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Abstract. A common �xed point theorem for four selfmaps on a complete Menger space is

established. This result is even new in a metric space setting.

1. Introduction. Seghal and Bharucha{Reid [9] initiated the study of �xed points in
Menger spaces, a subclass of probabilistic metric spaces (PM{spaces). In PM{spaces the
concept of distance is considered to be probabilistic, rather than deterministic, that is to
say, given any two points x and y of a set, a distribution function Fx;y(") is introduced which
gives the probabilistic interpretation as the distance between x and y is less than " (" > 0).
There has been an extensive investigation on �xed point theory in PM{spaces in the last
twenty years, cf. [1], [2], [3], [6], [9], [11]. For topological preliminaries on PM{spaces we
refer the reader to [7] and [8].

In this paper, we shall prove mainly a common �xed point theorem for four selfmaps on
a complete Menger space. This result is new even in a metric space setting. In addition to
the above result a generalization of Had�zi�c �xed point theorem in [3] is also established.

We now recall some basic de�nitions and results. A mapping F : R ! [0; 1] is called
a distribution function if it is nondecreasing, left continuous and lim

t!�1

F (t) = 0 and

lim
t!1

F (t) = 1. The set of all distribution functions is denoted by D. A probabilistic

metric space (PM{space) is an ordered pair (X;F) consisting of a nonempty set X and a
mapping F : X � X ! D, whose value F(x; y) at (x; y) is denoted by Fx;y , such that the
following conditions are satis�ed.

(i) Fx;y(a) = 1 for all a > 0 if and only if x = y;

(ii) Fx;y(0) = 0 for all x; y in X;

(iii) Fx;y = Fy;x for all x; y in X;

(iv) if Fx;y(a) = 1 and Fy;z(b) = 1 then Fx;z(a+ b) = 1 for all x; y; z in X and a; b > 0.

A mapping t : [0; 1] � [0; 1] ! [0; 1] is called a t{norm if it is commutative, associative,
nondecreasing in each coordinate, and t(a; 1) = a for all a 2 [0; 1]. An important t{norm is
the min which is de�ned by min (a; b) = minimum of a and b.

A Menger space is a triplet (X;F ; t), where (X;F) is a PM{space and t is a t{norm such
that the generalized triangle inequality

Fx;z(a+ b) � t (Fx;y(a); Fy;z(b))
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holds for all x; y; z in X and a; b > 0. The concept of neighborhoods in a PM{space (X;F)
was introduced by Schweizer and Sklar [7]. If x 2 X, " > 0 and � 2 (0; 1), then an
("; �){neighborhood of x, denoted by Ux(";�), is de�ned to be

Ux(";�) = fy 2 X : Fx;y(") > 1� �g:

It is well{known that if (X;F ; t) is a Menger space with the continuous t{norm t, then
(X;F ; t) is a Hausdor� space in the topology induced by the family fUx(";�) : x 2 X,
" > 0, � 2 (0; 1)g of neighborhoods. A sequence fxng in a PM{space is said to be Cauchy if
for any " > 0 and � 2 (0; 1) there is N = N("; �) 2 N such that Fxn;xm(") > 1�� whenever
n;m � N . The sequence fxng is said to be convergent to a point x in X if for any " > 0
lim
n!1

Fxn;x(") = 1. If every Cauchy sequence in X is convergent, then (X;F) is called a

complete PM{space.
The following result is a special case of Schweizer and Sklar [7, Theorems 8.1 and 8.2].

Lemma 1.1. Suppose (X;F ;min) is a Menger space then for any " > 0 lim
n!1

Fxn;yn (")

� Fx;y(") provided that xn ! x and yn ! y. Moreover, if Fx;y is continuous at ", then
lim
n!1

Fxn;yn(") = Fx;y(").

2. A New Fixed Point Theorem in Menger Spaces. To start with, suppose
' : [0;1) ! [0;1) is an upper semicontinuous function with '(0) = 0 and '(t) < t for all
t > 0. Then T.H. Chang [2] showed there exists a strictly increasing continuous function
� : [0;1)! [0;1) such that �(0) = 0 and '(t) � �(t) < t for all t > 0. The function � is
invertible and for any t > 0 lim

n!1

��n(t) =1, where ��n denotes the n{th iterates of ��1

(��1 composed with itself n times) and ��1 denotes the inverse of �.
In order to prove our main result we need some lemmas.

Lemma 2.1. Suppose (X;F ;min) is a complete Menger space and ' : [0;1)! [0;1)
is an upper semicontinuous function with '(0) = 0 and '(t) < t for all t > 0. If fyng is a
sequence in X such that for any " > 0 and any n 2 N

Fyn;yn+1 ('(")) � Fyn�1;yn(")

then fyng is a Cauchy sequence in X.

Proof. Choose a strictly increasing continuous function � : [0;1) ! [0;1) such that
�(0) = 0 and '(t) � �(t) < t for all t > 0. Then for any " > 0 and any n 2 N one has
Fyn;yn+1 (�(")) � Fyn;yn+1 ('(")) � Fyn�1;yn ("), so

Fyn;yn�1

�
��1

�"� �(")

2

��
� Fyn�1;yn�2

�
��2

�"� �(")

2

��
...

