Scientiae Mathematicae Vol. 1, No. 1(1998), 1–5

PARAMETRIC OPERATOR FUNCTION VIA FURUTA INEQUALITY

TAKAYUKI FURUTA

Dedicated to the memory of the late Professor Hiroyuki Kuroda with deep sorrow

Received July 20, 1995

ABSTRACT. We give a result related to parametric operator function on two parameters via Furuta inequality, which is an extension of recent Kamei's result [11].

1. Introduction. In what follows, a capital letter means a bounded linear operator on a Hilbert space H. An operator T is said to be positive (denoted by $T \ge 0$) if $(Tx, x) \ge 0$ for all $x \in H$. Also an operator T is strictly positive (denoted by T > 0) if T is positive and invertible. α -mean is defined by

$$A\sharp_{\alpha}B = A^{\frac{1}{2}} (A^{\frac{-1}{2}} B A^{\frac{-1}{2}})^{\alpha} A^{\frac{1}{2}}$$

for any $\alpha \in [0, 1]$ for positive operators A and B by [12]. Very recently, Professor E.Kamei [11] has obtained the following excellent results.

Theorem A [11]. If
$$A \ge B \ge 0$$
 with $A > 0$, then for each $t \le 0$ and $p \ge \delta_2 \ge \delta_1 \ge 1$,
 $(A^t \sharp_{\frac{\delta_2 - t}{2}} B^p)^{\frac{1}{\delta_2}} \ge (A^t \sharp_{\frac{\delta_1 - t}{2}} B^p)^{\frac{1}{\delta_1}}$,

that is, for each $t \leq 0$, $f(\delta) = (A^t \sharp_{\frac{\delta}{p-t}} B^p)^{\frac{1}{\delta}}$ is increasing for δ such that $p \geq \delta \geq 1$.

Theorem B [11]. If $A \ge B \ge 0$ with A > 0, then for each $t \le 0$ and $p \ge \delta \ge 1$,

$$A \ge B \ge (A^t \sharp_{\frac{\delta-t}{p-t}} B^p)^{\frac{1}{\delta}} \ge A^t \sharp_{\frac{1-t}{p-t}} B^p$$

2. Parametric operator function. Theorem A is related to an operator function on one parameter δ , here we show Theorem 1 related to parametric operator function on two parameters r and s as an extension of Theorem A.

Theorem 1. If $A \ge B \ge 0$ with A > 0, then for each $t \le 0$ and $p \ge 1$,

$$F_{p,t}(A,B,r,s) = A^{\frac{-r}{2}} \{ A^{\frac{r}{2}} (A^{\frac{-t}{2}} B^p A^{\frac{-t}{2}})^s A^{\frac{r}{2}} \}^{\frac{1-t+r}{(p-t)s+r}} A^{\frac{-r}{2}}$$

is increasing for s such that $1 \ge s \ge \frac{1-t}{p-t}$ and decreasing for r such that $0 \ge r \ge t$.

Corollary 2 can be considered as a precise estimation of Theorem B.

Corollary 2. If $A \ge B \ge 0$ with A > 0, then for each $t \le 0$ and $p \ge 1$,

$$A \ge B \ge (A^t \sharp_s B^p)^{\frac{1}{(p-t)s+t}}$$
$$\ge A^{r-t} \sharp_{\frac{1-t+r}{(p-t)s+r}} (A^t \sharp_s B^p) \ge A^t \sharp_{\frac{1-t}{p-t}} B^p$$

holds for $0 \ge r \ge t$ and $1 \ge s \ge \frac{1-t}{p-t}$.

¹⁹⁹¹ Mathematics Subject Classification. Primary 47A63.

Key words and phrases. Positive operator, Löwner-Heinz inequality, Furuta inequality.

T. FURUTA

3. Proofs of the results. We cite the following results to give a proof of Theorem 1.

Theorem F ensures the famous Löwner-Heinz inequality when we put r = 0 in (i) or (ii) of Theorem F; $A \ge B \ge 0$ ensures $A^{\alpha} \ge B^{\alpha}$ for any $\alpha \in [0, 1]$. Alternative proofs of Theorem F are given [2][10] and one page proof is in [6]. It is shown in [13] that the domain drawn for $p \ q$ and r in Fugure is the best possible one for (i) and (ii) of Theorem F.

