon)\right) \\
& F_{A B x_{2 n+1}, S B x_{2 n+1}}\left(\varphi^{-1} \varepsilon\right) F_{A B x_{2 n+1}, T y}\left(2 \varphi^{-1}(\varepsilon)\right), \\
& \left.F_{B y, S B x_{2 n+1}}\left(2 \varphi^{-1}(\varepsilon)\right) F_{B y, T y}\left(\varphi^{-1}(\varepsilon)\right)\right\} \\
=\min \{ & F_{A S x_{2 n}, S^{2} x_{2 n}}\left(\varphi^{-1}(\varepsilon)\right) F_{z, T y}\left(\varphi^{-1}(\varepsilon)\right), \\
& F_{A S x_{2 n}, T y}\left(2 \varphi^{-1}(\varepsilon)\right) F_{z, S^{2} x_{2 n}}\left(2 \varphi^{-1}(\varepsilon)\right) \\
& F_{A S x_{2 n}, S^{2} x_{2 n}}\left(\varphi^{-1}(\varepsilon)\right) F_{A S x_{2 n}, T y}\left(2 \varphi^{-1}(\varepsilon)\right) \\
& \left.F_{z, S^{2} x_{2 n}}\left(2 \varphi^{-1}(\varepsilon)\right) F_{z, T y}\left(\varphi^{-1}(\varepsilon)\right)\right\}
\end{aligned}
$$

As the case that A is continuous, we can take limit via a suitable subsequence $\left\{n_{j}\right\}$ of natural numbers to get

$$
\begin{aligned}
\left(F_{z, T y} \varphi(\varepsilon)\right)^{2} & \geq \min \left\{F_{z, T y}\left(\varphi^{-1}(\varepsilon)\right), F_{z, T y}\left(2 \varphi^{-1}(\varepsilon)\right)\right\} \\
& \geq\left(F_{z, T y}\left(\varphi^{-1}(\varepsilon)\right)\right)^{2}, \quad \text { for any } \varepsilon>0 \text { where } F_{z, T y} \text { is continuous. }
\end{aligned}
$$

Thus $T y=z$. In summary we have shown that $B y=T y=S z=z$. Now, since $T X \subseteq A X$, there exists $x \in X$ such that $z=S z=B y=T y=A x$. Then we get $A x=S x$ from the following inequalities:

$$
\begin{aligned}
\left(F_{S x, A x}(\varphi(\varepsilon))\right)^{2}= & \left(F_{S x, T y}(\varphi(\varepsilon))\right)^{2} \\
\geq & \min \left\{F_{A x, S x}(\varepsilon) F_{B y, T y}(\varepsilon), F_{A x, T y}(2 \varepsilon) F_{B y, S x}(2 \varepsilon)\right. \\
& \left.\quad F_{A x, S x}(\varepsilon) F_{A x, T y}(2 \varepsilon), F_{B y, S x}(2 \varepsilon) F_{B y, T y}(\varepsilon)\right\} \\
= & \min \left\{F_{A x, S x}(\varepsilon), F_{A x, S x}(2 \varepsilon)\right\} \\
\geq & \left(F_{A x, S x}(\varepsilon)\right)^{2} \quad \text { for any } \varepsilon>0
\end{aligned}
$$

Let $\xi=A x=S x=T y=B y$. Since S and A are compatible and since $A x=S x$, we get $A S x=S A x$, that is, $A \xi=S \xi$. Then for any $\varepsilon>0$,

$$
\begin{aligned}
&\left(F_{S \xi, \xi}(\varphi(\varepsilon))\right)^{2}=\left(F_{S \xi, T y}(\varphi(\varepsilon))\right)^{2} \\
& \geq \min \left\{F_{A \xi, S \xi}(\varepsilon) F_{B y, T y}(\varepsilon), F_{A \xi, T y}(2 \varepsilon) F_{B y, S \xi}(2 \varepsilon)\right. \\
&\left.F_{A \xi, S \xi}(\varepsilon) F_{A \xi, T y}(2 \varepsilon), F_{B y, S \xi}(2 \varepsilon) F_{B y, T y}(\varepsilon)\right\} \\
&= \min \left\{\left(F_{S \xi, \xi}(2 \varepsilon)\right)^{2}, F_{S \xi, \xi}(2 \varepsilon)\right\} \\
& \geq\left(F_{S \xi, \xi}(\varepsilon)\right)^{2}
\end{aligned}
$$

