FIXED POINTS OF COMPATIBLE MAPPINGS IN COMPLETE MENGER SPACES

Young-Ye Huang* and Chung-Chien Hong

Received November 7, 1995; revised May 30, 1997

ABSTRACT. A common fixed point theorem for four selfmaps on a complete Menger space is established. This result is even new in a metric space setting.

1. Introduction. Seghal and Bharucha–Reid [9] initiated the study of fixed points in Menger spaces, a subclass of probabilistic metric spaces (PM–spaces). In PM–spaces the concept of distance is considered to be probabilistic, rather than deterministic, that is to say, given any two points x and y of a set, a distribution function $F_{x,y}(\varepsilon)$ is introduced which gives the probabilistic interpretation as the distance between x and y is less than ε ($\varepsilon > 0$). There has been an extensive investigation on fixed point theory in PM–spaces in the last twenty years, cf. [1], [2], [3], [6], [9], [11]. For topological preliminaries on PM–spaces we refer the reader to [7] and [8].

In this paper, we shall prove mainly a common fixed point theorem for four selfmaps on a complete Menger space. This result is new even in a metric space setting. In addition to the above result a generalization of Hadžić fixed point theorem in [3] is also established.

We now recall some basic definitions and results. A mapping $F: \mathbb{R} \to [0,1]$ is called a distribution function if it is nondecreasing, left continuous and $\lim_{t \to -\infty} F(t) = 0$ and $\lim_{t \to \infty} F(t) = 1$. The set of all distribution functions is denoted by \mathcal{D} . A probabilistic metric space (PM-space) is an ordered pair (X, \mathcal{F}) consisting of a nonempty set X and a mapping $\mathcal{F}: X \times X \to \mathcal{D}$, whose value $\mathcal{F}(x,y)$ at (x,y) is denoted by $F_{x,y}$, such that the following conditions are satisfied.

- (i) $F_{x,y}(a) = 1$ for all a > 0 if and only if x = y;
- (ii) $F_{x,y}(0) = 0$ for all x, y in X;
- (iii) $F_{x,y} = F_{y,x}$ for all x, y in X;
- (iv) if $F_{x,y}(a) = 1$ and $F_{y,z}(b) = 1$ then $F_{x,z}(a+b) = 1$ for all x, y, z in X and a, b > 0.

A mapping $t:[0,1]\times[0,1]\to[0,1]$ is called a t-norm if it is commutative, associative, nondecreasing in each coordinate, and t(a,1)=a for all $a\in[0,1]$. An important t-norm is the min which is defined by min (a,b)= minimum of a and b.

A Menger space is a triplet (X, \mathcal{F}, t) , where (X, \mathcal{F}) is a PM-space and t is a t-norm such that the generalized triangle inequality

$$F_{x,z}(a+b) \ge t(F_{x,y}(a), F_{y,z}(b))$$

 $^{1980\} Mathematics\ Subject\ Classification\ (1985\ Revision).\ 54H25,\ 47H10.$

Key words and phrases. Menger space, t-norm, compatible mapping, fixed point.

^{*}Supported in part by NSC, R.O.C. under the grant 8402121-M006-020.

holds for all x, y, z in X and a, b > 0. The concept of neighborhoods in a PM-space (X, \mathcal{F}) was introduced by Schweizer and Sklar [7]. If $x \in X$, $\varepsilon > 0$ and $\lambda \in (0,1)$, then an (ε, λ) -neighborhood of x, denoted by $U_x(\varepsilon; \lambda)$, is defined to be

$$U_x(\varepsilon;\lambda) = \{ y \in X : F_{x,y}(\varepsilon) > 1 - \lambda \}.$$

It is well–known that if (X,\mathcal{F},t) is a Menger space with the continuous t-norm t, then (X,\mathcal{F},t) is a Hausdorff space in the topology induced by the family $\{U_x(\varepsilon;\lambda):x\in X,\varepsilon>0,\lambda\in(0,1)\}$ of neighborhoods. A sequence $\{x_n\}$ in a PM-space is said to be Cauchy if for any $\varepsilon>0$ and $\lambda\in(0,1)$ there is $N=N(\varepsilon,\lambda)\in\mathbb{N}$ such that $F_{x_n,x_m}(\varepsilon)>1-\lambda$ whenever $n,m\geq N$. The sequence $\{x_n\}$ is said to be convergent to a point x in X if for any $\varepsilon>0$ $\lim_{n\to\infty}F_{x_n,x}(\varepsilon)=1$. If every Cauchy sequence in X is convergent, then (X,\mathcal{F}) is called a complete PM-space.

The following result is a special case of Schweizer and Sklar [7, Theorems 8.1 and 8.2].

Lemma 1.1. Suppose (X, \mathcal{F}, \min) is a Menger space then for any $\varepsilon > 0$ $\underset{n \to \infty}{\underline{\lim}} F_{x_n, y_n}(\varepsilon)$ $\geq F_{x,y}(\varepsilon)$ provided that $x_n \to x$ and $y_n \to y$. Moreover, if $F_{x,y}$ is continuous at ε , then $\underset{n \to \infty}{\underline{\lim}} F_{x_n, y_n}(\varepsilon) = F_{x,y}(\varepsilon)$.

2. A New Fixed Point Theorem in Menger Spaces. To start with, suppose $\varphi:[0,\infty)\to[0,\infty)$ is an upper semicontinuous function with $\varphi(0)=0$ and $\varphi(t)< t$ for all t>0. Then T.H. Chang [2] showed there exists a strictly increasing continuous function $\alpha:[0,\infty)\to[0,\infty)$ such that $\alpha(0)=0$ and $\varphi(t)\leq\alpha(t)< t$ for all t>0. The function α is invertible and for any t>0 $\lim_{n\to\infty}\alpha^{-n}(t)=\infty$, where α^{-n} denotes the n-th iterates of α^{-1} (α^{-1} composed with itself n times) and α^{-1} denotes the inverse of α .

In order to prove our main result we need some lemmas.

Lemma 2.1. Suppose (X, \mathcal{F}, \min) is a complete Menger space and $\varphi : [0, \infty) \to [0, \infty)$ is an upper semicontinuous function with $\varphi(0) = 0$ and $\varphi(t) < t$ for all t > 0. If $\{y_n\}$ is a sequence in X such that for any $\varepsilon > 0$ and any $n \in \mathbb{N}$

$$F_{y_{n-1},y_{n+1}}(\varphi(\varepsilon)) \geq F_{y_{n-1},y_n}(\varepsilon)$$

then $\{y_n\}$ is a Cauchy sequence in X.

Proof. Choose a strictly increasing continuous function $\alpha:[0,\infty)\to[0,\infty)$ such that $\alpha(0)=0$ and $\varphi(t)\leq\alpha(t)< t$ for all t>0. Then for any $\varepsilon>0$ and any $n\in\mathbb{N}$ one has $F_{y_n,y_{n+1}}(\alpha(\varepsilon))\geq F_{y_n,y_{n+1}}(\varphi(\varepsilon))\geq F_{y_{n-1},y_n}(\varepsilon)$, so

$$F_{y_{n},y_{n-1}}\left(\alpha^{-1}\left(\frac{\varepsilon-\alpha(\varepsilon)}{2}\right)\right) \geq F_{y_{n-1},y_{n-2}}\left(\alpha^{-2}\left(\frac{\varepsilon-\alpha(\varepsilon)}{2}\right)\right)$$

$$\vdots$$

$$\geq F_{y_{1},y_{0}}\left(\alpha^{-n}\left(\frac{\varepsilon-\alpha(\varepsilon)}{2}\right)\right). \tag{1}$$

Since $\lim_{n\to\infty} \alpha^{-n} \left(\frac{\varepsilon-\alpha(\varepsilon)}{2}\right) = \infty$, we have $\lim_{n\to\infty} F_{y_1,y_0} \left(\alpha^{-n} \left(\frac{\varepsilon-\alpha(\varepsilon)}{2}\right)\right) = 1$, and hence (1) shows that $\lim_{n\to\infty} F_{y_n,y_{n-1}} \left(\alpha^{-1} \left(\frac{\varepsilon-\alpha(\varepsilon)}{2}\right)\right) = 1$, which says that for any $\varepsilon > 0$ and $\lambda \in (0,1)$ there is $N \in \mathbb{N}$ such that

$$F_{y_n,y_{n-1}}\left(\alpha^{-1}\left(\frac{\varepsilon-\alpha(\varepsilon)}{2}\right)\right) > 1-\lambda \quad \text{whenever } n \ge N$$
 (2)