Lemma 1.[9] Let A be invertible operator and let B be positive invertible operator. For any real number λ ,

$$(ABA^*)^{\lambda} = AB^{\frac{1}{2}}(B^{\frac{1}{2}}A^*AB^{\frac{1}{2}})^{\lambda-1}B^{\frac{1}{2}}A^*.$$

Lemma 2. [3][7][8] If $A \ge B \ge 0$, then for a fixed $q \ge 0$ and $t \le 0$,

$$F_q(p) = (A^{\frac{-t}{2}} B^p A^{\frac{-t}{2}})^{\frac{q-t}{p-t}}$$

is decreasing for $p \ge q$.

Proof of Theorem 1.

- (a) Proof of the result that $F_{p,t}(A, B, r, s)$ is increasing for s.
- $A \ge B \ge 0$ ensures the following (1) for $p \ge q \ge 1$ and $t \le 0$

(1)
$$A^{\frac{-t}{2}}B^{q}A^{\frac{-t}{2}} \ge \left(A^{\frac{-t}{2}}B^{p}A^{\frac{-t}{2}}\right)^{\frac{q-t}{p-t}} \text{ by Lemma 2}$$

Multiplying $A^{\frac{r}{2}}$ on both sides of (1), we have

(2)
$$A^{\frac{r-t}{2}}B^{q}A^{\frac{r-t}{2}} \ge A^{\frac{r}{2}} (A^{\frac{-t}{2}}B^{p}A^{\frac{-t}{2}})^{\frac{q-t}{p-t}}A^{\frac{r}{2}} \text{ for } 0 \ge r \ge t.$$

Then we have

(3)
$$A^{1-t+r} \ge \left(A^{\frac{r-t}{2}}B^{q}A^{\frac{r-t}{2}}\right)^{\frac{1-t+r}{q-t+r}} \\ \ge \left\{A^{\frac{r}{2}}\left(A^{\frac{-t}{2}}B^{p}A^{\frac{-t}{2}}\right)^{\frac{q-t}{p-t}}A^{\frac{r}{2}}\right\}^{\frac{1-t+r}{q-t+r}} \quad \text{for } 0 \ge r \ge t,$$

and the first inequality follows by Furuta inequality and the second one follows by applying Löwner-Heinz inequality to (2). In (3) put $A_1 = A^{1-t+r}$ and

 $B_1 = \{A^{\frac{r}{2}} (A^{\frac{-t}{2}} B^p A^{\frac{-t}{2}})^{\frac{q-t}{p-t}} A^{\frac{r}{2}}\}^{\frac{1-t+r}{q-t+r}}.$ Then $A_1 \ge B_1 \ge 0$ with $A_1 > 0$, so that repeating (3) again for $p_1 \ge q_1 \ge 1$, we have

(4) $A_1^{1-t_1+r_1} \ge (A_1^{\frac{r_1-t_1}{2}} B_1^{q_1} A_1^{\frac{r_1-t_1}{2}})^{\frac{1-t_1+r_1}{q_1-t_1+r_1}}$

$$\geq \{A_1^{\frac{r_1}{2}}(A_1^{\frac{-t_1}{2}}B_1^{p_1}A_1^{\frac{-t_1}{2}})^{\frac{q_1-t_1}{p_1-t_1}}A_1^{\frac{r_1}{2}}\}^{\frac{1-t_1+r_1}{q_1-t_1+r_1}}$$

holds for any $0 \ge r_1 \ge t_1$. In (4), put

$$p_1 = \frac{q-t+r}{1-t+r},$$
 $q_1 = \frac{q'-t+r}{1-t+r}$

for $p \ge q \ge q' \ge 1$. Then $p_1 \ge q_1 \ge 1$. Also put $r_1 = t_1 = \frac{r}{1 - t + r} \le 0$. Then $A_{\frac{r_1}{2}} = A_{\frac{r_1}{2}}^{\frac{r_1}{2}} = A_{\frac{r_2}{2}}^{\frac{r_1}{2}} = \frac{q_1 - t_1}{q_1 - t_1} = \frac{q' - t}{q_1 - t_1}$

$$A_{1}^{\frac{r_{1}}{2}} = A_{1}^{\frac{t_{1}}{2}} = A^{\frac{r}{2}}, \qquad \begin{array}{c} 1 & 1 & 1 & -t+r \\ \frac{q_{1}-t_{1}}{p_{1}-t_{1}} = \frac{q'-t}{q-t} \\ B_{1}^{p_{1}} = A^{\frac{r}{2}} (A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}})^{\frac{q-t}{p-t}} A^{\frac{r}{2}}. \end{array}$$

