M. Fujii and R. Nakamoto discuss the monotonity of the operator function $F(r)= ((1-\mu) A^r + \mu B^r)^{\frac{1}{r}}$ ($r \in {\mathbf{R}}$) for given $A,B>0$ and $\mu \in [0,1]$. They proved it under the usual operator order: $F(r) \leq F(s)$ if $1 \leq r \leq s$ or $1 \leq s \leq 2r$. Furthermore, they proved it under the chaotic order: $F(r) \ll F(s)$ if $ r < s$ and consequently $ \text{\bf s} - \lim_{r \rightarrow 0} F(r) = A \ \diamondsuit _\mu B$, where $ \diamondsuit _\mu$ is the chaotic geometric mean defined by $A \ \diamondsuit _\mu B := e^{(1- \mu) \log A + \mu \log B}$. The aim of this paper is to generalize the above mentioned as follows: \\ \noindent Let $M_{k}^{[r]}({\mathbf{A}};w) := ( \sum_{j=1}^{k} \omega_j \ A_j^{r})^{1/r}$ ($r \in {\mathbf{R}} \backslash \{0 \}$) be weighted power mean of posi\-ti\-ve operators $A_j$, ${\mathsf{Sp}}(A_j) \subseteq [m,M]$ ($j=1,\ldots, k$), $0