which implies that $S \xi=\xi=A \xi$. Next, choose $v \in X$ such that $B v=S \xi=\xi$. Then

$$
\begin{aligned}
\left(F_{\xi, T v}(\varphi(\varepsilon))\right)^{2}= & \left(F_{S \xi, T v}(\varphi(\varepsilon))\right)^{2} \\
\geq & \min \left\{F_{A \xi, S \xi}(\varepsilon) F_{B v, T v}(\varepsilon), F_{A \xi, T v}(2 \varepsilon) F_{B v, S \xi}(2 \varepsilon)\right. \\
& \left.F_{A \xi, S \xi}(\varepsilon) F_{A \xi, T v}(2 \varepsilon), F_{B v, S \xi}(2 \varepsilon) F_{B v, T v}(\varepsilon)\right\} \\
= & \min \left\{F_{\xi, T v}(\varepsilon), F_{\xi, T v}(2 \varepsilon)\right\} \\
\geq & \left(F_{\xi, T v}(\varepsilon)\right)^{2} \quad \text { for any } \varepsilon>0
\end{aligned}
$$

Hence $T v=\xi$. Since T and B are compatible and $T v=B v$, we have $T B v=B T v$, that is, $T \xi=B \xi$. Then we conclude that $T \xi=\xi$ from the following inequalities:

$$
\begin{aligned}
\left(F_{\xi, T \xi}(\varphi(\varepsilon))\right)^{2}= & \left(F_{S \xi, T \xi}(\varphi(\varepsilon))\right)^{2} \\
\geq & \min \left\{F_{A \xi, S \xi}(\varepsilon) F_{B \xi, T \xi}(\varepsilon), F_{A \xi, T \xi}(2 \varepsilon) F_{B \xi, S \xi}(2 \varepsilon)\right. \\
& \left.F_{A \xi, S \xi}(\varepsilon) F_{A \xi, T \xi}(2 \varepsilon), F_{B \xi, S \xi}(2 \varepsilon) F_{B \xi, T \xi}(\varepsilon)\right\} \\
= & \min \left\{\left(F_{\xi, T \xi}(2 \varepsilon)\right)^{2}, F_{\xi, T \xi}(2 \varepsilon)\right\} \\
\geq & \left(F_{\xi, T \xi}(\varepsilon)\right)^{2} \quad \forall \varepsilon>0
\end{aligned}
$$

Thus ξ is a common fixed point of S, T, A and B provided that S is continuous. By symmetry, if T is continuous we can prove that S, T, A and B have a common fixed point in a similar way. This completes the proof for the existence of common fixed points of S, T, A and B. It remains to show the uniqueness of the common fixed point. Assume y and z are two common fixed points of S, T, A and B. Since

$$
\begin{aligned}
\left(F_{y, z}(\varphi(\varepsilon))\right)^{2}= & \left(F_{S y, T z}(\varphi(\varepsilon))\right)^{2} \\
\geq & \min \left\{F_{A y, S y}(\varepsilon) F_{B z, T z}(\varepsilon), F_{A y, T z}(2 \varepsilon) F_{B z, S y}(2 \varepsilon)\right. \\
& \left.F_{A y, S y}(\varepsilon) F_{A y, T z}(2 \varepsilon), F_{B z, S y}(2 \varepsilon) F_{B z, T z}(\varepsilon)\right\} \\
= & \min \left\{\left(F_{y, z}(2 \varepsilon)\right)^{2}, F_{y, z}(2 \varepsilon)\right\} \\
\geq & \left(F_{y, z}(\varepsilon)\right)^{2} \quad \text { for all } \varepsilon>0
\end{aligned}
$$

we conclude that $y=z$ by virtue of Lemma 2.2.
3. Connection with Metric Spaces. Every metric space (M, d) is a Menger space (M, \mathcal{F}, \min), where the mapping $\mathcal{F}(x, y)=F_{x, y}$ is defined by $F_{x, y}(\varepsilon)=H(\varepsilon-d(x, y))$, and H is the distribution function defined by

$$
H(\varepsilon)= \begin{cases}0, & \text { if } \varepsilon \leq 0 \\ 1, & \text { if } \varepsilon>0\end{cases}
$$

The space (M, \mathcal{F}, \min) is called the induced Menger space.