///

We now prove by induction that for $n \geq N$ and $m \in \mathbb{N}$,

$$F_{y_n,y_{n+m}}(\varepsilon) > 1 - \lambda \tag{3}$$

When m = 1, it follows from (2) that

$$F_{y_{n},y_{n+1}}(\varepsilon) \ge F_{y_{n-1},y_{n}}(\alpha^{-1}\varepsilon) \ge F_{y_{n-1},y_{n}}\left(\alpha^{-1}\left(\frac{\varepsilon - \alpha(\varepsilon)}{2}\right)\right) > 1 - \lambda, \quad \forall n > N.$$

Suppose (3) holds for any $n \geq N$ and for any m = 1, 2, ..., r. Then when m = r + 1, we have for all $n \in \mathbb{N}$ that

$$\begin{split} &F_{y_{n},y_{n+r+1}}(\varepsilon) \\ &\geq \min \left\{ F_{y_{n},y_{n+1}} \left(\frac{\varepsilon - \alpha(\varepsilon)}{2} \right), F_{y_{n+1},y_{n+r+1}} \left(\frac{\varepsilon + \alpha(\varepsilon)}{2} \right) \right\} \\ &\geq \min \left\{ F_{y_{n-1},y_{n}} \left(\alpha^{-1} \left(\frac{\varepsilon - \alpha(\varepsilon)}{2} \right) \right), F_{y_{n+1},y_{n+r+1}} \left(\frac{\varepsilon + \alpha(\varepsilon)}{2} \right) \right\} \\ &\geq \min \left\{ 1 - \lambda, \min \left\{ F_{y_{n+1},y_{n+2}} \left(\frac{\varepsilon - \alpha(\varepsilon)}{2} \right), F_{y_{n+2},y_{n+r+1}} \left(\alpha(\varepsilon) \right) \right\} \right\} \\ &\geq \min \left\{ 1 - \lambda, \min \left\{ F_{y_{n},y_{n+1}} \left(\alpha^{-1} \left(\frac{\varepsilon - \alpha(\varepsilon)}{2} \right) \right), F_{y_{n+1},y_{n+r}} (\varepsilon) \right\} \right\} \\ &\geq \min \left\{ 1 - \lambda, \min \left\{ 1 - \lambda, F_{y_{n+1},y_{n+r}} (\varepsilon) \right\} \right\} \\ &= \min \left\{ 1 - \lambda, F_{y_{n+1},y_{(n+1)+(r-1)}} (\varepsilon) \right\} \\ &\geq \min \left\{ 1 - \lambda, 1 - \lambda \right\} \quad \text{by induction hypothesis} \\ &= 1 - \lambda. \end{split}$$

Therefore $\{y_n\}$ is a Cauchy sequence in X.

The following Lemma 2.2 is well-known, cf. [2].

Lemma 2.2. Suppose (X, \mathcal{F}) is a PM-space and $\alpha : [0, \infty) \to [0, \infty)$ is strictly increasing and satisfies $\alpha(0) = 0$ and $\alpha(t) < t$ for all t > 0. If x, y are two members in X such that

$$F_{x,y}(\alpha(\varepsilon)) \geq F_{x,y}(\varepsilon)$$

for all $\varepsilon > 0$, then x = y.

The commutative notion was first generalized by Sessa [10] in the following way:

Two selfmaps f, g on a metric space (X, d) are said to be weakly commutative if $d(fgx, gfx) \leq d(fx, gx)$ for all $x \in X$.

Later Jungck [4] made a further generalization:

Two selfmaps f, g on a metric space (X, d) are said to be compatible if whenever $\{x_n\}$ is a sequence in X such that both $\{fx_n\}$ and $\{gx_n\}$ are convergent to a same point x in X then $d(fgx_n, gfx_n) \to 0$.

The counterpart of the compatibility in a PM-space is the following

Definition 2.3. Two selfmaps S,A on a PM-space (X,\mathcal{F}) are compatible if $\lim_{n\to\infty} F_{SAx_n,ASx_n}(\varepsilon) = 1$ for all $\varepsilon > 0$ whenever $\{x_n\}$ is a sequence in X such that $\{Ax_n\}$ and $\{Sx_n\}$ are convergent to some point x in X.

By taking $x_n = x$ for all n it follows from the compatibility of A and S that ASx = SAx if Ax = Sx.

We are now in a position to prove our main result.

Theorem 2.4. Suppose (X, \mathcal{F}, \min) is a complete Menger space and $S, T, A, B : X \to X$ are four selfmaps on X satisfying the following conditions:

- (i) $SX \subseteq BX$ and $TX \subseteq AX$;
- (ii) (S, A) and (T, B) are compatible pairs;
- (iii) one of S, T, A, B is continuous;
- (iv) there exists an upper semicontinuous function $\varphi:[0,\infty)\to[0,\infty)$ with $\varphi(0)=0$ and $\varphi(t)< t$ for all t>0 such that

$$\left(F_{Sx,Ty}\left(\varphi(\varepsilon)\right)\right)^{2} \geq \min\left\{F_{Ax,Sx}(\varepsilon)F_{By,Ty}(\varepsilon), F_{Ax,Ty}(2\varepsilon)F_{By,Sx}(2\varepsilon), F_{Ax,Ty}(\varepsilon)F_{By,Ty}(\varepsilon)\right\}$$

for all x, y in X and $\varepsilon > 0$.

Then S, T, A and B have a unique common fixed point.

Proof. In view of condition (iv) and the remark at the begining of this section, we may assume that φ is a strictly increasing continuous function with $\varphi(0) = 0$ and $\varphi(t) < t$ for t > 0. Fix an $x_0 \in X$ and define a sequence $\{y_n\}$ recursively by

$$\begin{cases} y_{2n} = Sx_{2n} = Bx_{2n+1} \\ y_{2n+1} = Tx_{2n+1} = Ax_{2n+2}, \end{cases} n \in \mathbb{N} \cup \{0\}.$$

We shall prove that for any $n \in \mathbb{N}$ and $\varepsilon > 0$

$$F_{y_{2n+1},y_{2n+2}}(\varphi(\varepsilon)) \ge F_{y_{2n},y_{2n+1}}(\varepsilon). \tag{1}$$

Suppose (1) is not true. Then there exist $n \in \mathbb{N}$ and $\varepsilon > 0$ such that

$$F_{y_{2n+1},y_{2n+2}}(\varphi(\varepsilon)) < F_{y_{2n},y_{2n+1}}(\varepsilon). \tag{2}$$

It follows from (iv) and (2) that

$$\begin{split} & \left(F_{y_{2n+1},y_{2n+2}}(\varphi(\varepsilon))\right)^{2} \\ = & \left(F_{Sx_{2n+2},Tx_{2n+1}}(\varphi(\varepsilon))\right)^{2} \\ \geq & \min \left\{F_{Ax_{2n+2},Sx_{2n+2}}(\varepsilon)F_{Bx_{2n+1},Tx_{2n+1}}(\varepsilon), \\ & F_{Ax_{2n+2},Tx_{2n+1}}(2\varepsilon)F_{Bx_{2n+1},Sx_{2n+2}}(2\varepsilon), \\ & F_{Ax_{2n+2},Sx_{2n+2}}(\varepsilon)F_{Ax_{2n+2},Tx_{2n+1}}(2\varepsilon), \\ & F_{Bx_{2n+1},Sx_{2n+2}}(\varepsilon)F_{Bx_{2n+1},Tx_{2n+1}}(\varepsilon)\right\} \\ = & \min \left\{F_{y_{2n+1},y_{2n+2}}(\varepsilon)F_{y_{2n},y_{2n+1}}(\varepsilon), F_{y_{2n+1},y_{2n+1}}(2\varepsilon)F_{y_{2n},y_{2n+2}}(2\varepsilon), \\ & F_{y_{2n+1},y_{2n+2}}(\varepsilon)F_{y_{2n+1},y_{2n+1}}(2\varepsilon), F_{y_{2n},y_{2n+2}}(2\varepsilon)F_{y_{2n},y_{2n+1}}(\varepsilon)\right\} \\ \geq & \min \left\{F_{y_{2n+1},y_{2n+2}}(\varphi(\varepsilon))F_{y_{2n},y_{2n+1}}(\varepsilon), F_{y_{2n},y_{2n+2}}(2\varepsilon), \\ & F_{y_{2n+1},y_{2n+2}}(\varphi(\varepsilon)), F_{y_{2n},y_{2n+2}}(2\varepsilon)F_{y_{2n},y_{2n+1}}(\varepsilon)\right\}, \quad \text{since } \varphi(\varepsilon) < \varepsilon \\ & \text{and } F \text{ is nondecreasing,} \\ \geq & \min \left\{F_{y_{2n+1},y_{2n+2}}(\varphi(\varepsilon))F_{y_{2n},y_{2n+1}}(\varepsilon), \min \left\{F_{y_{2n},y_{2n+1}}(\varepsilon), F_{y_{2n+1},y_{2n+2}}(\varepsilon)\right\}F_{y_{2n},y_{2n+1}}(\varepsilon)\right\}, \\ & F_{y_{2n+1},y_{2n+2}}(\varphi(\varepsilon)), \min \left\{F_{y_{2n},y_{2n+1}}(\varepsilon), F_{y_{2n+1},y_{2n+2}}(\varepsilon)\right\}F_{y_{2n},y_{2n+1}}(\varepsilon)\right\}. \end{aligned}$$

