Let $T = U \vert T \vert $ be the polar decomposition of a bounded linear operator on a complex Hilbert space ${\mathcal H}$. $T$ is called a class $A$ operator if $ \vert T\vert^{2} \leq \vert T^{2} \vert$. Recently, M. Ch\=o and T. Yamazaki found an interesting operator transform from a class $A$ operator $T$ to a hyponormal operator $\hat{T}$. In this paper we obtain a more suitable form for $\hat{T}$, and prove Putnam's inequality for a class $A$ operator, i.e., $ \Vert \ \vert T^{2} \vert - \vert T\vert^{2} \ \Vert \leq \Vert \ \vert T(1,1)\vert - \vert T(1,1)^{*} \vert \ \Vert \leq \frac{1}{ \pi} {\rm meas} \ (\sigma(T))$ where $T(1,1) = \vert T \vert U \vert T \vert$ denotes the generalized Aluthge transform. Also, we study related results.