Lemma 3.1. Suppose (M, \mathcal{F}, \min) is the induced complete Menger space associated with the complete metric space (M, d) and $\varphi:[0, \infty) \rightarrow[0, \infty)$ is an upper semicontinuous function satisfying that $\varphi(0)=0$ and $\varphi(t)<t$ for each $t>0$. If $S, T, A, B: X \rightarrow X$ are four selfmaps on M then the following two statements are equivalent:
(i) For x, y in M and $\varepsilon>0$, if $\varphi(\varepsilon) \leq d(S x, T y)$ then either $\varepsilon \leq \max \{d(A x, S x), d(B y, T y)\}$ or $2 \varepsilon \leq \max \{d(A x, T y), d(B y, S x)\}$.
(ii)

$$
\begin{aligned}
\left(F_{S x, T y}(\varphi(\varepsilon))\right)^{2} \geq \min \{ & F_{A x, S x}(\varepsilon) F_{B y, T y}(\varepsilon), F_{A x, T y}(2 \varepsilon) F_{B y, S x}(2 \varepsilon) \\
& \left.F_{A x, S x}(\varepsilon) F_{A x, T y}(2 \varepsilon), F_{B y, S x}(2 \varepsilon) F_{B y, T y}(\varepsilon)\right\}
\end{aligned}
$$

for all x, y in M and $\varepsilon>0$.
Proof. For simplicity put

$$
\left\{\begin{aligned}
\alpha & =F_{A x, S x}(\varepsilon) \\
\beta & =F_{B y, T y}(\varepsilon) \\
\gamma & =F_{A x, T y}(2 \varepsilon) \\
\delta & =F_{B y, S x}(2 \varepsilon) \\
\omega & =F_{S x, T y}(\varphi(\varepsilon))
\end{aligned}\right.
$$

Then (ii) says that

$$
\omega^{2} \geq \min \{\alpha \beta, \gamma \delta, \alpha \gamma, \beta \delta\}
$$

for all x, y in M and $\varepsilon>0$.
Now, assume (i) holds and suppose x, y are any two points in M and ε is any positive number. Then either $\varphi(\varepsilon)>d(S x, T y)$ or $\varphi(\varepsilon) \leq d(S x, T y)$. For the case that $\varphi(\varepsilon)>$ $d(S x, T y)$ we have $\omega^{2}=(H(\varphi(\varepsilon)-d(S x, T y)))^{2}=1 \geq \min \{\alpha \beta, \gamma \delta, \alpha \gamma, \beta \delta\}$. On the other hand, if $\varphi(\varepsilon) \leq d(S x, T y)$ then by (i) we have either $\varepsilon \leq \max \{d(A x, S x), d(B y, T y)\}$ or $2 \varepsilon \leq \max \{d(A x, T y), d(B y, S x)\}$, and so we see that at least one of the following four inequalities

$$
\left\{\begin{array}{l}
\text { (a) } \varepsilon \leq d(A x, S x) \\
\text { (b) } \varepsilon \leq d(B y, T y) \\
\text { (c) } 2 \varepsilon \leq d(A x, T y) \\
\text { (d) } 2 \varepsilon \leq d(B y, S x)
\end{array}\right.
$$

occurs. Hence at least one of $\alpha, \beta, \gamma, \delta$ is zero. Consequently, $\omega^{2}=0=\min \{\alpha \beta, \gamma \delta, \alpha \gamma, \beta \delta\}$. Thus (i) implies (ii).