� Fy1;y0

�
��n

�"� �(")

2

��
: (1)

Since lim
n!1

��n
�
"��(")

2

�
=1, we have lim

n!1

Fy1;y0

�
��n

�
"��(")

2

��
= 1, and hence (1) shows

that lim
n!1

Fyn;yn�1

�
��1

�
"��(")

2

��
= 1, which says that for any " > 0 and � 2 (0; 1) there is

N 2 N such that

Fyn;yn�1

�
��1

�" � �(")

2

��
> 1� � whenever n � N (2)
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We now prove by induction that for n � N and m 2 N,

Fyn;yn+m (") > 1� � (3)

When m = 1, it follows from (2) that

Fyn;yn+1 (") � Fyn�1;yn (�
�1") � Fyn�1;yn

�
��1

�"� �(")

2

��
> 1� �; 8n � N:

Suppose (3) holds for any n � N and for any m = 1; 2; : : : ; r. Then when m = r + 1, we
have for all n 2 N that

Fyn;yn+r+1 (")

�min
n
Fyn;yn+1

�"� �(")

2

�
; Fyn+1 ;yn+r+1

�"+ �(")

2

�o
�min

n
Fyn�1;yn

�
��1

�" � �(")

2

��
; Fyn+1 ;yn+r+1

�"+ �(")

2

�o
�min

n
1� �;min

n
Fyn+1 ;yn+2

�"� �(")

2

�
; Fyn+2 ;yn+r+1

�
�(")

�oo
�min

n
1� �;min

n
Fyn ;yn+1

�
��1

�"� �(")

2

��
; Fyn+1 ;yn+r (")

oo
�min

n
1� �;min

n
1� �; Fyn+1 ;yn+r (")

oo
=min

n
1� �; Fyn+1 ;y(n+1)+(r�1)(")

o
�min

�
1� �; 1� �

	
by induction hypothesis

=1� �:

Therefore fyng is a Cauchy sequence in X. ///

The following Lemma 2.2 is well{known, cf. [2].

Lemma 2.2. Suppose (X;F) is a PM{space and � : [0;1)! [0;1) is strictly increas-
ing and satis�es �(0) = 0 and �(t) < t for all t > 0. If x; y are two members in X such
that

Fx;y(�(")) � Fx;y(")

for all " > 0, then x = y.

The commutative notion was �rst generalized by Sessa [10] in the following way:
Two selfmaps f; g on a metric space (X; d) are said to be weakly commutative if

d(fgx; gfx) � d(fx; gx) for all x 2 X.

Later Jungck [4] made a further generalization:
Two selfmaps f; g on a metric space (X; d) are said to be compatible if whenever fxng

is a sequence in X such that both ffxng and fgxng are convergent to a same point x in X

then d(fgxn; gfxn)! 0.
The counterpart of the compatibility in a PM{space is the following

De�nition 2.3. Two selfmaps S;A on a PM{space (X;F) are compatible if
lim
n!1

FSAxn;ASxn (") = 1 for all " > 0 whenever fxng is a sequence in X such that fAxng

and fSxng are convergent to some point x in X.
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By taking xn = x for all n it follows from the compatibility of A and S that ASx = SAx

if Ax = Sx.

We are now in a position to prove our main result.

Theorem 2.4. Suppose (X;F ;min) is a complete Menger space and S; T;A;B : X !

X are four selfmaps on X satisfying the following conditions:

(i) SX � BX and TX � AX;

(ii) (S;A) and (T;B) are compatible pairs;

(iii) one of S; T;A;B is continuous;

(iv) there exists an upper semicontinuous function ' : [0;1) ! [0;1) with '(0) = 0 and
'(t) < t for all t > 0 such that

�
FSx;Ty

�
'(")

��2
�min

n
FAx;Sx(")FBy;Ty("); FAx;Ty(2")FBy;Sx(2");

FAx;Sx(")FAx;Ty(2"); FBy;Sx(2")FBy;Ty(")
o

for all x; y in X and " > 0.

Then S; T;A and B have a unique common �xed point.

Proof. In view of condition (iv) and the remark at the begining of this section, we may
assume that ' is a strictly increasing continuous function with '(0) = 0 and '(t) < t for
t > 0. Fix an x0 2 X and de�ne a sequence fyng recursively by

(
y2n = Sx2n = Bx2n+1

y2n+1 = Tx2n+1 = Ax2n+2;
n 2 N [ f0g:

We shall prove that for any n 2 N and " > 0

Fy2n+1;y2n+2('(")) � Fy2n;y2n+1 ("): (1)

Suppose (1) is not true. Then there exist n 2 N and " > 0 such that

Fy2n+1;y2n+2('(")) < Fy2n;y2n+1 ("): (2)
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It follows from (iv) and (2) that�
Fy2n+1;y2n+2 ('("))