Therefore (4) implies

$$A_{1} \geq B_{1}$$

$$\geq \left\{ A^{\frac{r}{2}} \left[A^{\frac{-r}{2}} A^{\frac{r}{2}} \left(A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}} \right)^{\frac{q-t}{p-t}} A^{\frac{r}{2}} A^{\frac{-r}{2}} \right]^{\frac{q'-t}{q-t}} A^{\frac{r}{2}} \right\}^{\frac{1-t+r}{q'-t+r}}$$

that is,

and

(5)
$$A^{1-t+r} \\ \geq \{A^{\frac{r}{2}} (A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}})^{\frac{q-t}{p-t}} A^{\frac{r}{2}}\}^{\frac{1-t+r}{q-t+r}}, \\ \geq \{A^{\frac{r}{2}} (A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}})^{\frac{q'-t}{p-t}} A^{\frac{r}{2}}\}^{\frac{1-t+r}{q'-t+r}}$$

for $p \ge q \ge q' \ge 1$ and $0 \ge r \ge t$. Replacing $s = \frac{q-t}{p-t}$ and $s' = \frac{q'-t}{p-t}$ in (5), then $1 \ge s \ge s' \ge \frac{1-t}{p-t}$ since $p \ge q \ge q' \ge 1$, so the proof of (a) is complete by (5).

(b) Proof of the result that $F_{p,t}(A, B, r, s)$ is decreasing for r. We recall the following (6) by (3) and Löwner-Heinz theorem

(6)
$$A^{u} \ge \{A^{\frac{r}{2}} (A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}})^{s} A^{\frac{r}{2}}\}^{\frac{u}{(p-t)s+r}} \quad \text{for } 1-t+r \ge u \ge 0$$

Put $D = (A^{\frac{-t}{2}} B^p A^{\frac{-t}{2}})^{\frac{s}{2}}$. Then

$$\begin{split} F_{p,t}(A,B,r,s) &= A^{\frac{-r}{2}} \{ A^{\frac{r}{2}} (A^{\frac{-t}{2}} B^p A^{\frac{-t}{2}})^s A^{\frac{r}{2}} \}^{\frac{1-t+r}{(p-t)s+r}} A^{\frac{-r}{2}} \\ &= D (DA^r D)^{\frac{1-t-(p-t)s}{(p-t)s+r}} D \quad \text{by Lemma 1} \\ &= D \{ (DA^r D)^{\frac{(p-t)s+r+u}{(p-t)s+r}} \}^{\frac{1-t-(p-t)s}{(p-t)s+r+u}} D \\ &= D \{ DA^{\frac{r}{2}} (A^{\frac{r}{2}} D^2 A^{\frac{r}{2}})^{\frac{u}{(p-t)s+r}} A^{\frac{r}{2}} D \}^{\frac{1-t-(p-t)s}{(p-t)s+r+u}} D \quad \text{by Lemma 1} \\ &\geq D (DA^{\frac{r}{2}} A^u A^{\frac{r}{2}} D)^{\frac{1-t-(p-t)s}{(p-t)s+r+u}} D \\ &= D (DA^{r+u} D)^{\frac{1-t-(p-t)s}{(p-t)s+r+u}} D \\ &= F_{p,t}(A,B,r+u,s), \end{split}$$

and the last inequality follows by (6) and Löwner-Heinz theorem since $\frac{1-t-(p-t)s}{(p-t)s+r+u} \in [-1,0]$ and finally taking inverses on both sides, so the proof of (b) is complete.

Whence the proof of theorem 1 is complete.

Proof of Corollary 2. Theorem 1 asserts that the following interpolation result. If $A \ge B \ge 0$ with A > 0, then for each $t \le 0$ and $p \ge 1$,

T. FURUTA

$$F_{p,t}(A,B,t,1) \geq F_{p,t}(A,B,t,s) \geq F_{p,t}(A,B,r,s) \geq F_{p,t}(A,B,r,\frac{1-t}{p-t})$$

holds for $0 \ge r \ge t$ and $1 \ge \frac{1-t}{p-t}$, that is,

$$\begin{aligned} A^{\frac{-t}{2}}BA^{\frac{-t}{2}} \\ &\geq A^{\frac{-t}{2}}\{A^{\frac{t}{2}}(A^{\frac{-t}{2}}B^{p}A^{\frac{-t}{2}})^{s}A^{\frac{t}{2}}\}^{\frac{1}{(p-t)s+t}}A^{\frac{-t}{2}} \\ &\geq A^{\frac{-r}{2}}\{A^{\frac{r}{2}}(A^{\frac{-t}{2}}B^{p}A^{\frac{-t}{2}})^{s}A^{\frac{r}{2}}\}^{\frac{1-t+r}{(p-t)s+r}}A^{\frac{-r}{2}} \\ &\geq (A^{\frac{-t}{2}}B^{p}A^{\frac{-t}{2}})^{\frac{1-t}{p-t}} \end{aligned}$$

Multiplying $A^{\frac{t}{2}}$ on both sides of the inequalities stated above, we have Corollary 2.

