For $0<\alpha\le 1$ and $0<\beta\le 1$, let $K(\alpha,\beta)$ be the class of normalised close-to-convex functions defined in the open unit disc $D$ by $$ \left|\arg\dfrac{zf'(z)}{g(z)}\right|\le\dfrac{\beta\pi}{2} , $$ such that $g\in S^{*}(\alpha)$, the class of analytic normalised starlike functions of order $\alpha$, i.e for $z\in D$, $$ \left|\arg\dfrac{zg'(z)}{g(z)}\right|\le\dfrac{\alpha\pi}{2}.$$ For $f\in K(\alpha,\beta)$ and given by $f(z)=z+a_{2}z^2+a_{3}z^3+...$, sharp bounds are obtained for the Fekete-Szeg\"o functional $|a_{3}-\mu a_{2}^2|$ when $\mu$ is real.