Now, note that

$$\begin{cases} (a) \, F_{y_{2n+1},y_{2n+2}} \big(\varphi(\varepsilon) \big) F_{y_{2n},y_{2n+1}} (\varepsilon) > \Big(F_{y_{2n+1},y_{2n+2}} \big(\varphi(\varepsilon) \big) \Big)^2 \\ (b) \, \min \Big\{ F_{y_{2n},y_{2n+1}} (\varepsilon), F_{y_{2n+1},y_{2n+2}} (\varepsilon) \Big\} \geq F_{y_{2n+1},y_{2n+2}} \big(\varphi(\varepsilon) \big), \\ (c) \, \min \Big\{ F_{y_{2n},y_{2n+1}} (\varepsilon), F_{y_{2n+1},y_{2n+2}} (\varepsilon) \Big\} F_{y_{2n},y_{2n+1}} (\varepsilon) \\ \geq F_{y_{2n+1},y_{2n+2}} \big(\varphi(\varepsilon) \big) F_{y_{2n},y_{2n+1}} (\varepsilon) \\ > \Big(F_{y_{2n+1},y_{2n+2}} \big(\varphi(\varepsilon) \big) \Big)^2. \end{cases}$$

So we get from (3) that

$$\left(F_{y_{2\,n+1},y_{2\,n+2}}\left(\varphi(\varepsilon)\right)\right)^2 > \left(F_{y_{2\,n+1},y_{2\,n+2}}\left(\varphi(\varepsilon)\right)\right)^2, \quad \text{a contradiction}.$$

Therefore, (1) holds, for any $n \in \mathbb{N}$ and $\varepsilon > 0$. Using a similar argument we obtain that for any $n \in \mathbb{N}$ and $\varepsilon > 0$

$$F_{y_{2n},y_{2n+1}}\left(\varphi(\varepsilon)\right) \ge F_{y_{2n-1},y_{2n}}(\varepsilon). \tag{4}$$

Thus putting (1) and (4) together, we see that $F_{y_n,y_{n+1}}(\varphi(\varepsilon)) \geq F_{y_{n-1},y_n}(\varepsilon)$ for any $n \in \mathbb{N}$ and $\varepsilon > 0$, and hence by Lemma 2.1 $\{y_n\}$ is a Cauchy sequence in X. Since X is complete, there exists z in X such that

$$\begin{cases}
Sx_{2n} \longrightarrow z \\
Bx_{2n+1} \longrightarrow z \\
Tx_{2n+1} \longrightarrow z
\end{cases} \text{ as } n \to \infty.$$

Now, suppose A is continuous. Then

$$A^2x_{2n} \to Az \text{ and } ASx_{2n} \to Az \text{ as } n \to \infty.$$
 (5)

Since both of $\{Ax_{2n}\}$ and $\{Sx_{2n}\}$ are convergent to z, the compatibility of A and S implies that $\lim_{n\to\infty} F_{ASx_{2n},SAx_{2n}}(\varepsilon) = 1$. This in conjunction with (5) and the inequality

$$F_{SAx_{2n},Az}(\varepsilon) \ge \min \left\{ F_{SAx_{2n},ASx_{2n}}\left(\frac{\varepsilon}{2}\right), F_{ASx_{2n},Az}\left(\frac{\varepsilon}{2}\right) \right\}$$

shows that $SAx_{2n} \to Az$ as $n \to \infty$. Let $E = \{\varepsilon > 0 : F_{Az,z} \text{ is continuous at } \varepsilon\}$. Since $F_{Az,z}$ is nondecreasing, it can be discontinuous at only denumerably many points. We now show that $F_{Az,z}(\varepsilon) \geq F_{Az,z}(\varphi^{-1}(\varepsilon))$ for any $\varepsilon \in E$. By (iv).

$$\left(F_{SAx_{2n},Tx_{2n+1}}(\varepsilon)\right)^{2} \geq \min\left\{F_{A^{2}x_{2n},SAx_{2n}}(\varphi^{-1}(\varepsilon))F_{Bx_{2n+1},Tx_{2n+1}}(\varphi^{-1}(\varepsilon)), F_{A^{2}x_{2n},Tx_{2n+1}}(2\varphi^{-1}(\varepsilon))F_{Bx_{2n+1},SAx_{2n}}(2\varphi^{-1}(\varepsilon)), F_{A^{2}x_{2n},SAx_{2n}}(\varphi^{-1}(\varepsilon))F_{A^{2}x_{2n},Tx_{2n+1}}(2\varphi^{-1}(\varepsilon)), F_{Bx_{2n+1},SAx_{2n}}(2\varphi^{-1}(\varepsilon))F_{Bx_{2n+1},Tx_{2n+1}}(\varphi^{-1}(\varepsilon))\right\}.$$
(6)

It is easy to see that we can choose a subsequence $\{n_j\}$ of natural numbers such that all the limits in (6) exist as $j \to \infty$ and satisfy

$$\lim_{j\to\infty} \left(F_{SAx_{2n_{j}},Tx_{2n_{j}+1}}(\varepsilon)\right)^{2}$$

$$\geq \min\left\{\lim_{j\to\infty} \left(F_{A^{2}x_{2n_{j}},SAx_{2n_{j}}}(\varphi^{-1}(\varepsilon))F_{Bx_{2n_{j}+1},Tx_{2n_{j}+1}}(\varphi^{-1}(\varepsilon))\right),\right.$$

$$\lim_{j\to\infty} \left(F_{A^{2}x_{2n_{j}},Tx_{2n_{j}+1}}(2\varphi^{-1}(\varepsilon))F_{Bx_{2n_{j}+1},SAx_{2n_{j}}}(2\varphi^{-1}(\varepsilon))\right),\right.$$

$$\lim_{j\to\infty} \left(F_{A^{2}x_{2n_{j}},SAx_{2n_{j}}}(\varphi^{-1}(\varepsilon))F_{A^{2}x_{2n_{j}},Tx_{2n_{j}+1}}(2\varphi^{-1}(\varepsilon))\right),\right.$$

$$\lim_{j\to\infty} \left(F_{Bx_{2n_{j}+1},SAx_{2n_{j}}}(2\varphi^{-1}(\varepsilon))F_{Bx_{2n_{j}+1},Tx_{2n_{j}+1}}(\varphi^{-1}(\varepsilon))\right)\right\}$$

$$\geq \min\left\{\lim_{n\to\infty} \left(F_{A^{2}x_{2n},SAx_{2n}}(\varphi^{-1}(\varepsilon))F_{Bx_{2n+1},Tx_{2n+1}}(\varphi^{-1}(\varepsilon))\right),\right.$$

$$\lim_{n\to\infty} \left(F_{A^{2}x_{2n},Tx_{2n+1}}(2\varphi^{-1}(\varepsilon))F_{Bx_{2n+1},SAx_{2n}}(2\varphi^{-1}(\varepsilon))\right),\right.$$

$$\lim_{n\to\infty} \left(F_{A^{2}x_{2n},SAx_{2n}}(\varphi^{-1}(\varepsilon))F_{A^{2}x_{2n},Tx_{2n+1}}(2\varphi^{-1}(\varepsilon))\right),\right.$$

$$\lim_{n\to\infty} \left(F_{Bx_{2n+1},SAx_{2n}}(2\varphi^{-1}(\varepsilon))F_{Bx_{2n+1},Tx_{2n+1}}(\varphi^{-1}(\varepsilon))\right)\right\}$$

$$\geq \min\left\{F_{Az,Az}(\varphi^{-1}(\varepsilon))F_{z,z}(\varphi^{-1}(\varepsilon)),F_{z,z}(2\varphi^{-1}(\varepsilon))F_{z,z}(2\varphi^{-1}(\varepsilon)),F_{z,z}(2\varphi^{-1}(\varepsilon))\right\}$$

$$\geq \left(F_{Az,z}(\varphi^{-1}(\varepsilon))\right)^{2},\right.$$

where the penultimate inequality follows from Lemma 1.1.

