PARAMETRIC OPERATOR FUNCTION VIA FURUTA INEQUALITY

TAKAYUKI FURUTA

Dedicated to the memory of the late Professor Hiroyuki Kuroda with deep sorrow
Received July 20, 1995

Abstract

We give a result related to parametric operator function on two parameters via Furuta inequality, which is an extension of recent Kamei's result [11].

1. Introduction. In what follows, a capital letter means a bounded linear operator on a Hilbert space H. An operator T is said to be positive (denoted by $T \geq 0$) if ($T x, x) \geq 0$ for all $x \in H$. Also an operator T is strictly positive (denoted by $T>0$) if T is positive and invertible. α-mean is defined by

$$
A \not \sharp_{\alpha} B=A^{\frac{1}{2}}\left(A^{\frac{-1}{2}} B A^{\frac{-1}{2}}\right)^{\alpha} A^{\frac{1}{2}}
$$

for any $\alpha \in[0,1]$ for positive operators A and B by [12]. Very recently, Professor E.Kamei [11] has obtained the following excellent results.

Theorem \mathbf{A} [11]. If $A \geq B \geq 0$ with $A>0$, then for each $t \leq 0$ and $p \geq \delta_{2} \geq \delta_{1} \geq 1$,

$$
\left(A^{t} \not \oiint_{\frac{\delta_{2}-t}{p-t}}^{p-t} B^{p}\right)^{\frac{1}{\delta_{2}}} \geq\left(A^{t} \frac{\delta_{1}-t}{p-t} B^{p}\right)^{\frac{1}{\delta_{1}}},
$$

that is, for each $t \leq 0, f(\delta)=\left(A^{t} \sharp_{\frac{\delta-t}{p-t}} B^{p}\right)^{\frac{1}{\delta}}$ is increasing for δ such that $p \geq \delta \geq 1$.
Theorem B [11]. If $A \geq B \geq 0$ with $A>0$, then for each $t \leq 0$ and $p \geq \delta \geq 1$,

$$
A \geq B \geq\left(A_{\not \sharp_{\frac{\delta-t}{p-t}}^{t}} B^{p}\right)^{\frac{1}{\delta}} \geq A_{\not \sharp_{\frac{1-t}{p-t}}^{t}} B^{p} .
$$

2. Parametric operator function. Theorem A is related to an operator function on one parameter δ, here we show Theorem 1 related to parametric operator function on two parameters r and s as an extension of Theorem A.

Theorem 1. If $A \geq B \geq 0$ with $A>0$, then for each $t \leq 0$ and $p \geq 1$,

$$
F_{p, t}(A, B, r, s)=A^{\frac{-r}{2}}\left\{A^{\frac{r}{2}}\left(A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}}\right)^{s} A^{\frac{r}{2}}\right\}^{\frac{1-t+r}{(p-t) s+r}} A^{\frac{-r}{2}}
$$

is increasing for s such that $1 \geq s \geq \frac{1-t}{p-t}$ and decreasing for r such that $0 \geq r \geq t$.
Corollary 2 can be considered as a precise estimation of Theorem B.
Corollary 2. If $A \geq B \geq 0$ with $A>0$, then for each $t \leq 0$ and $p \geq 1$,

$$
\begin{aligned}
A \geq & B \geq\left(A^{t} \sharp_{s} B^{p}\right)^{\frac{1}{(p-t) s+t}} \\
& \geq A^{r-t} \sharp_{\frac{1-t+r}{(p-t) s+r}}^{\left(A^{t} \sharp_{s} B^{p}\right) \geq A^{t} \sharp_{\frac{1-t}{}}^{p-t}} B^{p}
\end{aligned}
$$

holds for $0 \geq r \geq t$ and $1 \geq s \geq \frac{1-t}{p-t}$.

[^0]3. Proofs of the results. We cite the following results to give a proof of Theorem 1.

Theorem \mathbf{F} (Furuta inequality) [5].
If $A \geq B \geq 0$, then for each $r \geq 0$,
(i) $\quad\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq\left(B^{\frac{r}{2}} B^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}}$
and

$$
\begin{equation*}
\left(A^{\frac{r}{2}} A^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}} \geq\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}} \tag{ii}
\end{equation*}
$$

hold for $p \geq 0$ and $q \geq 1$ with $(1+r) q \geq p+r$.

Theorem F ensures the famous Löwner-Heinz inequality when we put $r=0$ in (i) or (ii) of Theorem F; $A \geq B \geq 0$ ensures $A^{\alpha} \geq B^{\alpha}$ for any $\alpha \in[0,1]$. Alternative proofs of Theorem F are given [2][10] and one page proof is in [6]. It is shown in [13] that the domain drawn for $p q$ and r in Fugure is the best possible one for (i) and (ii) of Theorem F.