�2
=
�
FSx2n+2;Tx2n+1('("))

�2
�min

n
FAx2n+2;Sx2n+2 (")FBx2n+1;Tx2n+1(");

FAx2n+2;Tx2n+1(2")FBx2n+1;Sx2n+2(2");

FAx2n+2;Sx2n+2(")FAx2n+2;Tx2n+1 (2");

FBx2n+1;Sx2n+2(2")FBx2n+1;Tx2n+1 (")
o

=min
n
Fy2n+1;y2n+2 (")Fy2n;y2n+1 ("); Fy2n+1;y2n+1 (2")Fy2n;y2n+2(2");

Fy2n+1;y2n+2(")Fy2n+1;y2n+1(2"); Fy2n;y2n+2 (2")Fy2n;y2n+1 (")
o

�min
n
Fy2n+1;y2n+2

�
'(")

�
Fy2n;y2n+1 ("); Fy2n;y2n+2 (2");

Fy2n+1;y2n+2
�
'(")

�
; Fy2n ;y2n+2(2")Fy2n;y2n+1 (")

o
; since '(") < "

andF is nondecreasing;

�min
n
Fy2n+1;y2n+2

�
'(")

�
Fy2n;y2n+1 (");min

�
Fy2n;y2n+1("); Fy2n+1;y2n+2 (")

	
;

Fy2n+1;y2n+2
�
'(")

�
;min

�
Fy2n;y2n+1("); Fy2n+1;y2n+2 (")

	
Fy2n;y2n+1(")

o
: (3)

Now, note that8>>>><
>>>>:

(a)Fy2n+1;y2n+2
�
'(")

�
Fy2n;y2n+1(") >

�
Fy2n+1;y2n+2

�
'(")

��2
(b) min

n
Fy2n;y2n+1 ("); Fy2n+1;y2n+2(")

o
� Fy2n+1;y2n+2

�
'(")

�
;

(c) min
n
Fy2n;y2n+1 ("); Fy2n+1;y2n+2(")

o
Fy2n;y2n+1 (")

� Fy2n+1 ;y2n+2
�
'(")

�
Fy2n;y2n+1 (")

>
�
Fy2n+1;y2n+2

�
'(")

��2
.

So we get from (3) that�
Fy2n+1 ;y2n+2

�
'(")

��2
>
�
Fy2n+1;y2n+2

�
'(")

��2
; a contradiction:

Therefore, (1) holds, for any n 2 N and " > 0. Using a similar argument we obtain that for
any n 2 N and " > 0

Fy2n;y2n+1
�
'(")

�
� Fy2n�1;y2n("): (4)

Thus putting (1) and (4) together, we see that Fyn ;yn+1
�
'(")

�
� Fyn�1;yn(") for any n 2 N

and " > 0, and hence by Lemma 2.1 fyng is a Cauchy sequence in X. Since X is complete,
there exists z in X such that 8>>>><

>>>>:

Sx2n �! z

Bx2n+1 �! z

Tx2n+1 �! z

Ax2n+2 �! z;

as n!1:
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Now, suppose A is continuous. Then

A2x2n ! Az and ASx2n ! Az as n!1: (5)

Since both of fAx2ng and fSx2ng are convergent to z, the compatibility of A and S implies
that lim

n!1

FASx2n;SAx2n (") = 1. This in conjunction with (5) and the inequality

FSAx2n;Az(") � minfFSAx2n;ASx2n
� "
2

�
; FASx2n ;Az

� "
2

�o

shows that SAx2n ! Az as n ! 1. Let E = f" > 0 : FAz;z is continuous at "g. Since
FAz;z is nondecreasing, it can be discontinuous at only denumerably many points. We now
show that FAz;z(") � FAz;z('

�1(")) for any " 2 E. By (iv).

�
FSAx2n ;Tx2n+1(")

�2
�min

n
FA2x2n;SAx2n

('�1("))FBx2n+1;Tx2n+1('
�1("));

FA2x2n ;Tx2n+1
(2'�1("))FBx2n+1;SAx2n (2'

�1("));

FA2x2n ;SAx2n
('�1("))FA2x2n;Tx2n+1

(2'�1("));

FBx2n+1;SAx2n (2'
�1("))FBx2n+1;Tx2n+1 ('

�1("))
o
: (6)

It is easy to see that we can choose a subsequence fnjg of natural numbers such that all
the limits in (6) exist as j !1 and satify

lim
j!1

�
FSAx2nj ;Tx2nj+1(")

�2
�min

n
lim
j!1

�
FA2x2nj

;SAx2nj
('�1("))FBx2nj+1;Tx2nj+1('

�1("))
�
;

lim
j!1

�
FA2x2nj

;Tx2nj+1
(2'�1("))FBx2nj+1;SAx2nj (2'

�1("))
�
;

lim
j!1

�
FA2x2nj

;SAx2nj
('�1("))FA2x2nj

;Tx2nj+1
(2'�1("))

�
;

lim
j!1

�
FBx2nj+1;SAx2nj (2'