Also, since $\varepsilon \in E$, it follows from Lemma 1.1 that $\lim_{n \to \infty} F_{SAx_{2n}, Tx_{2n+1}}(\varepsilon) = F_{Az,z}(\varepsilon)$, which in conjunction with (7) shows that

$$F_{Az,z}(\varepsilon) \ge F_{Az,z}(\varphi^{-1}(\varepsilon)) \quad \text{for } \varepsilon \in E.$$
 (8)

To conclude that Az = z we must show that $F_{Az,z}(\varepsilon) = 1$ for any $\varepsilon > 0$. For this, let ε be any member in E and put $\varepsilon_1 = \varepsilon$. Then we have

$$\varepsilon_1 < \varphi^{-1}(\varepsilon_1) < \varphi^{-2}(\varepsilon_1) < \dots < \varphi^{-n}(\varepsilon_1) < \dots$$
, and $\lim_{n \to \infty} \varphi^{-n}(\varepsilon_1) = \infty$. (9)

Let $\eta > 0$ be any given positive number. Since $F_{Az,z}$ is left continuous at $\varphi^{-2}(\varepsilon_1)$, there is $\delta > 0$ such that

$$F_{Az,z}(\varphi^{-2}(\varepsilon_1)) \le F_{Az,z}(\omega) + \frac{\eta}{2}$$
(10)

for all $\omega \in (\varphi^{-2}(\varepsilon_1) - \delta, \varphi^{-2}(\varepsilon_1))$. By the continuity of φ^{-1} at $\varphi^{-1}(\varepsilon_1)$, we can choose $\varepsilon_2 \in (\varepsilon_1, \varphi^{-1}(\varepsilon_1)) \cap E$ so that $\varphi^{-1}(\varepsilon_2) \in (\varphi^{-2}(\varepsilon_1) - \delta, \varphi^{-2}(\varepsilon_1))$, and hence with the aid of (10)

$$F_{Az,z}(\varphi^{-1}(\varepsilon_2)) \ge F_{Az,z}(\varphi^{-2}(\varepsilon_1)) - \frac{\eta}{2}. \tag{11}$$

By induction, for any $n \in \mathbb{N}$ we can choose $\varepsilon_{n+1} \in E$ so that

$$\varphi^{-n+1}(\varepsilon_1) < \varepsilon_{n+1} < \varphi^{-n}(\varepsilon_1), \text{ and}$$

$$F_{Az,z}(\varphi^{-1}(\varepsilon_{n+1})) \ge F_{Az,z}(\varphi^{-(n+1)}(\varepsilon_1)) - \frac{\eta}{2^n}$$
(12)

So we have

$$F_{Az,z}(\varepsilon) = F_{Az,z}(\varepsilon_{1})$$

$$\geq F_{Az,z}(\varphi^{-1}(\varepsilon_{1}))$$

$$\geq F_{Az,z}(\varepsilon_{2})$$

$$\geq F_{Az,z}(\varphi^{-1}(\varepsilon_{2})), \quad \text{since } \varepsilon_{2} \in E$$

$$\geq F_{Az,z}(\varphi^{-2}(\varepsilon_{1})) - \frac{\eta}{2} \quad \text{by (11)}$$

$$\geq F_{Az,z}(\varepsilon_{3}) - \frac{\eta}{2}$$

$$\geq F_{Az,z}(\varphi^{-1}(\varepsilon_{3})) - \frac{\eta}{2}$$

$$\geq F_{Az,z}(\varphi^{-3}(\varepsilon_{1})) - \frac{\eta}{2^{2}} - \frac{\eta}{2}$$

$$\vdots$$

$$\geq F_{Az,z}(\varphi^{-n}(\varepsilon_{1})) - (\frac{\eta}{2^{n-1}} + \frac{\eta}{2^{n-2}} + \cdots \frac{\eta}{2})$$

$$= F_{Az,z}(\varphi^{-n}(\varepsilon_{1})) - \eta(1 - \frac{1}{2^{n-1}}), \quad \forall n \in \mathbb{N}.$$

Letting $n \to \infty$ in (13) and noting $\lim_{n \to \infty} \varphi^{-n}(\varepsilon_1) = \infty$, we obtain that

$$F_{Az,z}(\varepsilon) \ge 1 - \eta$$
 for any $\eta > 0$.

Since $\eta > 0$ is arbitrary, we conclude that $F_{Az,z}(\varepsilon) = 1$ for any $\varepsilon \in E$. Since E is dense in $(0,\infty)$ and $F_{Az,z}$ is left continuous on $(0,\infty)$, we see that $F_{Az,z}(\varepsilon) = 1$ for all $\varepsilon > 0$, and so Az = z. As for Sz = z, using $(F_{Sz,z}(\varepsilon))^2 = \lim_{n \to \infty} (F_{Sz,Tx_{2n+1}}(\varepsilon))^2$ and (iv), we can just follow as before to obtain $F_{Sz,z}(\varepsilon) \geq F_{Sz,z}(\varphi^{-1}(\varepsilon))$ for any $\varepsilon > 0$ where $F_{Sz,z}$ is continuous. Then in a similar argument as before, we conclude $F_{Sz,z}(\varepsilon) = 1 \ \forall \varepsilon > 0$, and so Sz = z. Since $SX \subseteq BX$, there exists y in X such that By = Sz = z. So for any $\varepsilon > 0$

$$\begin{split} \left(F_{z,Ty}\big(\varphi(\varepsilon)\big)\right)^2 &= \left(F_{Sz,Ty}\big(\varphi(\varepsilon)\big)\right)^2 \\ &\geq \min\left\{F_{Az,Sz}(\varepsilon)F_{By,Ty}(\varepsilon), F_{Az,Ty}(2\varepsilon)F_{By,Sz}(2\varepsilon), \\ &F_{Az,Sz}(\varepsilon)F_{Az,Ty}(2\varepsilon), F_{By,Sz}(2\varepsilon)F_{By,Ty}(\varepsilon)\right\} \\ &= \min\left\{F_{z,Ty}(\varepsilon), F_{z,Ty}(2\varepsilon)\right\} \\ &\geq \left(F_{z,Ty}(\varepsilon)\right)^2. \end{split}$$

Thus $F_{z,Ty}(\varphi(\varepsilon)) \geq F_{z,Ty}(\varepsilon)$, and hence Ty = z. Up to now we have shown that Sz = Az = z = By = Ty. We are now going to show that z is a common fixed point of S, T, A and B. Since T and B are compatible, we have BTy = TBy, that is , Bz = Tz. Therefore, for $\varepsilon > 0$, we have the following inequalities:

$$\begin{split} \left(F_{z,Tz}\big(\varphi(\varepsilon)\big)\right)^2 &= \left(F_{Sz,Tz}\big(\varphi(\varepsilon)\big)\right)^2 \\ &\geq \min\left\{F_{Az,Sz}(\varepsilon)F_{Bz,Tz}(\varepsilon), F_{Az,Tz}(2\varepsilon)F_{Bz,Sz}(2\varepsilon), \right. \\ &\left.F_{Az,Sz}(\varepsilon)F_{Az,Tz}(2\varepsilon), F_{Bz,Sz}(2\varepsilon)F_{Bz,Tz}(\varepsilon)\right\} \\ &= \min\left\{\left(F_{z,Tz}(2\varepsilon)\right)^2, F_{z,Tz}(2\varepsilon)\right\} \\ &\geq \left(F_{z,Tz}(\varepsilon)\right)^2. \end{split}$$

So Tz = z by Lemma 2.2. This completes the proof for z being the common fixed point of S, T, A and B provided that A is continuous. By symmetry, if B is continuous, we can prove that S, T, A and B have a common fixed point in a similar way.

