Suppose that a trigonometric polynomial $$\tau (e^{i\theta})=\sum_{k=-N+1}^{N-1}\alpha_ke^{ik\theta}, \ \ \theta \in [0,2\pi),$$ is positive, $\alpha_{N-1}\not=0, N\ge 2.$ Then a classical matter due to Fej\'er asserts that the estimate \Disp{|\alpha_1 |\le \alpha_0 \cos \frac{\pi}{N+1}} for the modulus \disp{|\alpha_1|} of \disp{\alpha_1} holds and that the equality occurs only for the polynomial \disp{\alpha_0 \tau_{N}(e^{i(\theta-\varphi)})}, where \Disp{\tau_{N} (e^{i\theta})=\frac{2}{N+1} \left|\sum_{k=0}^{N-1}\left(\sin \frac{(k+1)\pi}{N+1}\right) e^{ik \theta}\right|^2,\ \ \ \theta\in [0,2\pi),} and $\varphi \in [0, 2\pi).$ In this paper, we will show that the corresponding estimate $$|\alpha_n|\le \alpha_0 \cos \frac{\pi}{\left\lceil N/n\right\rceil +1}$$ for the modulus $|\alpha_n|$ of $\alpha_n$ is true, $1\le n\le N-1,$ $\lceil N/n\rceil$ the minimum integer not smaller than $N/n$, and that the equality for $n=n_0$ occurs only for the polynomial $\tau$ of the form $$\tau(e^{i\theta})= \sigma (e^{i\theta})\tau_{\lceil N/n_0 \rceil} (e^{in_0(\theta -\varphi)}), \ \ \ \theta\in [0,2\pi),$$ where $\sigma$ is a positive trigonometric polynomial and $\varphi \in [0, 2\pi).$ %$\tau_M$ for positive integer $M$ is: %$$\tau_M(e^{i\theta})=\frac{2}{M+1} %\left|\sum_{k=0}^{M-1}\left(\sin \frac{(k+1)\pi}{M+1}\right)e^{ik \theta} %\right|^2,\ \ \ %\theta\in [0,2\pi),$$ %and $\varphi \in [0, 2\pi),$