Let $X$ be a BCK- algebra, $\Gamma\subset X$. Denote $A(a)=\{\,x\in X\mid x\le a\,\}$, $T=\cup _{a\in\Gamma} A(a)$. If for all $x\in X-T$ there exists a $x'\in \Gamma$ s.t. $x*x'\le x*a$ for all $a\in \Gamma$, then $\Gamma$ is called a {\it root set} of the BCK-algebra\ $X$. In this note by use of this concept we'll prove the following theorem: Let $\Gamma$ be a root set of a BCK-algebra\ $X=(X,*,0)$, $T=\cup _{a\in\Gamma}A(a)$, and $(Y,\bullet ,0)$ be a normal BCI-algebra(for its definition see [6] or Def. 1 below) with its BCK-part $K$ and its p-semisimple part $M$ satisfying $X\cap Y=\{\,0\,\}$. Set $Z=X\cup Y$ Define a binary operation $\circ$ on $Z$ to be: $x_1\circ x_2 =x_1*x_2$, if $x_1,x_2\in X$; $x\circ y =0$, if $x\in T, y\in \ K-\{0\}$; $x\circ y =x*x'$, if $x\in X-T, b\in K-\{0\} $; $x\circ y =0\bullet y$, if $x\in X, y\in M-\{0\} $; $y\circ x =y$,if $x\in X,y\in Y$; $y_1\circ y_2 =y_1\bullet y_2$, if $y_1,y_2\in Y$, where $x'\in\Gamma$ s.t. $x*x'\le x*a$ for all $a\in\Gamma$. Then $(Z,\circ,0)$ is a normal BCK-algebra and will be denoted by $X\vee _\Gamma Y$. This work generalizes Jiang Hao's stracture [3, Theorem, 1]. Some related results will also be given. For example, An automorphism $\phi $ on $X$ has a natural extension $\tilde\phi$ on $X\vee _\Gamma Y$, %$(X\vee _\Gamma B)\vee _\Gamma C$= %$(X\vee _\Gamma C)\vee _\Gamma B$, %where $C$ is a BCK-algebra with %$X\cap B=\{\,0\,\}$, $X\cap C=\{\,0\,\}$, %$B\cap C=\{\,0\,\}$, etc..