Next, suppose (ii) holds. Let $\varepsilon>0$ and x, y be any two points in M satisfying that $\varphi(\varepsilon) \leq$ $d(S x, T y)$. Then $\omega=H(\varphi(\varepsilon)-d(S x, T y))=0$, and so (ii) implies that $\min \{\alpha \beta, \gamma \delta, \alpha \gamma, \beta \delta\}$ $=0$. Thus at least one of $\alpha, \beta, \gamma, \delta$ is zero, that is, at least one of (a), (b), (c), (d) in the previous paragraph holds. Therefore we have either $\varepsilon \leq \max \{d(A x, S x), d(B y, T y)\}$ or $2 \varepsilon \leq \max \{d(A x, T y), d(B y, S x)\}$. So (ii) implies (i).

In view of Theorem 2.4 and Lemma 3.1 the following theorem follows immediately.
Theorem 3.2. Suppose (M, d) is a complete metric space and S, T, A, B are four selfmaps on M satisfying the following conditions:
(i) $S M \subseteq B M$ and $T M \subseteq A M$;
(ii) (S, A) and (T, B) are compatible pairs;
(iii) one of S, T, A, B is continuous;
(iv) there exists an upper semicontinuous function $\varphi:[0, \infty) \rightarrow[0, \infty)$ with $\varphi(0)=0$ and $\varphi(t)<t$ for $t>0$ such that for $\varepsilon>0$ and x, y in M if $\varphi(\varepsilon) \leq d(S x, T y)$ then either $\varepsilon \leq \max \{d(A x, S x), d(B y, T y)\}$ or $2 \varepsilon \leq \max \{d(A x, T y), d(B y, S x)\}$.

Then S, T, A and B have a unique common fixed point.
All notations are just as in Lemma 3.1. Assume that for any $\varepsilon>0$ and for any x, y in M if $\varepsilon>\max \{d(A x, S x), d(B y, T y)\}$ then $\varphi(\varepsilon)>d(S x, T y)$. We now check that condition (ii) of Lemma 3.1 holds for any x, y in M and any $\varepsilon>0$. Indeed, let x, y be any two points in M and ε be any positive number. In case $\varepsilon>\max \{d(A x, S x), d(B y, T y)\}$. Then we have $H(\varepsilon-d(A x, S x))=1=H(\varepsilon-d(B y, T y))$ and $\varphi(\varepsilon)>d(S x, T y)$. So the following inequalities hold:

$$
\begin{aligned}
2 \varepsilon-d(A x, T y) & \geq 2 \varepsilon-d(A x, S x)-d(S x, T y) \\
& \geq 2 \varepsilon-\varepsilon-\varphi(\varepsilon) \\
& =\varepsilon-\varphi(\varepsilon)>0
\end{aligned}
$$

Thus $H(2 \varepsilon-d(A x, T y))=1$. Similarly, $H(2 \varepsilon-d(B y, S x))=1$. Hence,

$$
\begin{aligned}
\left(F_{S x, T y}(\varphi(\varepsilon))\right)^{2}=1=\min \{ & F_{A x, S x}(\varepsilon) F_{B y, T y}(\varepsilon), F_{A x, T y}(2 \varepsilon) F_{B y, S x}(2 \varepsilon) \\
& \left.F_{A x, S x}(\varepsilon) F_{A x, T y}(2 \varepsilon), F_{B y, S x}(2 \varepsilon) F_{B y, T y}(\varepsilon)\right\}
\end{aligned}
$$

On the other hand, if $\varepsilon \leq \max \{d(A x, S x), d(B y, T y)\}$, then we

$$
\begin{aligned}
\left(F_{S x, T y}(\varphi(\varepsilon))\right)^{2} \geq 0=\min \{ & F_{A x, S x}(\varepsilon) F_{B y, T y}(\varepsilon), F_{A x, T y}(2 \varepsilon) F_{B y, S x}(2 \varepsilon) \\
& \left.F_{A x, S x}(\varepsilon) F_{A x, T y}(2 \varepsilon), F_{B y, S x}(2 \varepsilon) F_{B y, T y}(\varepsilon)\right\}
\end{aligned}
$$

Therefore, the following corollary follows from Theorem 2.4.

Corollary 3.3. Except condition (iv) of Theorem 3.2 is replaced by
$(\text { iv })^{\prime}$ For x, y in M and $\varepsilon>0$ if $\varepsilon>\max \{d(A x, S x), d(B y, T y)\}$ then $\varphi(\varepsilon)>d(S x, T y)$, assume all assumptions are just as in Theorem 3.2. Then S, T, A, B have a unique common fixed point.

