One dimensional nonlinear difference equations have been used to model a variety of biological phenomena including population growth. The standard biological models have the interesting characteristic that they display global stability if they display local stability. Various researchers have sought a simple explanation for this agreement of local and global stability. Here, we show that enveloping by a linear fractional function is sufficient for global stability. We also show that for seven standard biological models local stability implies enveloping and hence global stability. We derive two methods to demonstrate enveloping and show that these methods can easily be applied to the seven example models.