In this paper, we present a class of new Aurifeuillian factorization of $M^n\pm 1$,e.i.: Let positive integer $m\equiv \epsilon (\mathrm{ mod} 4),\epsilon=1,-1,n=mk$, where $ n\equiv 1(\mathrm{ mod} 2),k \in Z^+$. If $M$ is a multiple of $ m$ and $\frac{M}{m}$ is a square, then $\Phi_n(\epsilon M)=(\Phi_n(\epsilon M),\Delta_{\epsilon,1})(\Phi_n(\epsilon M),\Delta_{\epsilon,2})$, and $ (\Phi_n(\epsilon M),\Delta_{\epsilon,1})=(\Phi_n(\epsilon M),\mathrm{ Norm}_{Q(\eta_m)/Q}(\sqrt{\epsilon M}^k-\eta_m))$ and $(\Phi_n(\epsilon M),\Delta_{\epsilon,2})=(\Phi_n(M),\mathrm{ Norm}_{Q(\eta_m)/Q}(\sqrt{\epsilon M}^k+\eta_m))$, where $\Delta_{\epsilon,r}=mM^{k\frac{m+1}{2}}+(-1)^r(\frac{2}{m})\sqrt{mM} M^{\frac{k-1}{2}}$ $\sum\limits_{\stackrel{c=1}{(c,m)=1}}^m(\frac{c}{m}){(\epsilon M)}^{kc} \;\;\; r=1,2. $\,\, Finally we give an example about the Aurifeuillian factorization of a very large cyclotomic number with 362 digits.