Proof of Theorem A. In Theorem 1, put $s = \frac{\delta - t}{p - t}$ for $p \ge \delta \ge 1$ and r = t. Then we have Theorem A.

Proof of Theorem B. We have only to put $s = \frac{\delta - t}{p - t}$ for $p \ge \delta \ge 1$ and r = t in Corollary 2.

4. Concluding remark. We established the following Theorem G [9] which interpolates Theorem F and the inequality equivalent to the main result of log majorization by Ando-Hiai [1] and an alternative mean theoretic proof of Theorem G is given in [4].

Theorem G. [4][9] If $A \ge B \ge 0$ with A > 0, then for each $t \in [0,1]$ and $p \ge 1$,

$$G_{p,t}(A, B, r, s) = A^{\frac{-r}{2}} \{ A^{\frac{r}{2}} (A^{\frac{-t}{2}} B^p A^{\frac{-t}{2}})^s A^{\frac{r}{2}} \}^{\frac{1-t+r}{(p-t)s+r}} A^{\frac{-r}{2}}$$

is decreasing for both r and s such that $r \ge t$ and $s \ge 1$...

Remark 1. It is interesting to point out that our Theorem 1 is parallel result to Theorem G, that is, $F_{p,t}(A, B, r, s)$ in Theorem 1 is the same form as $G_{p,t}(A, B, r, s)$ in Theorem G and the differences between these two operator functions are nothing but the differences of the ranges of the parameters t, r and s, that is, the range of the former is

(f)
$$t \le 0, p \ge 1, 1 \ge s \ge \frac{1-t}{p-t}$$
 and $0 \ge r \ge t$

one of the latter is

(g) $t \in [0, 1], p \ge 1, s \ge 1 \text{ and } r \ge t.$

We would like to emphasize that the two operator functions $F_{p,t}(A, B, r, s)$ in Theorem 1 and $G_{p,t}(A, B, r, s)$ in Theorem G are very important forms in order to research several problems associated with operator functions.

We would like to express our cordial thanks to Professor E.Kamei for sending his excellent Theorem A to us.

REFERENCES

- T.Ando and F.Hiai,Log-majorization and complementary Golden-Thompson type inequalities, Linear Alg. and Its Appl. 197, 198(1994), 113-131.
- M.Fujii, Furuta's inequality and its mean theoretic approach, J. Operator Theory 23(1990).67-72.
- [3] M.Fujii, T.Furuta and E.Kamei, Operator functions associated with Furuta's inequality, Linear Alg. and Its Appl. 149(1991), 91-96.
- M.Fujii and E.Kamei, Mean theoretic approach to the grand Furuta inequality, Proc. Amer. Math. Soc. 124(1996),2751-2756.
- [5] T.Furuta, $A \ge B \ge 0$ assures $(B^r A^{p} B^r)^{1/q} \ge B^{(p+2r)/q}$ for $r \ge 0, p \ge 0, q \ge 1$ with $(1+2r)q \ge p+2r$, Proc. Amer. Math. Soc. **101**(1987),85-88.

- [6] T.Furuta, Elementary proof of an order preserving inequality, Proc. Japan Acad. 65(1989),126.
- [7] T.Furuta, Two operator functions with monotone property, Proc. Amer. Math. Soc. 111(1991),511-516.
- [8] T.Furuta, Applications of order preserving operator inequalities, Operator Theory: Advances and Applications **59**(1992),180-190.
- [9] T.Furuta, Extension of the Furuta inequality and Ando-Hiai log-majorization, Linear Alg. and Its Appl. 219(1995),139-155.
- [10] E.Kamei, A satellite to Furuta's inequality, Math. Japon **33**(1988), 883-886.
- [11] E.Kamei, Parameterization of the Furuta inequality, preprint.
- [12] F.Kubo and T.Ando, Means of positive linear operators, Math. Ann. 246(1980),205-224.
- [13] K.Tanahashi, Best possibility of the Furuta inequality, Proc. Amer. Math. Soc. 124(1996),141-146.

Department of Applied Mathematics,

Faculty of Science, Science University of Tokyo,

1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan

e-mail furuta@rs.kagu.sut.ac.jp