�1("))FBx2nj+1;Tx2nj+1('
�1("))

�o
�min

n
lim
n!1

�
FA2x2n;SAx2n

('�1("))FBx2n+1;Tx2n+1 ('
�1("))

�
; (7)

lim
n!1

�
FA2x2n;Tx2n+1

(2'�1("))FBx2n+1;SAx2n (2'
�1("))

�
;

lim
n!1

�
FA2x2n;SAx2n

('�1("))FA2x2n;Tx2n+1
(2'�1("))

�
;

lim
n!1

�
FBx2n+1;SAx2n (2'

�1("))FBx2n+1;Tx2n+1('
�1("))

�o
�min

n
FAz;Az('

�1("))Fz;z('
�1(")); FAz;z(2'

�1("))Fz;Az(2'
�1("));

FAz;Az('
�1("))FAz;z(2'

�1(")); Fz;Az(2'
�1("))Fz;z('

�1("))
o

�

�
FAz;z('

�1("))
�2
;

where the penultimate inequality follows from Lemma 1.1.
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Also, since " 2 E, it follows from Lemma 1.1 that lim
n!1

FSAx2n;Tx2n+1 (") = FAz;z("), which

in conjunction with (7) shows that

FAz;z(") � FAz;z('
�1(")) for " 2 E: (8)

To conclude that Az = z we must show that FAz;z(") = 1 for any " > 0. For this, let " be
any member in E and put "1 = ". Then we have

"1 < '�1("1) < '�2("1) < � � � < '�n("1) < � � � ; and lim
n!1

'�n("1) =1: (9)

Let � > 0 be any given positive number. Since FAz;z is left continuous at '
�2("1), there is

� > 0 such that

FAz;z('
�2("1)) � FAz;z(!) +

�

2
(10)

for all ! 2 ('�2("1)� �; '�2("1)).
By the continuity of '�1 at '�1("1), we can choose "2 2 ("1; '

�1("1))\E so that '�1("2) 2
('�2("1)� �; '�2("1)), and hence with the aid of (10)

FAz;z('
�1("2)) � FAz;z('

�2("1))�
�

2
: (11)

By induction, for any n 2 N we can choose "n+1 2 E so that

'�n+1("1) < "n+1 < '�n("1); and

FAz;z('
�1("n+1)) � FAz;z('

�(n+1)("1))�
�

2n
(12)

So we have

FAz;z(") =FAz;z("1)

�FAz;z('
�1("1))

�FAz;z("2)

�FAz;z('
�1("2)); since "2 2 E

�FAz;z('
�2("1))�

�

2
by (11)

�FAz;z("3)�
�

2

�FAz;z('
�1("3))�

�

2

�FAz;z('
�3("1))�

�

22
�
�

2
(13)

...

�FAz;z('
�n("1))�

� �

2n�1
+

�

2n�2
+ � � �

�

2

�
=FAz;z('

�n("1))� �(1�
1

2n�1
); 8n 2 N:

Letting n!1 in (13) and noting lim
n!1

'�n("1) =1, we obtain that

FAz;z(") � 1� � for any � > 0:
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Since � > 0 is arbitrary, we conclude that FAz;z(") = 1 for any " 2 E. Since E is dense in
(0;1) and FAz;z is left continuous on (0;1), we see that FAz;z(") = 1 for all " > 0, and
so Az = z. As for Sz = z, using (FSz;z("))

2 = lim
n!1

(FSz;Tx2n+1("))
2 and (iv), we can just

follow as before to obtain FSz;z(") � FSz;z('
�1(")) for any " > 0 where FSz;z is continuous.

Then in a similar argument as before, we conclude FSz;z(") = 1 8 " > 0, and so Sz = z.
Since SX � BX, there exists y in X such that By = Sz = z. So for any " > 0�

Fz;Ty
�
'(")

��2
=
�
FSz;Ty

�
'(")

��2
�min

n
FAz;Sz(")FBy;Ty("); FAz;Ty(2")FBy;Sz(2");

FAz;Sz(")FAz;Ty(2"); FBy;Sz(2")FBy;Ty(")
o

=min
n
Fz;Ty("); Fz;Ty(2")

o
�

�
Fz;Ty(")

�2
:

Thus Fz;Ty
�
'(")

�
� Fz;Ty("), and hence Ty = z. Up to now we have shown that Sz =

Az = z = By = Ty. We are now going to show that z is a common �xed point of S; T;A
and B. Since T and B are compatible, we have BTy = TBy, that is , Bz = Tz. Therefore,
for " > 0, we have the following inequalities:�

Fz;Tz
�
'(")

��2
=
�
FSz;Tz

�
'(")

��2
�min

n
FAz;Sz(")FBz;Tz("); FAz;Tz(2")FBz;Sz(2");

FAz;Sz(")FAz;Tz(2"); FBz;Sz(2")FBz;Tz(")
o

=min
n�
Fz;Tz(2")

�2
; Fz;Tz(2")

o
�
�
Fz;Tz(")

�2
:

So Tz = z by Lemma 2.2. This completes the proof for z being the common �xed point
of S; T;A and B provided that A is continuous. By symmetry, if B is continuous, we can
prove that S; T;A and B have a common �xed point in a similar way.