Lemma 1.[9] Let A be invertible operator and let B be positive invertible operator. For any real number λ,

$$
\left(A B A^{*}\right)^{\lambda}=A B^{\frac{1}{2}}\left(B^{\frac{1}{2}} A^{*} A B^{\frac{1}{2}}\right)^{\lambda-1} B^{\frac{1}{2}} A^{*}
$$

Lemma 2. [3][7][8] If $A \geq B \geq 0$, then for a fixed $q \geq 0$ and $t \leq 0$,

$$
F_{q}(p)=\left(A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}}\right)^{\frac{q-t}{p-t}}
$$

is decreasing for $p \geq q$.

Proof of Theorem 1.

(a) Proof of the result that $F_{p, t}(A, B, r, s)$ is increasing for s.
$A \geq B \geq 0$ ensures the following (1) for $p \geq q \geq 1$ and $t \leq 0$

$$
\begin{equation*}
A^{\frac{-t}{2}} B^{q} A^{\frac{-t}{2}} \geq\left(A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}}\right)^{\frac{q-t}{p-t}} \text { by Lemma } 2 \tag{1}
\end{equation*}
$$

Multiplying $A^{\frac{r}{2}}$ on both sides of (1), we have

$$
\begin{equation*}
A^{\frac{r-t}{2}} B^{q} A^{\frac{r-t}{2}} \geq A^{\frac{r}{2}}\left(A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}}\right)^{\frac{q-t}{p-t}} A^{\frac{r}{2}} \text { for } 0 \geq r \geq t \tag{2}
\end{equation*}
$$

Then we have

$$
\begin{align*}
A^{1-t+r} & \geq\left(A^{\frac{r-t}{2}} B^{q} A^{\frac{r-t}{2}}\right)^{\frac{1-t+r}{q-t+r}} \tag{3}\\
& \geq\left\{A^{\frac{r}{2}}\left(A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}}\right)^{\frac{q-t}{p-t}} A^{\frac{r}{2}}\right\}^{\frac{1-t+r}{q-t+r}} \quad \text { for } 0 \geq r \geq t
\end{align*}
$$

and the first inequality follows by Furuta inequality and the second one follows by applying Löwner-Heinz inequality to (2). In (3) put $A_{1}=A^{1-t+r}$ and
$B_{1}=\left\{A^{\frac{r}{2}}\left(A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}}\right)^{\frac{q-t}{p-t}} A^{\frac{r}{2}}\right\}^{\frac{1-t+r}{q-t+r}}$. Then $A_{1} \geq B_{1} \geq 0$ with $A_{1}>0$, so that repeating
(3) again for $p_{1} \geq q_{1} \geq 1$, we have

$$
\begin{align*}
& A_{1}^{1-t_{1}+r_{1}} \tag{4}\\
\geq & \left(A_{1}^{\frac{r_{1}-t_{1}}{2}} B_{1}^{q_{1}} A_{1}^{\frac{r_{1}-t_{1}}{2}}\right)^{\frac{1-t_{1}+r_{1}}{q_{1}-t_{1}+r_{1}}}
\end{align*}
$$

$$
\geq\left\{A_{1}^{\frac{r_{1}}{2}}\left(A_{1}^{\frac{-t_{1}}{2}} B_{1}^{p_{1}} A_{1}^{\frac{-t_{1}}{2}}\right)^{\frac{q_{1}-t_{1}}{p_{1}-t_{1}}} A_{1}^{\frac{r_{1}}{2}}\right\}^{\frac{1-t_{1}+r_{1}}{q_{1}-t_{1}+r_{1}}}
$$

holds for any $0 \geq r_{1} \geq t_{1}$. In (4), put

$$
p_{1}=\frac{q-t+r}{1-t+r}, \quad q_{1}=\frac{q^{\prime}-t+r}{1-t+r}
$$

for $p \geq q \geq q^{\prime} \geq 1$. Then $p_{1} \geq q_{1} \geq 1$. Also put $r_{1}=t_{1}=\frac{r}{1-t+r} \leq 0$. Then

$$
A_{1}^{\frac{r_{1}}{2}}=A_{1}^{\frac{t_{1}}{2}}=A^{\frac{r}{2}}, \quad \frac{q_{1}-t_{1}}{p_{1}-t_{1}}=\frac{q^{\prime}-t}{q-t}
$$

and

$$
B_{1}^{p_{1}}=A^{\frac{r}{2}}\left(A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}}\right)^{\frac{q-t}{p-t}} A^{\frac{r}{2}}
$$