In the remainder of this section we give a concrete example for Corollary 3.3.

Example 3.4. Let $M=[0,1]$ with the usual Euclidean distance $d(x, y)=|x-y|$ and
let $A, B, S, T:[0,1] \rightarrow[0,1]$ be four functions defined by

$$
\begin{aligned}
& A x=\left\{\begin{array}{rr}
\frac{3}{4} x+\frac{1}{8}, & \text { if } 0 \leq x \leq \frac{1}{2} \\
\frac{1}{2}, & \text { if } \frac{1}{2}<x \leq 1
\end{array}\right. \\
& B x=\left\{\begin{array}{rr}
\frac{1}{2} x+\frac{1}{4}, & \text { if } 0 \leq x \leq \frac{1}{2} \\
\frac{5}{8}, & \text { if } \frac{1}{2}<x \leq 1
\end{array}\right. \\
& S x=\left\{\begin{array}{rr}
\frac{1}{4} x+\frac{3}{8}, & \text { if } 0 \leq x \leq \frac{1}{2} \\
\frac{1}{2}, & \text { if } \frac{1}{2}<x \leq 1
\end{array}\right.
\end{aligned}
$$

and

$$
T x= \begin{cases}\frac{1}{2}, & \text { if } 0 \leq x \leq \frac{1}{2} \\ \frac{3}{8}, & \text { if } \frac{1}{2}<x \leq 1\end{cases}
$$

Then
(i) $T M \subseteq A M$ and $S M \subseteq B M$,
(ii) $d(A S x, S A x)=0 \leq d(S x, A x)$ for $0 \leq x \leq 1$; $d(T B x, B T x)=0 \leq d(B x, T x)$ for $0 \leq x \leq \frac{1}{2}$ and $d(T B x, B T x)=\frac{1}{16}<\frac{1}{4}=d(T x, B x)$ for $\frac{1}{2}<x \leq 1$. So (A, S) and (B, T) are compatible pairs.
(iii) A is continuous,
(iv)

$$
\begin{aligned}
& d(A x, S x)=\left\{\begin{aligned}
\frac{1}{4}-\frac{1}{2} x, & \text { if } 0 \leq x \leq \frac{1}{2} \\
0, & \text { if } \frac{1}{2}<x \leq 1,
\end{aligned}\right. \\
& d(B y, T y)=\left\{\begin{aligned}
\frac{1}{4}-\frac{1}{2} y, & \text { if } 0 \leq y \leq \frac{1}{2} \\
\frac{1}{4}, & \text { if } \frac{1}{2}<y \leq 1,
\end{aligned}\right. \\
& d(T y, S x)=\left\{\begin{aligned}
\frac{1}{8}-\frac{1}{4} x, & \text { if } 0 \leq x \leq \frac{1}{2}, 0 \leq y \leq \frac{1}{2} \\
\frac{1}{4} x, & \text { if } 0 \leq x \leq \frac{1}{2}, \frac{1}{2}<y \leq 1 \\
0, & \text { if } \frac{1}{2}<x \leq 1,0 \leq y \leq \frac{1}{2} \\
\frac{1}{8}, & \text { if } \frac{1}{2}<x \leq 1, \frac{1}{2}<y \leq 1
\end{aligned}\right.
\end{aligned}
$$

So if we put $\varphi:[0, \infty) \rightarrow[0, \infty): \varphi(x)=\frac{3}{4} x$, then it is easy to check that for $\varepsilon>0$ and x, y in M if $\varepsilon>\max \{d(A x, S x), d(B y, T y)\}$ then $\varphi(\epsilon)>d(S x, T y)$.

Thus the conditions in Corollary 3.3 are satisfied and in this case $\frac{1}{2}$ is the unique common fixed point of A, B, S and T.
4. A Generalization of Hadžić Fixed Point Theorem. In [3] the following fixed point theorem is proved.