Next, assume that S is continuous. Then SAx2n ! Sz and SBx2n+1 ! Sz as n !

1, and, since S and A are compatible and both of fAx2ng and fSx2ng are conver-
gent to z, lim

n!1

FASx2n ;SAx2n(") = 1 for " > 0. Noting that for " > 0 FASx2n;Sz(") �

min
�
FASx2n;SAx2n (

"

2
); FSAx2n ;Sz(

"

2
)
	
and both of fFASx2n;SAx2n(

"

2
)g and fFSAx2n;Sz(

"

2
)g

are convergent to 1, we see that lim
n!1

FASx2n;Sz(") = 1 for all " > 0, and so lim
n!1

ASx2n =

Sz. In the inequality�
FSBx2n+1 ;Tx2n+1(")

�2
�min

n
FABx2n+1;SBx2n+1 ('

�1("))FBx2n+1;Tx2n+1('
�1("));

FABx2n+1 ;Tx2n+1(2'
�1("))FBx2n+1;SBx2n+1(2'

�1("));

FABx2n+1 ;SBx2n+1 ('
�1("))FABx2n+1;Tx2n+1(2'

�1("));

FBx2n+1;SBx2n+1 (2'
�1("))FBx2n+1;Tx2n+1('

�1("))
o
;

we can imitate the procedure for the case that A is continuous to show that FSz;z(") �
FSz;z('

�1(")) for any " > 0 where FSz;z is continuous, and then show that FSz;z(") = 1 for
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any " > 0. So Sz = z. Since SX � BX, we can choose y 2 X such that By = Sz = z.
Then for any " > 0 and n 2 N we have

�
FSBx2n+1 ;Ty(")

�2
�min

n
FABx2n+1 ;SBx2n+1 ('

�1("))FBy;Ty('
�1("));

FABx2n+1;Ty(2'
�1("))FBy;SBx2n+1(2'

�1("));

FABx2n+1;SBx2n+1 ('
�1")FABx2n+1;Ty(2'

�1("));

FBy;SBx2n+1 (2'
�1("))FBy;Ty('

�1("))
o

=min
n
FASx2n ;S2x2n('

�1("))Fz;Ty('
�1("));

FASx2n;Ty(2'
�1("))Fz;S2x2n(2'

�1("));

FASx2n;S2x2n('
�1("))FASx2n;Ty(2'

�1("));

Fz;S2x2n(2'
�1("))Fz;Ty('

�1("))
o
:

As the case that A is continuous, we can take limit via a suitable subsequence fnjg of
natural numbers to get

�
Fz;Ty'(")

�2
�min

n
Fz;Ty('

�1(")); Fz;Ty(2'
�1("))

o
�
�
Fz;Ty('

�1("))
�2
; for any " > 0 where Fz;Ty is continuous.

Thus Ty = z. In summary we have shown that By = Ty = Sz = z. Now, since TX � AX,
there exists x 2 X such that z = Sz = By = Ty = Ax. Then we get Ax = Sx from the
following inequalities:

�
FSx;Ax

�
'(")

��2
=
�
FSx;Ty

�
'(")

��2
�min

n
FAx;Sx(")FBy;Ty("); FAx;Ty(2")FBy;Sx(2");

FAx;Sx(")FAx;Ty(2"); FBy;Sx(2")FBy;Ty(")
o

=min
n
FAx;Sx("); FAx;Sx(2")

o
�
�
FAx;Sx(")

�2
for any " > 0:

Let � = Ax = Sx = Ty = By. Since S and A are compatible and since Ax = Sx, we get
ASx = SAx, that is, A� = S�. Then for any " > 0,

�
FS�;�

�
'(")

��2
=
�
FS�;Ty

�
'(")

��2
�min

n
FA�;S�(")FBy;Ty("); FA�;Ty(2")FBy;S�(2");

FA�;S�(")FA�;Ty(2"); FBy;S�(2")FBy;Ty(")
o

=min
n�
FS�;�(2")

�2
; FS�;�(2")

o
�
�
FS�;�(")

�2
;
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which implies that S� = � = A�. Next, choose v 2 X such that Bv = S� = �. Then

�
F�;Tv

�
'(")

��2
=
�
FS�;Tv

�
'(")

��2
�min

n
FA�;S�(")FBv;Tv("); FA�;Tv(2")FBv;S�(2");

FA�;S�(")FA�;Tv(2"); FBv;S�(2")FBv;Tv(")
o

=min
n
F�;Tv("); F�;Tv(2")

o
�
�
F�;Tv(")

�2
for any " > 0:

Hence Tv = �. Since T and B are compatible and Tv = Bv, we have TBv = BTv, that is,
T� = B�. Then we conclude that T� = � from the following inequalities:

�
F�;T�

�
'(")

��2
=
�
FS�;T�

�
'(")