Next, assume that S is continuous. Then $\widehat{S}Ax_{2n} \to Sz$ and $S\widehat{B}x_{2n+1} \to Sz$ as $n \to \infty$, and, since S and A are compatible and both of $\{Ax_{2n}\}$ and $\{Sx_{2n}\}$ are convergent to z, $\lim_{n\to\infty} F_{ASx_{2n},SAx_{2n}}(\varepsilon) = 1$ for $\varepsilon > 0$. Noting that for $\varepsilon > 0$ $F_{ASx_{2n},Sz}(\varepsilon) \ge \min\{F_{ASx_{2n},SAx_{2n}}(\frac{\varepsilon}{2}),F_{SAx_{2n},Sz}(\frac{\varepsilon}{2})\}$ and both of $\{F_{ASx_{2n},SAx_{2n}}(\frac{\varepsilon}{2})\}$ and $\{F_{SAx_{2n},Sz}(\frac{\varepsilon}{2})\}$ are convergent to 1, we see that $\lim_{n\to\infty} F_{ASx_{2n},Sz}(\varepsilon) = 1$ for all $\varepsilon > 0$, and so $\lim_{n\to\infty} ASx_{2n} = Sz$. In the inequality

$$\begin{split} \left(F_{SBx_{2n+1},Tx_{2n+1}}(\varepsilon)\right)^{2} \geq \min \Big\{F_{ABx_{2n+1},SBx_{2n+1}}(\varphi^{-1}(\varepsilon))F_{Bx_{2n+1},Tx_{2n+1}}(\varphi^{-1}(\varepsilon)), \\ F_{ABx_{2n+1},Tx_{2n+1}}(2\varphi^{-1}(\varepsilon))F_{Bx_{2n+1},SBx_{2n+1}}(2\varphi^{-1}(\varepsilon)), \\ F_{ABx_{2n+1},SBx_{2n+1}}(\varphi^{-1}(\varepsilon))F_{ABx_{2n+1},Tx_{2n+1}}(2\varphi^{-1}(\varepsilon)), \\ F_{Bx_{2n+1},SBx_{2n+1}}(2\varphi^{-1}(\varepsilon))F_{Bx_{2n+1},Tx_{2n+1}}(\varphi^{-1}(\varepsilon))\Big\}, \end{split}$$

we can imitate the procedure for the case that A is continuous to show that $F_{Sz,z}(\varepsilon) \ge F_{Sz,z}(\varphi^{-1}(\varepsilon))$ for any $\varepsilon > 0$ where $F_{Sz,z}$ is continuous, and then show that $F_{Sz,z}(\varepsilon) = 1$ for

any $\varepsilon > 0$. So Sz = z. Since $SX \subseteq BX$, we can choose $y \in X$ such that By = Sz = z. Then for any $\varepsilon > 0$ and $n \in \mathbb{N}$ we have

$$\begin{split} \left(F_{SBx_{2\,n+1},Ty}(\varepsilon)\right)^{2} &\geq \min \Big\{F_{ABx_{2\,n+1},SBx_{2\,n+1}}(\varphi^{-1}(\varepsilon))F_{By,Ty}(\varphi^{-1}(\varepsilon)), \\ &F_{ABx_{2\,n+1},Ty}(2\varphi^{-1}(\varepsilon))F_{By,SBx_{2\,n+1}}(2\varphi^{-1}(\varepsilon)), \\ &F_{ABx_{2\,n+1},SBx_{2\,n+1}}(\varphi^{-1}\varepsilon)F_{ABx_{2\,n+1},Ty}(2\varphi^{-1}(\varepsilon)), \\ &F_{By,SBx_{2\,n+1}}(2\varphi^{-1}(\varepsilon))F_{By,Ty}(\varphi^{-1}(\varepsilon))\Big\} \\ &= \min \Big\{F_{ASx_{2\,n},S^{2}x_{2\,n}}(\varphi^{-1}(\varepsilon))F_{z,Ty}(\varphi^{-1}(\varepsilon)), \\ &F_{ASx_{2\,n},Ty}(2\varphi^{-1}(\varepsilon))F_{z,S^{2}x_{2\,n}}(2\varphi^{-1}(\varepsilon)), \\ &F_{ASx_{2\,n},S^{2}x_{2\,n}}(\varphi^{-1}(\varepsilon))F_{ASx_{2\,n},Ty}(2\varphi^{-1}(\varepsilon)), \\ &F_{z,S^{2}x_{2\,n}}(2\varphi^{-1}(\varepsilon))F_{z,Ty}(\varphi^{-1}(\varepsilon))\Big\}. \end{split}$$

As the case that A is continuous, we can take limit via a suitable subsequence $\{n_j\}$ of natural numbers to get

$$\left(F_{z,Ty}\varphi(\varepsilon)\right)^{2} \geq \min\left\{F_{z,Ty}(\varphi^{-1}(\varepsilon)), F_{z,Ty}(2\varphi^{-1}(\varepsilon))\right\}
\geq \left(F_{z,Ty}(\varphi^{-1}(\varepsilon))\right)^{2}, \text{ for any } \varepsilon > 0 \text{ where } F_{z,Ty} \text{ is continuous.}$$

Thus Ty=z. In summary we have shown that By=Ty=Sz=z. Now, since $TX\subseteq AX$, there exists $x\in X$ such that z=Sz=By=Ty=Ax. Then we get Ax=Sx from the following inequalities:

$$\begin{split} \left(F_{Sx,Ax}\big(\varphi(\varepsilon)\big)\right)^2 &= \Big(F_{Sx,Ty}\big(\varphi(\varepsilon)\big)\Big)^2 \\ &\geq \min\Big\{F_{Ax,Sx}(\varepsilon)F_{By,Ty}(\varepsilon), F_{Ax,Ty}(2\varepsilon)F_{By,Sx}(2\varepsilon), \\ &F_{Ax,Sx}(\varepsilon)F_{Ax,Ty}(2\varepsilon), F_{By,Sx}(2\varepsilon)F_{By,Ty}(\varepsilon)\Big\} \\ &= \min\Big\{F_{Ax,Sx}(\varepsilon), F_{Ax,Sx}(2\varepsilon)\Big\} \\ &\geq \Big(F_{Ax,Sx}(\varepsilon)\Big)^2 \quad \text{for any } \varepsilon > 0. \end{split}$$

Let $\xi = Ax = Sx = Ty = By$. Since S and A are compatible and since Ax = Sx, we get ASx = SAx, that is, $A\xi = S\xi$. Then for any $\varepsilon > 0$,

$$\begin{split} \left(F_{S\xi,\xi}\big(\varphi(\varepsilon)\big)\right)^2 &= \left(F_{S\xi,Ty}\big(\varphi(\varepsilon)\big)\right)^2 \\ &\geq \min\left\{F_{A\xi,S\xi}(\varepsilon)F_{By,Ty}(\varepsilon), F_{A\xi,Ty}(2\varepsilon)F_{By,S\xi}(2\varepsilon), \right. \\ &\left.F_{A\xi,S\xi}(\varepsilon)F_{A\xi,Ty}(2\varepsilon), F_{By,S\xi}(2\varepsilon)F_{By,Ty}(\varepsilon)\right\} \\ &= \min\left\{\left(F_{S\xi,\xi}(2\varepsilon)\right)^2, F_{S\xi,\xi}(2\varepsilon)\right\} \\ &\geq \left(F_{S\xi,\xi}(\varepsilon)\right)^2, \end{split}$$

which implies that $S\xi = \xi = A\xi$. Next, choose $v \in X$ such that $Bv = S\xi = \xi$. Then

$$\begin{split} \left(F_{\xi,Tv}\left(\varphi(\varepsilon)\right)\right)^2 &= \left(F_{S\xi,Tv}\left(\varphi(\varepsilon)\right)\right)^2 \\ &\geq \min\left\{F_{A\xi,S\xi}(\varepsilon)F_{Bv,Tv}(\varepsilon), F_{A\xi,Tv}(2\varepsilon)F_{Bv,S\xi}(2\varepsilon), \right. \\ &\left.F_{A\xi,S\xi}(\varepsilon)F_{A\xi,Tv}(2\varepsilon), F_{Bv,S\xi}(2\varepsilon)F_{Bv,Tv}(\varepsilon)\right\} \\ &= \min\left\{F_{\xi,Tv}(\varepsilon), F_{\xi,Tv}(2\varepsilon)\right\} \\ &\geq \left(F_{\xi,Tv}(\varepsilon)\right)^2 \quad \text{for any } \varepsilon > 0. \end{split}$$

