The grand Furuta inequality says that if $A \ge B > 0$, then \begin{equation} A^{1+r-t } \geq \{ A^{\frac{r}{2}}(A^{-\frac{t}{2}}B^pA^{-\frac{t}{2}})^s A^{\frac{r}{2}} \} ^{\frac{1+r-t }{(p-t)s+r}} \tag{G} \end{equation} holds for all $p\geq 1$, $r \geq t$, $s\geq 1$ and $t\in [0,1]$. Very recently Uchiyama gave an extension of the grand Furuta inequality as follows: If $A \ge B \ge C > 0$, then \begin{equation} A^{1+r-t } \geq \{ A^{\frac{r}{2}} (B^{-\frac{t}{2}}C^pB^{-\frac{t}{2}})^s A^{\frac{r}{2}} \} ^{\frac{1+r-t }{(p-t)s+r}} \tag{U} \end{equation} holds for all $p\geq 1$, $r \geq t$, $s\geq 1$ and $t\in [0,1]$. The purpose of this short note is to propose a simplifed proof of Uchiyama's extension. Moreover we pose a variant of the grand Furuta inequality motivated by Uchiyama's idea.