��2
�min

n
FA�;S�(")FB�;T�("); FA�;T�(2")FB�;S�(2");

FA�;S�(")FA�;T�(2"); FB�;S�(2")FB�;T�(")
o

=min
n�
F�;T�(2")

�2
; F�;T�(2")

o
�
�
F�;T�(")

�2
8 " > 0:

Thus � is a common �xed point of S; T;A and B provided that S is continuous. By
symmetry, if T is continuous we can prove that S; T;A and B have a common �xed point in
a similar way. This completes the proof for the existence of common �xed points of S; T;A
and B. It remains to show the uniqueness of the common �xed point. Assume y and z are
two common �xed points of S; T;A and B. Since

�
Fy;z

�
'(")

��2
=
�
FSy;Tz

�
'(")

��2
�min

n
FAy;Sy(")FBz;Tz("); FAy;Tz(2")FBz;Sy(2");

FAy;Sy(")FAy;Tz(2"); FBz;Sy(2")FBz;Tz(")
o

=min
n�
Fy;z(2")

�2
; Fy;z(2")

o
�
�
Fy;z(")

�2
for all " > 0;

we conclude that y = z by virtue of Lemma 2.2. ///

3. Connection with Metric Spaces. Every metric space (M;d) is a Menger space
(M;F ;min), where the mapping F(x; y) = Fx;y is de�ned by Fx;y(") = H("� d(x; y)), and
H is the distribution function de�ned by

H(") =

(
0; if " � 0;

1; if " > 0:

The space (M;F ;min) is called the induced Menger space.
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Lemma 3.1. Suppose (M;F ;min) is the induced complete Menger space associated
with the complete metric space (M;d) and ' : [0;1)! [0;1) is an upper semicontinuous
function satisfying that '(0) = 0 and '(t) < t for each t > 0. If S; T;A;B : X ! X are
four selfmaps on M then the following two statements are equivalent:

(i) For x; y in M and " > 0, if '(") � d(Sx; Ty) then either " � maxfd(Ax;Sx); d(By; Ty)g
or 2" � maxfd(Ax; Ty); d(By; Sx)g.

(ii) �
FSx;Ty

�
'(")

��2
� min

n
FAx;Sx(")FBy;Ty("); FAx;Ty(2")FBy;Sx(2");

FAx;Sx(")FAx;Ty(2"); FBy;Sx(2")FBy;Ty(")
o

for all x; y in M and " > 0.

Proof. For simplicity put 8>>>>>><
>>>>>>:

� = FAx;Sx(")

� = FBy;Ty(")


 = FAx;Ty(2")

� = FBy;Sx(2")

! = FSx;Ty
�
'(")

�
:

Then (ii) says that

!2 � minf��; 
�; �
; ��g

for all x; y in M and " > 0.
Now, assume (i) holds and suppose x; y are any two points in M and " is any positive
number. Then either '(") > d(Sx; Ty) or '(") � d(Sx; Ty). For the case that '(") >

d(Sx; Ty) we have !2 =
�
H
�
'(")� d(Sx; Ty)

��2
= 1 � minf��; 
�; �
; ��g. On the other

hand, if '(") � d(Sx; Ty) then by (i) we have either " � maxfd(Ax;Sx), d(By; Ty)g or
2" � maxfd(Ax; Ty); d(By; Sx)g, and so we see that at least one of the following four
inequalities 8>>>><

>>>>:

(a) " � d(Ax;Sx)

(b) " � d(By; Ty)

(c) 2" � d(Ax; Ty)

(d) 2" � d(By; Sx)

occurs. Hence at least one of �; �; 
; � is zero. Consequently, !2 = 0 = minf��; 
�; �
; ��g.
Thus (i) implies (ii).

Next, suppose (ii) holds. Let " > 0 and x; y be any two points inM satisfying that '(") �
d(Sx; Ty). Then ! = H

�
'(")�d(Sx; Ty)

�
= 0, and so (ii) implies that minf��; 
�; �
; ��g

= 0. Thus at least one of �; �; 
; � is zero, that is, at least one of (a), (b), (c), (d) in
the previous paragraph holds. Therefore we have either " � maxfd(Ax;Sx); d(By; Ty)g or
2" � maxfd(Ax; Ty); d(By; Sx)g. So (ii) implies (i). ///

In view of Theorem 2.4 and Lemma 3.1 the following theorem follows immediately.

Theorem 3.2. Suppose (M;d) is a complete metric space and S; T;A;B are four self-
maps on M satisfying the following conditions:
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(i) SM � BM and TM � AM ;

(ii) (S;A) and (T;B) are compatible pairs;

(iii) one of S; T;A;B is continuous;

(iv) there exists an upper semicontinuous function ' : [0;1) ! [0;1) with '(0) = 0 and
'(t) < t for t > 0 such that for " > 0 and x; y in M if '(") � d(Sx; Ty) then either
" � maxfd(Ax;Sx); d(By; Ty)g or 2" � maxfd(Ax; Ty); d(By; Sx)g.