Hence $Tv = \xi$. Since T and B are compatible and Tv = Bv, we have TBv = BTv, that is, $T\xi = B\xi$. Then we conclude that $T\xi = \xi$ from the following inequalities:

$$\begin{split} \left(F_{\xi,T\xi}(\varphi(\varepsilon))\right)^2 &= \left(F_{S\xi,T\xi}(\varphi(\varepsilon))\right)^2 \\ &\geq \min\left\{F_{A\xi,S\xi}(\varepsilon)F_{B\xi,T\xi}(\varepsilon), F_{A\xi,T\xi}(2\varepsilon)F_{B\xi,S\xi}(2\varepsilon), F_{A\xi,T\xi}(2\varepsilon)F_{B\xi,S\xi}(2\varepsilon), F_{B\xi,T\xi}(\varepsilon)\right\} \\ &= \min\left\{\left(F_{\xi,T\xi}(2\varepsilon)\right)^2, F_{\xi,T\xi}(2\varepsilon)\right\} \\ &\geq \left(F_{\xi,T\xi}(\varepsilon)\right)^2 \quad \forall \, \varepsilon > 0. \end{split}$$

Thus ξ is a common fixed point of S, T, A and B provided that S is continuous. By symmetry, if T is continuous we can prove that S, T, A and B have a common fixed point in a similar way. This completes the proof for the existence of common fixed points of S, T, A and B. It remains to show the uniqueness of the common fixed point. Assume g and g are two common fixed points of g, g, g and g. Since

$$\begin{split} \left(F_{y,z}\left(\varphi(\varepsilon)\right)\right)^2 &= \left(F_{Sy,Tz}\left(\varphi(\varepsilon)\right)\right)^2 \\ &\geq \min\left\{F_{Ay,Sy}(\varepsilon)F_{Bz,Tz}(\varepsilon), F_{Ay,Tz}(2\varepsilon)F_{Bz,Sy}(2\varepsilon), \\ &F_{Ay,Sy}(\varepsilon)F_{Ay,Tz}(2\varepsilon), F_{Bz,Sy}(2\varepsilon)F_{Bz,Tz}(\varepsilon)\right\} \\ &= \min\left\{\left(F_{y,z}(2\varepsilon)\right)^2, F_{y,z}(2\varepsilon)\right\} \\ &\geq \left(F_{y,z}(\varepsilon)\right)^2 \quad \text{for all } \varepsilon > 0, \end{split}$$

we conclude that y = z by virtue of Lemma 2.2.

3. Connection with Metric Spaces. Every metric space (M,d) is a Menger space (M,\mathcal{F},\min) , where the mapping $\mathcal{F}(x,y)=F_{x,y}$ is defined by $F_{x,y}(\varepsilon)=H(\varepsilon-d(x,y))$, and H is the distribution function defined by

///

$$H(\varepsilon) = \begin{cases} 0, & \text{if } \varepsilon \leq 0, \\ 1, & \text{if } \varepsilon > 0. \end{cases}$$

The space (M, \mathcal{F}, \min) is called the induced Menger space.

Lemma 3.1. Suppose (M, \mathcal{F}, \min) is the induced complete Menger space associated with the complete metric space (M,d) and $\varphi:[0,\infty)\to[0,\infty)$ is an upper semicontinuous function satisfying that $\varphi(0)=0$ and $\varphi(t)< t$ for each t>0. If $S,T,A,B:X\to X$ are four selfmaps on M then the following two statements are equivalent:

(i) For x, y in M and $\varepsilon > 0$, if $\varphi(\varepsilon) \le d(Sx, Ty)$ then either $\varepsilon \le \max\{d(Ax, Sx), d(By, Ty)\}$ or $2\varepsilon \le \max\{d(Ax, Ty), d(By, Sx)\}$.

(ii)
$$\left(F_{Sx,Ty}\left(\varphi(\varepsilon)\right)\right)^2 \geq \min \left\{F_{Ax,Sx}(\varepsilon)F_{By,Ty}(\varepsilon), F_{Ax,Ty}(2\varepsilon)F_{By,Sx}(2\varepsilon), F_{Ax,Ty}(\varepsilon)F_{By,Sx}(2\varepsilon)F_{By,Ty}(\varepsilon)\right\}$$

for all x, y in M and $\varepsilon > 0$.

Proof. For simplicity put

$$\begin{cases} \alpha = F_{Ax,Sx}(\varepsilon) \\ \beta = F_{By,Ty}(\varepsilon) \\ \gamma = F_{Ax,Ty}(2\varepsilon) \\ \delta = F_{By,Sx}(2\varepsilon) \\ \omega = F_{Sx,Ty}(\varphi(\varepsilon)). \end{cases}$$

Then (ii) says that

$$\omega^2 \ge \min\{\alpha\beta, \gamma\delta, \alpha\gamma, \beta\delta\}$$

for all x, y in M and $\varepsilon > 0$.

Now, assume (i) holds and suppose x,y are any two points in M and ε is any positive number. Then either $\varphi(\varepsilon) > d(Sx,Ty)$ or $\varphi(\varepsilon) \le d(Sx,Ty)$. For the case that $\varphi(\varepsilon) > d(Sx,Ty)$ we have $\omega^2 = \left(H\big(\varphi(\varepsilon)-d(Sx,Ty)\big)\right)^2 = 1 \ge \min\{\alpha\beta,\gamma\delta,\alpha\gamma,\beta\delta\}$. On the other hand, if $\varphi(\varepsilon) \le d(Sx,Ty)$ then by (i) we have either $\varepsilon \le \max\{d(Ax,Sx),d(By,Ty)\}$ or $2\varepsilon \le \max\{d(Ax,Ty),d(By,Sx)\}$, and so we see that at least one of the following four inequalities

$$\begin{cases} (a) & \varepsilon \leq d(Ax, Sx) \\ (b) & \varepsilon \leq d(By, Ty) \\ (c) & 2\varepsilon \leq d(Ax, Ty) \\ (d) & 2\varepsilon \leq d(By, Sx) \end{cases}$$

occurs. Hence at least one of $\alpha, \beta, \gamma, \delta$ is zero. Consequently, $\omega^2 = 0 = \min\{\alpha\beta, \gamma\delta, \alpha\gamma, \beta\delta\}$. Thus (i) implies (ii).

Next, suppose (ii) holds. Let $\varepsilon > 0$ and x, y be any two points in M satisfying that $\varphi(\varepsilon) \le d(Sx, Ty)$. Then $\omega = H\big(\varphi(\varepsilon) - d(Sx, Ty)\big) = 0$, and so (ii) implies that $\min\{\alpha\beta, \gamma\delta, \alpha\gamma, \beta\delta\}$ = 0. Thus at least one of $\alpha, \beta, \gamma, \delta$ is zero, that is, at least one of (a), (b), (c), (d) in the previous paragraph holds. Therefore we have either $\varepsilon \le \max\{d(Ax, Sx), d(By, Ty)\}$ or $2\varepsilon \le \max\{d(Ax, Ty), d(By, Sx)\}$. So (ii) implies (i).

In view of Theorem 2.4 and Lemma 3.1 the following theorem follows immediately.

Theorem 3.2. Suppose (M, d) is a complete metric space and S, T, A, B are four self-maps on M satisfying the following conditions:

- (i) $SM \subseteq BM$ and $TM \subseteq AM$;
- (ii) (S, A) and (T, B) are compatible pairs;
- (iii) one of S, T, A, B is continuous;
- (iv) there exists an upper semicontinuous function $\varphi:[0,\infty)\to[0,\infty)$ with $\varphi(0)=0$ and $\varphi(t)< t$ for t>0 such that for $\varepsilon>0$ and x,y in M if $\varphi(\varepsilon)\leq d(Sx,Ty)$ then either $\varepsilon\leq \max\{d(Ax,Sx),d(By,Ty)\}$ or $2\varepsilon\leq \max\{d(Ax,Ty),d(By,Sx)\}$.

Then S, T, A and B have a unique common fixed point.