Hadžićc Fixed Point Theorem: Suppose $c \in[0,1)$ is a constant and (X, \mathcal{F}, t) is a complete Menger space with continuous t-norm t and f is a selfmap on X such that for each x in X there is $n(x) \in \mathbb{N}$ so that for all $y \in X$

$$
F_{f^{n(x)}(x), f^{n(x)}(y)}(c \varepsilon) \geq F_{x, y}(\varepsilon)
$$

for all $\varepsilon>0$. If there is x_{0} in X such that $\sup _{\varepsilon>0} G_{x_{0}}(\varepsilon)=1$, where $G_{x_{0}}(\varepsilon)=\inf \left\{F_{f^{k} x_{0}, x_{0}}(\varepsilon)\right.$: $k \in \mathbb{N}\}$, then f has a unique fixed point ξ and for any $x \in X \lim _{n \rightarrow \infty} f^{n}(x)=\xi$.

In what follows we shall show that this theorem holds true if the constant $c \in[0,1)$ is replaced by an upper semicontinuous function $\varphi:[0, \infty) \rightarrow[0, \infty)$ such that $\varphi(0)=0$ and $\varphi(t)<t$ for all $t>0$. Actually we have the following theorem.

Theorem 4.1. Suppose (X, \mathcal{F}, t) is a complete Menger space with continuous t-norm t and f is a selfmap on X. If there is an upper semicontinuous function $\varphi:[0, \infty) \rightarrow[0, \infty)$ with $\varphi(0)=0$ and $\varphi(t)<t$ for all $t>0$ such that for each x in X there is $n(x) \in \mathbb{N}$ so that for all y in $X F_{f^{n(x)}(x), f^{n(x)}(y)}(\varphi(\varepsilon)) \geq F_{x, y}(\varepsilon)$ for all $\varepsilon>0$ and if there exists a point x_{0} in X such that $\sup _{\varepsilon>0} G_{x_{0}}(\varepsilon)=1$, where $G_{x_{0}}(\varepsilon)=\inf \left\{F_{f^{k}\left(x_{0}\right), x_{0}}(\varepsilon): k \in \mathbb{N}\right\}$, then f has a unique fixed point ξ in X and for any x in $X \lim _{n \rightarrow \infty} f^{n}(x)=\xi$.

Proof. Choose a continuous function $\alpha:[0, \infty) \rightarrow[0, \infty)$ such that
(i) α is strictly increasing,
(ii) $\alpha(0)=0$, and
(iii) $\varphi(t) \leq \alpha(t)<t$ for all $t>0$.

Then for any $\varepsilon>0$ we have

$$
\begin{equation*}
F_{f^{n(x)}(x), f^{n(x)}(y)}(\alpha(\varepsilon)) \geq F_{f^{n(x)}(x), f^{n(x)}(y)}(\varphi(\varepsilon)) \geq F_{x, y}(\varepsilon) \tag{1}
\end{equation*}
$$

for all $y \in X$.
Define the sequence $\left\{x_{n}\right\}$ recursively in the following way:

$$
x_{n}=f^{n\left(x_{n-1}\right)}\left(x_{n-1}\right), \quad n \in \mathbb{N} .
$$

Then for any $n, p \in \mathbb{N}$,

$$
\begin{align*}
F_{x_{n+p}, x_{n}}(\varepsilon)= & F_{f^{n\left(x_{n+p-1}\right)} f^{n\left(x_{n+p-2}\right)} \cdots f^{n\left(x_{n-1}\right)}\left(x_{n-1}\right), f^{n\left(x_{n-1}\right)}\left(x_{n-1}\right)}(\varepsilon) \\
\geq & F_{f^{n\left(x_{n+p-1}\right)} \ldots f^{n\left(x_{n}\right)}\left(x_{n-1}\right), x_{n-1}}\left(\alpha^{-1} \varepsilon\right) \\
& \vdots \\
\geq & F_{f^{n\left(x_{n+p-1}\right)} \ldots f^{n\left(x_{n}\right)} x_{0}, x_{0}}\left(\alpha^{-n} \varepsilon\right) \tag{2}\\
\geq & G_{x_{0}}\left(\alpha^{-n} \varepsilon\right) .
\end{align*}
$$

