In this note, we obtain more precise estimations than the constants are given in the paper by M.Fujii, E.Kamei and Y.Seo, {\it Kantorovich type operator inequalities via grand Furuta inequality}, Sci. Math., {\bf 3} (2000), 263--272. Among other, we show that the following statements are mutually equivalent for each $\delta \in (0,1]$: \noindent (i) \quad \qquad \qquad \quad $ K(m^{\frac{(p-\delta)s}{n}},M^{\frac{(p-\delta)s}{n}},n+1)^{\frac{1}{s}} A^{p} \geq B^{p}$ \noindent \qquad \qquad \qquad for any $n>0$, $s \geq 1$, $p \geq \delta$ with $ (p-\delta )s \geq n \delta $. \noindent (ii) \quad \qquad \qquad \quad $K(m^{\delta},M^{\delta},\frac{p}{\delta}) A^{p} \geq B^{p} \qquad \mbox{for any $p \geq \delta$ }$. \noindent For each $\delta \in (0,1]$ $$K(m^{\frac{(p-\delta)s}{n}},M^{\frac{(p-\delta)s}{n}},n+1)^{\frac{1}{s}} \geq K(m^{\delta},M^{\delta},\frac{p}{\delta})$$ holds for any $n>0$, $s \geq 1$, $p \geq \delta$ such that $ (p-\delta )s \geq n \delta $.