All notations are just as in Lemma 3.1. Assume that for any $\varepsilon > 0$ and for any x,y in M if $\varepsilon > \max\{d(Ax,Sx),d(By,Ty)\}$ then $\varphi(\varepsilon) > d(Sx,Ty)$. We now check that condition (ii) of Lemma 3.1 holds for any x,y in M and any $\varepsilon > 0$. Indeed, let x,y be any two points in M and ε be any positive number. In case $\varepsilon > \max\{d(Ax,Sx),d(By,Ty)\}$. Then we have $H(\varepsilon - d(Ax,Sx)) = 1 = H(\varepsilon - d(By,Ty))$ and $\varphi(\varepsilon) > d(Sx,Ty)$. So the following inequalities hold:

$$\begin{split} 2\varepsilon - d(Ax, Ty) &\geq 2\varepsilon - d(Ax, Sx) - d(Sx, Ty) \\ &\geq 2\varepsilon - \varepsilon - \varphi(\varepsilon) \\ &= \varepsilon - \varphi(\varepsilon) > 0. \end{split}$$

Thus $H(2\varepsilon - d(Ax, Ty)) = 1$. Similarly, $H(2\varepsilon - d(By, Sx)) = 1$. Hence,

$$\begin{split} \left(F_{Sx,Ty}\left(\varphi(\varepsilon)\right)\right)^2 &= 1 = \min\Big\{F_{Ax,Sx}(\varepsilon)F_{By,Ty}(\varepsilon), F_{Ax,Ty}(2\varepsilon)F_{By,Sx}(2\varepsilon), \\ &F_{Ax,Sx}(\varepsilon)F_{Ax,Ty}(2\varepsilon), F_{By,Sx}(2\varepsilon)F_{By,Ty}(\varepsilon)\Big\}. \end{split}$$

On the other hand, if $\varepsilon \leq \max\{d(Ax,Sx),d(By,Ty)\}$, then we

$$\left(F_{Sx,Ty}\left(\varphi(\varepsilon)\right)\right)^{2} \ge 0 = \min\left\{F_{Ax,Sx}(\varepsilon)F_{By,Ty}(\varepsilon), F_{Ax,Ty}(2\varepsilon)F_{By,Sx}(2\varepsilon), F_{Ax,Ty}(\varepsilon)F_{By,Ty}(\varepsilon)\right\}.$$

Therefore, the following corollary follows from Theorem 2.4.

Corollary 3.3. Except condition (iv) of Theorem 3.2 is replaced by

(iv)' For x, y in M and $\varepsilon > 0$ if $\varepsilon > \max\{d(Ax, Sx), d(By, Ty)\}$ then $\varphi(\varepsilon) > d(Sx, Ty)$, assume all assumptions are just as in Theorem 3.2. Then S, T, A, B have a unique common fixed point.

In the remainder of this section we give a concrete example for Corollary 3.3.

Example 3.4. Let M = [0,1] with the usual Euclidean distance d(x,y) = |x-y| and

let $A, B, S, T : [0,1] \rightarrow [0,1]$ be four functions defined by

$$Ax = \begin{cases} \frac{3}{4}x + \frac{1}{8}, & \text{if } 0 \le x \le \frac{1}{2} \\ \frac{1}{2}, & \text{if } \frac{1}{2} < x \le 1, \end{cases}$$

$$Bx = \begin{cases} \frac{1}{2}x + \frac{1}{4}, & \text{if } 0 \le x \le \frac{1}{2} \\ \frac{5}{8}, & \text{if } \frac{1}{2} < x \le 1, \end{cases}$$

$$Sx = \begin{cases} \frac{1}{4}x + \frac{3}{8}, & \text{if } 0 \le x \le \frac{1}{2} \\ \frac{1}{2}, & \text{if } \frac{1}{2} < x \le 1, \end{cases}$$

and

$$Tx = \begin{cases} \frac{1}{2}, & \text{if } 0 \le x \le \frac{1}{2} \\ \frac{3}{8}, & \text{if } \frac{1}{2} < x \le 1. \end{cases}$$

Then

- (i) $TM \subseteq AM$ and $SM \subseteq BM$,
- (ii) $d(ASx, SAx) = 0 \le d(Sx, Ax)$ for $0 \le x \le 1$; $d(TBx, BTx) = 0 \le d(Bx, Tx)$ for $0 \le x \le \frac{1}{2}$ and $d(TBx, BTx) = \frac{1}{16} < \frac{1}{4} = d(Tx, Bx)$ for $\frac{1}{2} < x \le 1$. So (A, S) and (B, T) are compatible pairs.
- (iii) A is continuous,

(iv)

$$d(Ax, Sx) = \begin{cases} \frac{1}{4} - \frac{1}{2}x, & \text{if } 0 \le x \le \frac{1}{2} \\ 0, & \text{if } \frac{1}{2} < x \le 1, \end{cases}$$

$$d(By, Ty) = \begin{cases} \frac{1}{4} - \frac{1}{2}y, & \text{if } 0 \le y \le \frac{1}{2} \\ \frac{1}{4}, & \text{if } \frac{1}{2} < y \le 1, \end{cases}$$

$$d(Ty, Sx) = \begin{cases} \frac{1}{8} - \frac{1}{4}x, & \text{if } 0 \le x \le \frac{1}{2}, \ 0 \le y \le \frac{1}{2} \\ \frac{1}{4}x, & \text{if } 0 \le x \le \frac{1}{2}, \ \frac{1}{2} < y \le 1 \end{cases}$$

$$0, & \text{if } \frac{1}{2} < x \le 1, \ 0 \le y \le \frac{1}{2}$$

$$\frac{1}{8}, & \text{if } \frac{1}{2} < x \le 1, \ \frac{1}{2} < y \le 1 \end{cases}$$

So if we put $\varphi:[0,\infty)\to [0,\infty): \varphi(x)=\frac{3}{4}x$, then it is easy to check that for $\varepsilon>0$ and x,y in M if $\varepsilon>\max\{d(Ax,Sx),d(By,Ty)\}$ then $\varphi(\epsilon)>d(Sx,Ty)$.

Thus the conditions in Corollary 3.3 are satisfied and in this case $\frac{1}{2}$ is the unique common fixed point of A, B, S and T.

4. A Generalization of Hadžić Fixed Point Theorem. In [3] the following fixed point theorem is proved.

Hadžić Fixed Point Theorem: Suppose $c \in [0,1)$ is a constant and (X, \mathcal{F}, t) is a complete Menger space with continuous t-norm t and f is a selfmap on X such that for each x in X there is $n(x) \in \mathbb{N}$ so that for all $y \in X$

$$F_{f^{n(x)}(x),f^{n(x)}(y)}(c\varepsilon) \ge F_{x,y}(\varepsilon)$$

for all $\varepsilon > 0$. If there is x_0 in X such that $\sup_{\varepsilon > 0} G_{x_0}(\varepsilon) = 1$, where $G_{x_0}(\varepsilon) = \inf \left\{ F_{f^k x_0, x_0}(\varepsilon) : k \in \mathbb{N} \right\}$, then f has a unique fixed point ξ and for any $x \in X$ $\lim_{n \to \infty} f^n(x) = \xi$.

In what follows we shall show that this theorem holds true if the constant $c \in [0,1)$ is replaced by an upper semicontinuous function $\varphi : [0,\infty) \to [0,\infty)$ such that $\varphi(0) = 0$ and $\varphi(t) < t$ for all t > 0. Actually we have the following theorem.

Theorem 4.1. Suppose (X, \mathcal{F}, t) is a complete Menger space with continuous t-norm t and f is a selfmap on X. If there is an upper semicontinuous function $\varphi: [0, \infty) \to [0, \infty)$ with $\varphi(0) = 0$ and $\varphi(t) < t$ for all t > 0 such that for each x in X there is $n(x) \in \mathbb{N}$ so that for all y in X $F_{f^{n(x)}(x),f^{n(x)}(y)}(\varphi(\varepsilon)) \geq F_{x,y}(\varepsilon)$ for all $\varepsilon > 0$ and if there exists a point x_0 in X such that $\sup_{\varepsilon > 0} G_{x_0}(\varepsilon) = 1$, where $G_{x_0}(\varepsilon) = \inf \left\{ F_{f^k(x_0),x_0}(\varepsilon) : k \in \mathbb{N} \right\}$, then f has a unique fixed point ξ in X and for any x in X $\lim_{n \to \infty} f^n(x) = \xi$.

Proof. Choose a continuous function $\alpha:[0,\infty)\to[0,\infty)$ such that

- (i) α is strictly increasing,
- (ii) $\alpha(0) = 0$, and
- (iii) $\varphi(t) \leq \alpha(t) < t$ for all t > 0.

Then for any $\varepsilon > 0$ we have

$$F_{f^{n(x)}(x),f^{n(x)}(y)}(\alpha(\varepsilon)) \ge F_{f^{n(x)}(x),f^{n(x)}(y)}(\varphi(\varepsilon)) \ge F_{x,y}(\varepsilon) \tag{1}$$

for all $y \in X$.