Since $\sup _{\varepsilon>0} G_{x_{0}}(\varepsilon)=1$, it follows from (2) that $\left\{x_{n}\right\}$ is a Cauchy sequence in X. Since X is complete, there is ξ in X such that $\lim _{n \rightarrow \infty} x_{n}=\xi$. Then in view of $F_{f^{n(\xi)\left(x_{n}\right), f^{n(\xi)}(\xi)}}(\varepsilon) \geq$

$$
\begin{align*}
& F_{x_{n}, \xi}\left(\alpha^{-1} \varepsilon\right) \text { we see that } \lim _{n \rightarrow \infty} f^{n(\xi)}\left(x_{n}\right)=f^{n(\xi)}(\xi) \text {. Now } \\
& \\
& \quad F_{f^{n(\xi)}(\xi), \xi}(\varepsilon) \\
& \geq \\
& t\left\{F_{f^{n(\xi)}(\xi), f^{n(\xi)}\left(x_{n}\right)}(\varepsilon-\alpha(\varepsilon)), F_{f^{n(\xi)}\left(x_{n}\right), \xi}(\alpha(\varepsilon))\right\} \\
& \geq \\
& t\left\{F_{\xi, x_{n}}\left(\alpha^{-1}(\varepsilon-\alpha(\varepsilon))\right), t\left\{F_{f^{n(\xi)\left(x_{n}\right), x_{n}}}\left(\frac{\alpha(\varepsilon)}{2}\right), F_{x_{n}, \xi}\left(\frac{\alpha(\varepsilon)}{2}\right)\right\}\right\} \\
& =t\left\{F_{\xi, x_{n}}\left(\alpha^{-1}(\varepsilon-\alpha(\varepsilon))\right), t\left\{F_{f^{n\left(x_{n-1}\right)}\left(x_{n-1}\right), f^{n\left(x_{n-1}\right)} f^{n(\xi)}\left(x_{n-1}\right)}\left(\frac{\alpha(\varepsilon)}{2}\right), F_{x_{n}, \xi}\left(\frac{\alpha(\varepsilon)}{2}\right)\right\}\right\} \tag{3}\\
& \geq t\left\{F_{\xi, x_{n}}\left(\alpha^{-1}(\varepsilon-\alpha(\varepsilon))\right), t\left\{F_{x_{n-1}, f^{n(\xi)}\left(x_{n-1}\right)}\left(\alpha^{-1}\left(\frac{\alpha(\varepsilon)}{2}\right)\right), F_{x_{n}, \xi}\left(\frac{\alpha(\varepsilon)}{2}\right)\right\}\right\} \\
& \quad \vdots \\
& \geq \\
& \geq
\end{align*}\left\{F_{\xi, x_{n}}\left(\alpha^{-1}(\varepsilon-\alpha(\varepsilon))\right), t\left\{F_{x_{0}, f^{n(\xi)}\left(x_{0}\right)}\left(\alpha^{-n}\left(\frac{\alpha(\varepsilon)}{2}\right)\right), F_{x_{n}, \xi}\left(\frac{\alpha(\varepsilon)}{2}\right)\right\}\right\} .
$$

Noting that $\lim _{n \rightarrow \infty} F_{\xi, x_{n}}\left(\alpha^{-1}(\varepsilon-\alpha(\varepsilon))\right)=1$ and $\lim _{n \rightarrow \infty} F_{x_{0}, f^{n(\xi)}\left(x_{0}\right)}\left(\alpha^{-n}\left(\frac{\alpha(\varepsilon)}{2}\right)\right)=1$ and $\lim _{n \rightarrow \infty} F_{x_{n}, \xi}\left(\frac{\alpha(\varepsilon)}{2}\right)=1$, it follows from (3) that $f^{n(\xi)}(\xi)=\xi$. We claim that ξ is the unique fixed point of $f^{n(\xi)}$. Suppose y is another fixed point of $f^{n(\xi)}$. Then, for any $\varepsilon>0$, $F_{\xi, y}(\varepsilon)=F_{f^{n(\xi) \xi, f^{n(\xi)} y}}(\varepsilon) \geq F_{\xi, y}\left(\alpha^{-1} \varepsilon\right)$, which by Lemma 2.2 implies that $\xi=y$. Now, since $f(\xi)=f\left(f^{n(\xi)}(\xi)\right)=f^{n(\xi)}(f(\xi))$, we see that $f(\xi)$ is a fixed point of $f^{n(\xi)}$. By the uniqueness of the fixed point of $f^{n(\xi)}$, we get that $f(\xi)=\xi$. For the uniqueness of the fixed point of f, assume y is another fixed point of f. Then for any $\varepsilon>0$