Then S; T;A and B have a unique common �xed point.

All notations are just as in Lemma 3.1. Assume that for any " > 0 and for any x; y in
M if " > maxfd(Ax;Sx); d(By; Ty)g then '(") > d(Sx; Ty). We now check that condition
(ii) of Lemma 3.1 holds for any x; y in M and any " > 0. Indeed, let x; y be any two points
in M and " be any positive number. In case " > maxfd(Ax;Sx); d(By; Ty)g. Then we
have H

�
" � d(Ax;Sx)

�
= 1 = H

�
" � d(By; Ty)

�
and '(") > d(Sx; Ty). So the following

inequalities hold:

2"� d(Ax; Ty) � 2"� d(Ax;Sx)� d(Sx; Ty)

� 2"� "� '(")

= "� '(") > 0:

Thus H
�
2"� d(Ax; Ty)

�
= 1. Similarly, H

�
2"� d(By; Sx)

�
= 1. Hence,

�
FSx;Ty

�
'(")

��2
= 1 = min

n
FAx;Sx(")FBy;Ty("); FAx;Ty(2")FBy;Sx(2");

FAx;Sx(")FAx;Ty(2"); FBy;Sx(2")FBy;Ty(")
o
:

On the other hand, if " � max
�
d(Ax;Sx); d(By; Ty)

	
, then we

�
FSx;Ty

�
'(")

��2
� 0 = min

n
FAx;Sx(")FBy;Ty("); FAx;Ty(2")FBy;Sx(2");

FAx;Sx(")FAx;Ty(2"); FBy;Sx(2")FBy;Ty(")
o
:

Therefore, the following corollary follows from Theorem 2.4.

Corollary 3.3. Except condition (iv) of Theorem 3.2 is replaced by

(iv)0 For x; y in M and " > 0 if " > maxfd(Ax;Sx); d(By; Ty)g then '(") > d(Sx; Ty),

assume all assumptions are just as in Theorem 3.2. Then S; T;A;B have a unique common
�xed point.

In the remainder of this section we give a concrete example for Corollary 3.3.

Example 3.4. Let M = [0; 1] with the usual Euclidean distance d(x; y) = jx � yj and
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let A;B; S; T : [0; 1]! [0; 1] be four functions de�ned by

Ax =

8>><
>>:

3

4
x+

1

8
; if 0 � x �

1

2

1

2
; if

1

2
< x � 1;

Bx =

8>><
>>:

1

2
x+

1

4
; if 0 � x �

1

2

5

8
; if

1

2
< x � 1;

Sx =

8>><
>>:

1

4
x+

3

8
; if 0 � x �

1

2

1

2
; if

1

2
< x � 1;

and

Tx =

8><
>:

1

2
; if 0 � x �

1

2
3

8
; if

1

2
< x � 1:

Then
(i) TM � AM and SM � BM ,
(ii) d(ASx; SAx) = 0 � d(Sx;Ax) for 0 � x � 1; d(TBx;BTx) = 0 � d(Bx; Tx) for

0 � x � 1
2
and d(TBx;BTx) = 1

16
< 1

4
= d(Tx;Bx) for 1

2
< x � 1. So (A;S) and (B;T )

are compatible pairs.
(iii) A is continuous,
(iv)

d(Ax;Sx) =

8>><
>>:

1

4
�

1

2
x; if 0 � x �

1

2

0; if
1

2
< x � 1;

d(By; Ty) =

8>><
>>:

1

4
�

1

2
y; if 0 � y �

1

2

1

4
; if

1

2
< y � 1;

d(Ty; Sx) =

8>>>>>>>>>>><
>>>>>>>>>>>:

1

8
�

1

4
x; if 0 � x �

1

2
; 0 � y �

1

2

1

4
x; if 0 � x �

1

2
;
1

2
< y � 1

0; if
1

2
< x � 1; 0 � y �

1

2

1

8
; if

1

2
< x � 1;

1

2
< y � 1

So if we put ' : [0;1)! [0;1) : '(x) = 3
4
x, then it is easy to check that for " > 0 and

x; y in M if " > maxfd(Ax;Sx); d(By; Ty)g then '(�) > d(Sx; Ty).

Thus the conditions in Corollary 3.3 are satis�ed and in this case 1
2
is the unique common

�xed point of A;B; S and T .
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4. A Generalization of Had�zi�c Fixed Point Theorem. In [3] the following �xed
point theorem is proved.

Had�zi�c Fixed Point Theorem: Suppose c 2 [0; 1) is a constant and (X;F ; t) is a
complete Menger space with continuous t{norm t and f is a selfmap on X such that for
each x in X there is n(x) 2 N so that for all y 2 X

F
fn(x)(x);fn(x)(y)(c") � Fx;y(")

for all " > 0. If there is x0 in X such that sup
">0

Gx0
(") = 1, where Gx0

(") = inf
�
Ffkx0;x0(") :

k 2 N
	
, then f has a unique �xed point � and for any x 2 X lim

n!1

fn(x) = �.