Therefore (4) implies

$$
\begin{aligned}
A_{1} & \geq B_{1} \\
& \geq\left\{A^{\frac{r}{2}}\left[A^{\frac{-r}{2}} A^{\frac{r}{2}}\left(A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}}\right)^{\frac{q-t}{p-t}} A^{\frac{r}{2}} A^{\frac{-r}{2}}\right]^{\frac{q^{\prime}-t}{q-t}} A^{\frac{r}{2}}\right\}^{\frac{1-t+r}{q^{\prime}-t+r}}
\end{aligned}
$$

that is,

$$
\begin{align*}
& A^{1-t+r} \tag{5}\\
\geq & \left\{A^{\frac{r}{2}}\left(A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}}\right)^{\frac{q-t}{p-t}} A^{\frac{r}{2}}\right\}^{\frac{1-t+r}{q-t+r}} \\
\geq & \left\{A^{\frac{r}{2}}\left(A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}}\right)^{\frac{q^{\prime}-t}{p-t}} A^{\frac{r}{2}}\right\}^{\frac{1-t+r}{q^{\prime}-t+r}}
\end{align*}
$$

for $p \geq q \geq q^{\prime} \geq 1$ and $0 \geq r \geq t$. Replacing $s=\frac{q-t}{p-t}$ and $s^{\prime}=\frac{q^{\prime}-t}{p-t}$ in (5), then $1 \geq s \geq s^{\prime} \geq \frac{1-t}{p-t}$ since $p \geq q \geq q^{\prime} \geq 1$, so the proof of (a) is complete by (5).
(b) Proof of the result that $F_{p, t}(A, B, r, s)$ is decreasing for r.

We recall the following (6) by (3) and Löwner-Heinz theorem

$$
\begin{equation*}
A^{u} \geq\left\{A^{\frac{r}{2}}\left(A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}}\right)^{s} A^{\frac{r}{2}}\right\}^{\frac{u}{(p-t) s+r}} \quad \text { for } 1-t+r \geq u \geq 0 \tag{6}
\end{equation*}
$$

Put $D=\left(A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}}\right)^{\frac{s}{2}}$. Then

$$
\begin{aligned}
F_{p, t}(A, B, r, s)= & A^{\frac{-r}{2}}\left\{A^{\frac{r}{2}}\left(A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}}\right)^{s} A^{\frac{r}{2}}\right\}^{\frac{1-t+r}{(p-t) s+r}} A^{\frac{-r}{2}} \\
& =D\left(D A^{r} D\right)^{\frac{1-t-(p-t) s}{(p-t) s+r}} D \quad \text { by Lemma } 1 \\
& =D\left\{\left(D A^{r} D\right)^{\frac{(p-t) s+r+u}{(p-t) s+r}}\right\}^{\frac{1-t-(p-t) s}{(p-t) s+r+u}} D \\
& =D\left\{D A^{\frac{r}{2}}\left(A^{\frac{r}{2}} D^{2} A^{\frac{r}{2}}\right)^{\frac{u}{p-t) s+r}} A^{\frac{r}{2}} D\right\}^{\frac{1-t-(p-t) s}{(p-t) s+r+u}} D \quad \text { by Lemma } 1 \\
& \geq D\left(D A^{\frac{r}{2}} A^{u} A^{\frac{r}{2}} D\right)^{\frac{1-t-(p-t) s}{(p-t) s+r+u}} D \\
& =D\left(D A^{r+u} D\right)^{\frac{1-t-(p-t) s}{(p-t) s+r+u}} D \\
& =F_{p, t}(A, B, r+u, s),
\end{aligned}
$$

and the last inequality follows by (6) and Löwner-Heinz theorem since $\frac{1-t-(p-t) s}{(p-t) s+r+u} \in[-1,0]$ and finally taking inverses on both sides, so the proof of (b) is complete.

Whence the proof of theorem 1 is complete.
Proof of Corollary 2. Theorem 1 asserts that the following interpolation result.
If $A \geq B \geq 0$ with $A>0$, then for each $t \leq 0$ and $p \geq 1$,

$$
F_{p, t}(A, B, t, 1) \geq F_{p, t}(A, B, t, s) \geq F_{p, t}(A, B, r, s) \geq F_{p, t}\left(A, B, r, \frac{1-t}{p-t}\right)
$$

holds for $0 \geq r \geq t$ and $1 \geq \frac{1-t}{p-t}$, that is,

$$
\begin{aligned}
& A^{\frac{-t}{2}} B A^{\frac{-t}{2}} \\
& \geq A^{\frac{-t}{2}}\left\{A^{\frac{t}{2}}\left(A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}}\right)^{s} A^{\frac{t}{2}}\right\}^{\frac{1}{(p-t) s+t}} A^{\frac{-t}{2}} \\
& \geq A^{\frac{-r}{2}}\left\{A^{\frac{r}{2}}\left(A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}}\right)^{s} A^{\frac{r}{2}}\right\}^{\frac{1-t+r}{(p-t) s+r}} A^{\frac{-r}{2}} \\
& \geq\left(A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}}\right)^{\frac{1-t}{p-t}}
\end{aligned}
$$

Multiplying $A^{\frac{t}{2}}$ on both sides of the inequalities stated above, we have Corollary 2.
Proof of Theorem A. In Theorem 1, put $s=\frac{\delta-t}{p-t}$ for $p \geq \delta \geq 1$ and $r=t$. Then we have Theorem A.