$$
\begin{aligned}
F_{\xi, y}(\varepsilon) & =F_{f^{n(\xi)}(\xi), f^{n(\xi)} y}(\varepsilon) \\
& \geq F_{\xi, y}\left(\alpha^{-1} \varepsilon\right),
\end{aligned}
$$

which implies that $\xi=y$.
Finally, we show that for any x in $X, \lim _{n \rightarrow \infty} f^{n}(x)=\xi$. For any $m \in \mathbb{N}$ choose $k \in \mathbb{N}$ so that

$$
k n(\xi)<m \leq(k+1) n(\xi)
$$

Then, for any $\varepsilon>0$,

$$
\begin{align*}
F_{f^{m}(x), \xi}(\varepsilon)= & F_{f^{m}(x), f^{n(\xi)} \xi}(\varepsilon) \\
\geq & F_{f^{m-n(\xi)}(x), \xi}\left(\alpha^{-1} \varepsilon\right) \\
& \vdots \\
\geq & F_{f^{m-k n(\xi)}(x), \xi}\left(\alpha^{-k} \varepsilon\right) \tag{4}
\end{align*}
$$

Since $0<m-k n(\xi) \leq n(\xi)$ and each of $F_{f(x), \xi}\left(\alpha^{-k} \varepsilon\right), F_{f^{2}(x), \xi}\left(\alpha^{-k} \varepsilon\right), \ldots$ and $F_{f^{n(\xi)} x, \xi}\left(\alpha^{-k} \varepsilon\right)$ converges to 1 as $n \rightarrow \infty$, we obtain that $\lim _{m \rightarrow \infty} F_{f^{m-k n(\xi)(x), \xi}}\left(\alpha^{-k} \varepsilon\right)=1$, and hence (4) gives us that $\lim _{m \rightarrow \infty} F_{f^{m}(x), \xi}(\varepsilon)=1$ for any $\varepsilon>0$. This means $\lim _{m \rightarrow \infty} f^{m}(x)=\xi$. ///

Acknowledgement. The authors would like to thank the referee for valuable comments and suggestions.

References

1. K.P. Chamola, Fixed points of mappings satisfying a new contraction condition in random normed spaces, Math. Japonica 33, (1988), 821-825.
2. T.H. Chang, Common fixed point theorems in Menger spaces, Bull. Inst. Math. Acad. Sinica 22, (1994), 17-29.
3. O. Hadžić, Some theorems on the fixed points in probabilistic metric and random normed spaces, Bollettino U.M.I. (6) 1-B(1982), 381-391.
4. G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. \& Math. Sci., 9, (1986), 771-779.
5. K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. U.S.A., 28 (1942), 535-537.
6. S.N. Mishra, Common fixed points of compatible maps in PM spaces, Math. Japonica, 36(1991), 283-289.
7. B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10(1960), 313-334.
8. B. Schweizer and A. Sklar, Probabilistic metric spaces, North-Holland series in Probability and Applied Mathematics, 1983.
9. V.M. Sehgal and A.T. Bharucha-Reid, Fixed points of contraction mappings on probabilistic metric spaces, Math. System Theory 6(1972), 97-102
10. S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. 32(1982), 149-153.
11. M. Stojaković, On some classes of contraction mappings, Math. Japonica 33 (1988), 311-318.

Department of Mathematics, National Cheng Kung University, Tainan, Taiwan 70101, R.O.C.

[^0]: 1980 Mathematics Subject Classification (1985 Revision). 54H25, 47H10.
 Key words and phrases. Menger space, t-norm, compatible mapping, fixed point.
 *Supported in part by NSC, R.O.C. under the grant 8402121-M006-020.