Define the sequence $\{x_n\}$ recursively in the following way:

$$x_n = f^{n(x_{n-1})}(x_{n-1}), \quad n \in \mathbb{N}.$$

Then for any $n, p \in \mathbb{N}$,

$$F_{x_{n+p},x_{n}}(\varepsilon) = F_{f^{n(x_{n+p-1})}f^{n(x_{n+p-2})} \dots f^{n(x_{n-1})}(x_{n-1}), f^{n(x_{n-1})}(x_{n-1})}(\varepsilon)$$

$$\geq F_{f^{n(x_{n+p-1})} \dots f^{n(x_{n})}(x_{n-1}), x_{n-1}}(\alpha^{-1}\varepsilon)$$

$$\vdots$$

$$\geq F_{f^{n(x_{n+p-1})} \dots f^{n(x_{n})}x_{0}, x_{0}}(\alpha^{-n}\varepsilon)$$

$$> G_{x_{0}}(\alpha^{-n}\varepsilon). \tag{2}$$

Since $\sup_{\varepsilon>0} G_{x_0}(\varepsilon)=1$, it follows from (2) that $\{x_n\}$ is a Cauchy sequence in X. Since X is complete, there is ξ in X such that $\lim_{n\to\infty} x_n=\xi$. Then in view of $F_{f^{n(\xi)}(x_n),f^{n(\xi)}(\xi)}(\varepsilon)\geq 0$

 $F_{x_n,\xi}(\alpha^{-1}\varepsilon)$ we see that $\lim_{n\to\infty}f^{n(\xi)}(x_n)=f^{n(\xi)}(\xi)$. Now

$$F_{f^{n(\varepsilon)}(\xi),\xi}(\varepsilon)$$

$$\geq t \Big\{ F_{f^{n(\varepsilon)}(\xi),f^{n(\varepsilon)}(x_n)}(\varepsilon - \alpha(\varepsilon)), F_{f^{n(\varepsilon)}(x_n),\xi}(\alpha(\varepsilon)) \Big\}$$

$$\geq t \Big\{ F_{\xi,x_n}(\alpha^{-1}(\varepsilon - \alpha(\varepsilon))), t \Big\{ F_{f^{n(\varepsilon)}(x_n),x_n}(\frac{\alpha(\varepsilon)}{2}), F_{x_n,\xi}(\frac{\alpha(\varepsilon)}{2}) \Big\} \Big\}$$

$$= t \Big\{ F_{\xi,x_n}(\alpha^{-1}(\varepsilon - \alpha(\varepsilon))), t \Big\{ F_{f^{n(x_{n-1})}(x_{n-1}),f^{n(x_{n-1})}f^{n(\varepsilon)}(x_{n-1})}(\frac{\alpha(\varepsilon)}{2}), F_{x_n,\xi}(\frac{\alpha(\varepsilon)}{2}) \Big\} \Big\}$$

$$\geq t \Big\{ F_{\xi,x_n}(\alpha^{-1}(\varepsilon - \alpha(\varepsilon))), t \Big\{ F_{x_{n-1},f^{n(\varepsilon)}(x_{n-1})}(\alpha^{-1}(\frac{\alpha(\varepsilon)}{2})), F_{x_n,\xi}(\frac{\alpha(\varepsilon)}{2}) \Big\} \Big\}$$

$$\vdots$$

$$\geq t \Big\{ F_{\xi,x_n}(\alpha^{-1}(\varepsilon - \alpha(\varepsilon))), t \Big\{ F_{x_0,f^{n(\xi)}(x_0)}(\alpha^{-n}(\frac{\alpha(\varepsilon)}{2})), F_{x_n,\xi}(\frac{\alpha(\varepsilon)}{2}) \Big\} \Big\}. \tag{3}$$

Noting that $\lim_{n\to\infty} F_{\xi,x_n}\left(\alpha^{-1}(\varepsilon-\alpha(\varepsilon))\right)=1$ and $\lim_{n\to\infty} F_{x_0,f^{n(\varepsilon)}(x_0)}\left(\alpha^{-n}\left(\frac{\alpha(\varepsilon)}{2}\right)\right)=1$ and $\lim_{n\to\infty} F_{x_n,\xi}\left(\frac{\alpha(\varepsilon)}{2}\right)=1$, it follows from (3) that $f^{n(\xi)}(\xi)=\xi$. We claim that ξ is the unique fixed point of $f^{n(\xi)}$. Suppose g is another fixed point of $f^{n(\xi)}$. Then, for any $\varepsilon>0$, $F_{\xi,y}(\varepsilon)=F_{f^{n(\xi)}\xi,f^{n(\xi)}y}(\varepsilon)\geq F_{\xi,y}(\alpha^{-1}\varepsilon)$, which by Lemma 2.2 implies that $\xi=y$. Now, since $f(\xi)=f\left(f^{n(\xi)}(\xi)\right)=f^{n(\xi)}(f(\xi))$, we see that $f(\xi)$ is a fixed point of $f^{n(\xi)}$. By the uniqueness of the fixed point of $f^{n(\xi)}$, we get that $f(\xi)=\xi$. For the uniqueness of the fixed point of f, assume g is another fixed point of g. Then for any g is another fixed point of g. Then for any g is another fixed point of g.

$$F_{\xi,y}(\varepsilon) = F_{f^{n(\xi)}(\xi),f^{n(\xi)}y}(\varepsilon)$$
$$\geq F_{\xi,y}(\alpha^{-1}\varepsilon),$$

which implies that $\xi = y$.

Finally, we show that for any x in X, $\lim_{n\to\infty}f^n(x)=\xi$. For any $m\in\mathbb{N}$ choose $k\in\mathbb{N}$ so that

$$kn(\xi) < m < (k+1)n(\xi)$$
.

Then, for any $\varepsilon > 0$,

$$F_{f^{m}(x),\xi}(\varepsilon) = F_{f^{m}(x),f^{n(\xi)}\xi}(\varepsilon)$$

$$\geq F_{f^{m-n(\xi)}(x),\xi}(\alpha^{-1}\varepsilon)$$

$$\vdots$$

$$\geq F_{f^{m-kn(\xi)}(x),\xi}(\alpha^{-k}\varepsilon)$$
(4)

Since $0 < m - kn(\xi) \le n(\xi)$ and each of $F_{f(x),\xi}(\alpha^{-k}\varepsilon)$, $F_{f^2(x),\xi}(\alpha^{-k}\varepsilon)$,... and $F_{f^{n(\xi)}x,\xi}(\alpha^{-k}\varepsilon)$ converges to 1 as $n \to \infty$, we obtain that $\lim_{m \to \infty} F_{f^{m-kn(\xi)}(x),\xi}(\alpha^{-k}\varepsilon) = 1$, and hence (4) gives us that $\lim_{m \to \infty} F_{f^m(x),\xi}(\varepsilon) = 1$ for any $\varepsilon > 0$. This means $\lim_{m \to \infty} f^m(x) = \xi$. ///

Acknowledgement. The authors would like to thank the referee for valuable comments and suggestions.

References

- 1. K.P. Chamola, Fixed points of mappings satisfying a new contraction condition in random normed spaces, Math. Japonica 33, (1988), 821-825.
- T.H. Chang, Common fixed point theorems in Menger spaces, Bull. Inst. Math. Acad. Sinica 22, (1994), 17-29.
- 3. O. Hadžić, Some theorems on the fixed points in probabilistic metric and random normed spaces, Bollettino U.M.I. (6) 1-B(1982), 381-391.
- G. Jungck, Compatible mappings and common fixed points, Internat. J. Math. & Math. Sci., 9, (1986), 771-779
- 5. K. Menger, Statistical metrics, Proc. Nat. Acad. Sci. U.S.A., 28(1942), 535-537.
- S.N. Mishra, Common fixed points of compatible maps in PM spaces, Math. Japonica, 36(1991), 283-289.
- 7. B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math. 10(1960), 313-334.
- 8. B. Schweizer and A. Sklar, *Probabilistic metric spaces*, North-Holland series in Probability and Applied Mathematics, 1983.
- 9. V.M. Sehgal and A.T. Bharucha-Reid, Fixed points of contraction mappings on probabilistic metric spaces, Math. System Theory 6(1972), 97-102.
- S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. Inst. Math. 32(1982), 149-153.
- 11. M. Stojaković, On some classes of contraction mappings, Math. Japonica 33 (1988), 311-318.

DEPARTMENT OF MATHEMATICS, NATIONAL CHENG KUNG UNIVERSITY, TAINAN, TAIWAN 70101, R.O.C.