Proof of Theorem B. We have only to put $s=\frac{\delta-t}{p-t}$ for $p \geq \delta \geq 1$ and $r=t$ in Corollary 2.
4. Concluding remark. We established the following Theorem G [9] which interpolates Theorem F and the inequality equivalent to the main result of \log majorization by Ando-Hiai [1] and an alternative mean theoretic proof of Theorem G is given in [4].

Theorem G. [4][9] If $A \geq B \geq 0$ with $A>0$, then for each $t \in[0,1]$ and $p \geq 1$,

$$
G_{p, t}(A, B, r, s)=A^{\frac{-r}{2}}\left\{A^{\frac{r}{2}}\left(A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}}\right)^{s} A^{\frac{r}{2}}\right\}^{\frac{1-t+r}{(p-t) s+r}} A^{\frac{-r}{2}}
$$

is decreasing for both r and s such that $r \geq t$ and $s \geq 1$..
Remark 1. It is interesting to point out that our Theorem 1 is parallel result to Theorem G, that is, $F_{p, t}(A, B, r, s)$ in Theorem 1 is the same form as $G_{p, t}(A, B, r, s)$ in Theorem G and the differences between these two operator functions are nothing but the differences of the ranges of the parameters t, r and s, that is, the range of the former is

$$
\begin{equation*}
t \leq 0, p \geq 1,1 \geq s \geq \frac{1-t}{p-t} \text { and } 0 \geq r \geq t \tag{f}
\end{equation*}
$$

one of the latter is

$$
\begin{equation*}
t \in[0,1], p \geq 1, s \geq 1 \text { and } r \geq t \tag{g}
\end{equation*}
$$

We would like to emphasize that the two operator functions $F_{p, t}(A, B, r, s)$ in Theorem 1 and $G_{p, t}(A, B, r, s)$ in Theorem G are very important forms in order to research several problems associated with operator functions.

We would like to express our cordial thanks to Professor E.Kamei for sending his excellent Theorem A to us.

REFERENCES

[1] T.Ando and F.Hiai,Log-majorization and complementary Golden-Thompson type inequalities, Linear Alg. and Its Appl.197,198(1994),113-131.
[2] M.Fujii, Furuta's inequality and its mean theoretic approach,
J. Operator Theory 23(1990).67-72.
[3] M.Fujii, T.Furuta and E.Kamei,Operator functions associated with Furuta's inequality, Linear Alg. and Its Appl. 149(1991),91-96.
[4] M.Fujii and E.Kamei, Mean theoretic approach to the grand Furuta inequality, Proc. Amer. Math. Soc. 124(1996),2751-2756.
[5] T.Furuta, $A \geq B \geq 0$ assures $\left(B^{r} A^{p} B^{r}\right)^{1 / q} \geq B^{(p+2 r) / q}$ for $r \geq 0, p \geq 0, q \geq 1$ with $(1+2 r) q \geq p+2 r$, Proc. Amer. Math. Soc. 101(1987),85-88.
[6] T.Furuta, Elementary proof of an order preserving inequality, Proc. Japan Acad. 65(1989),126.
[7] T.Furuta, Two operator functions with monotone property, Proc. Amer. Math. Soc. 111 (1991),511-516.
[8] T.Furuta, Applications of order preserving operator inequalities, Operator Theory: Advances and Applications 59(1992),180-190.
[9] T.Furuta, Extension of the Furuta inequality and Ando-Hiai log-majorization, Linear Alg. and Its Appl. 219(1995),139-155.
[10] E.Kamei, A satellite to Furuta's inequality, Math. Japon 33(1988), 883-886.
[11] E.Kamei, Parameterization of the Furuta inequality, preprint.
[12] F.Kubo and T.Ando,Means of positive linear operators, Math. Ann. 246(1980),205-224.
[13] K.Tanahashi, Best possibility of the Furuta inequality, Proc. Amer. Math. Soc.124(1996),141-146.

Department of Applied Mathematics,
Faculty of Science, Science University of Tokyo,
1-3 Kagurazaka, Shinjuku, Tokyo 162-8601, Japan
e-mail furuta@rs.kagu.sut.ac.jp

[^0]: 1991 Mathematics Subject Classification. Primary 47A63.
 Key words and phrases. Positive operator,Löwner-Heinz inequality, Furuta inequality.