In what follows we shall show that this theorem holds true if the constant c 2 [0; 1) is
replaced by an upper semicontinuous function ' : [0;1) ! [0;1) such that '(0) = 0 and
'(t) < t for all t > 0. Actually we have the following theorem.

Theorem 4.1. Suppose (X;F ; t) is a complete Menger space with continuous t{norm
t and f is a selfmap on X. If there is an upper semicontinuous function ' : [0;1)! [0;1)
with '(0) = 0 and '(t) < t for all t > 0 such that for each x in X there is n(x) 2 N so that
for all y in X Ffn(x)(x);fn(x)(y)

�
'(")

�
� Fx;y(") for all " > 0 and if there exists a point x0

in X such that sup
">0

Gx0
(") = 1, where Gx0

(") = inf
�
Ffk(x0);x0(") : k 2 N

	
, then f has a

unique �xed point � in X and for any x in X lim
n!1

fn(x) = �.

Proof. Choose a continuous function � : [0;1)! [0;1) such that
(i) � is strictly increasing,

(ii) �(0) = 0, and
(iii) '(t) � �(t) < t for all t > 0.
Then for any " > 0 we have

F
fn(x)(x);fn(x)(y)(�(")) � F

fn(x)(x);fn(x)(y)('(")) � Fx;y(") (1)

for all y 2 X.
De�ne the sequence fxng recursively in the following way:

xn = fn(xn�1)(xn�1); n 2 N:

Then for any n; p 2 N,

Fxn+p ;xn(") =Ffn(xn+p�1)fn(xn+p�2)���fn(xn�1)(xn�1);fn(xn�1)(xn�1)(")

�F
f
n(xn+p�1)

���fn(xn)(xn�1);xn�1
(��1")

...

�F
f
n(xn+p�1)

���fn(xn)x0;x0
(��n")

�Gx0
(��n"): (2)

Since sup
">0

Gx0
(") = 1, it follows from (2) that fxng is a Cauchy sequence in X. Since X

is complete, there is � in X such that lim
n!1

xn = �. Then in view of F
fn(�)(xn);f

n(�)(�)(") �
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Fxn;�(�
�1") we see that lim

n!1

fn(�)(xn) = fn(�)(�). Now

Ffn(�)(�);�(")

�t
n
F
fn(�)(�);fn(�)(xn)

�
"� �(")

�
; F

fn(�)(xn);�

�
�(")

�o
�t
n
F�;xn

�
��1("� �("))

�
; t
�
F
fn(�)(xn);xn

��(")
2

�
; Fxn;�

��(")
2

�	o
=t
n
F�;xn

�
��1("� �("))

�
; t
�
F
f
n(xn�1)(xn�1);f

n(xn�1)fn(�)(xn�1)

��(")
2

�
; Fxn;�

��(")
2

�	o
�t
n
F�;xn

�
��1("� �("))

�
; t
�
F
xn�1;f

n(�)(xn�1)

�
��1

��(")
2

)
�
; Fxn;�

��(")
2

�	o
...

�t
n
F�;xn

�
��1("� �("))

�
; t
�
Fx0;fn(�)(x0)

�
��n

��(")
2

��
; Fxn;�

��(")
2

�	o
: (3)

Noting that lim
n!1

F�;xn
�
��1(" � �("))

�
= 1 and lim

n!1

F
x0;f

n(�)(x0)

�
��n

�
�(")

2

��
= 1 and

lim
n!1

Fxn;�
�
�(")

2

�
= 1, it follows from (3) that fn(�)(�) = �. We claim that � is the unique

�xed point of fn(�). Suppose y is another �xed point of fn(�). Then, for any " > 0,
F�;y(") = Ffn(�)�;fn(�)y(") � F�;y(�

�1"), which by Lemma 2.2 implies that � = y. Now,

since f(�) = f
�
fn(�)(�)

�
= fn(�)(f(�)), we see that f(�) is a �xed point of fn(�). By the

uniqueness of the �xed point of fn(�), we get that f(�) = �. For the uniqueness of the �xed
point of f , assume y is another �xed point of f . Then for any " > 0

F�;y(") =Ffn(�)(�);fn(�)y(")

�F�;y(�
�1");

which implies that � = y.
Finally, we show that for any x in X, lim

n!1

fn(x) = �. For any m 2 N choose k 2 N so

that

kn(�) < m � (k + 1)n(�):

Then, for any " > 0,

Ffm(x);�(") =Ffm(x);fn(�)�(")

�F
fm�n(�)(x);�(�

�1")

...

�F
fm�kn(�)(x);�(�

�k") (4)

Since 0 < m � kn(�) � n(�) and each of Ff(x);�(�
�k"), Ff2(x);�(�

�k"); : : : and

F
fn(�)x;�

(��k") converges to 1 as n ! 1, we obtain that lim
m!1

F
fm�kn(�)(x);�(�

�k") = 1,

and hence (4) gives us that lim
m!1

Ffm(x);�(") = 1 for any " > 0. This means lim
m!1

fm(x) = �.

///
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