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Abstract.We investigate conditions under which a convex or co-convex set in a normed
space is tightly bordered, in the sense that a point of the set that is bounded away from its
boundary lies in the interior of the set. The investigation lies entirely within a constructive
framework.

1 Introduction We say that a subset S of a metric space is tightly bordered, or has
a tight border, if x ∈ S◦ for each x ∈ S with ρ (x, ∂S) > 0.1 Every open set is tightly
bordered. With classical logic, the law of excluded middle (LEM) leads to every subset of a
metric space being tightly bordered. In constructive mathematics,2 things are not so simple:
if x ∈ S and ρ (x, ∂S) > 0, then it is absurd that x /∈ S◦; but this information does not, of
itself, enable us to compute r > 0 such that the ball B(x, r) is contained in S. This is part
of a more general difficulty in constructive geometry and analysis: namely, placing a point in a
set (a positive conclusion) when all we know is that it cannot fail to belong therein (negative
information). This situation really can arise in constructive practice, so it makes sense to try
to provide conditions on the set S that ensure, constructively, that it is tightly bordered. We
discuss such conditions in this paper, which can be regarded as a continuation of work begun
in [9]. That work arose naturally in a constructive study of the Dirichlet problem (for more on
which, see [6]); our present study was motivated by an ongoing search for the ‘right’ definition
of a differential manifold in constructive analysis.

Our visual intuition suggests that when we are dealing with a convex set or a co-convex
set—that is, the complement of a convex one—in a normed space, we might be able to prove
the tightness of the border.3 In fact, as the Brouwerian examples in the final section of this
paper show, even for such relatively special sets, we cannot expect to do that without additional
hypotheses. Our main purpose is to discuss, in Sections 2 and 3, conditions under which a
convex set C or its complement

∼C ≡ {x ∈ X : ∀y∈C (‖x − y‖ > 0)}

is tightly bordered. In particular, we show that if, in a Banach space, a convex set C has inhabited
interior and C ∪ ∼C is dense in X, then both C and ∼C are tightly bordered (Propositions 5
and 13). In the course of our discussion, we also deal with a number of classically trivial, but
constructively significant, geometric properties of convex and co-convex sets.

1We do not require that ∂S be located: that is, that the distance from any point of X to ∂S exist. Instead,
we are using Richman’s convention about distance expressions (see [9]), under which, for example, the expression
ρ(x, ∂S) > 0 means that there exists r > 0 such that ρ (x, y) > r for each y ∈ ∂S.

2That is, roughly, mathematics with intuitionistic, rather than classical, logic, and with an appropriate foun-
dation such as those presented in [1, 2, 11]. For more on this type of constructive mathematics in practice, see
[3, 4, 7, 8].

3For convex sets we can often establish results that hold more generally in classical, but not in constructive,
analysis. For example, every convex subset C of Rn with positive Lebesgue measurable is located—that is,
ρ (x, C) ≡ inf {‖x − y‖ : y ∈ C} exists for each x ∈ Rn; see [5].
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2 Tightly bordered convex sets Although we assume that the reader has access to one
or more of such books on constructive analysis as [3, 4, 7, 8, 13], it is convenient for all if we
quote two results.

Lemma 1 let C be a convex subset of a normed space X, let ξ ∈ C◦, and let r > 0 be such
that the ball B(ξ, r) is contained in C. Let z 6= ξ, 0 < t < 1, and z′ = tξ + (1 − t) z. If
B(z, tr) intersects C, then B(z′, t2r) ⊂ C ([8], Lemma 5.1.1).

Note that for points x, y in a normed space,

[x, y] ≡ {tx + (1 − t) y : 0 6 t 6 1} .

We adopt other natural notations for ‘intervals’ joining x and y without further comment.

Proposition 2 Let C be a subset of a Banach space such that C ∪∼C is dense, let x ∈ C and
y ∈ ∼C, and let ε > 0. Then there exists z ∈ ∂C such that ρ (z, [x, y]) < ε ([9], Proposition
8).

Lemma 1 and Proposition 2 are two of several results in convex geometry that will be found
throughout the paper. Here is the next one.

Proposition 3 Let C be a convex subset of a Banach space X such that C◦ is inhabited. Then
C

◦
= C◦.

Proof. Construct ξ ∈ C and r > 0 such that B(ξ, r) ⊂ C. Let x ∈ C
◦
. In trying to prove that

x ∈ C◦, we may assume that ‖x − ξ‖ > r. Pick s such that 0 < s < r and B(x, s) ⊂ C. Let

0 < t <
s

‖x − ξ‖
and z =

1
1 − t

x − t

1 − t
ξ.

Then 0 < t < 1 and x = tξ + (1 − t)z. Moreover, ‖x − z‖ = t ‖x − ξ‖ < s, so z ∈ C. Hence
B(z, tr) intersects C, and therefore, by Lemma 1, B(x, t2r) ⊂ C. Thus x ∈ C◦.

Proposition 4 Let C be a convex subset of a Banach space X such that C ∪ ∼C is dense in
X and C

◦
= C◦. Then C is tightly bordered.

Proof. Let x be a point of C with ρ (x, ∂C) > 0. Choose r such that 0 < 2r < ρ (x, ∂C), and
consider any y ∈ B(x, r). Suppose that y ∈ ∼C. Applying Proposition 2, we can find z ∈ ∂C
and t ∈ [0, 1] such that ‖z − (1 − t) x − ty‖ < r. Then

‖x − z‖ 6 ‖x − (1 − t)x − ty‖ + ‖z − (1 − t)x − ty‖
< ‖x − y‖ + r < 2r,

which contradicts our choice of r. It follows that y /∈ ∼C. Since y is arbitrary, we conclude
that B(x, r)∩ ∼C is empty, and hence, by the density of C ∪ ∼C, that B(x, r) ⊂ C. Thus

x ∈ C
◦

= C◦.

Proposition 5 Let C be a convex subset of a Banach space X such that C◦ is inhabited and
C ∪∼C is dense in X. Then C is tightly bordered. Moreover, if ξ is an interior point of C and
‖x − ξ‖ < ρ (ξ, ∂C), then x ∈ C◦.
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Proof. Propositions 3 and 4 together show that C is tightly bordered. Given ξ ∈ C◦ and x ∈ X
with ‖x − ξ‖ < ρ (ξ, ∂C), pick r > 0 such that ‖x − ξ‖ + 3r < ρ (ξ, ∂C) and B(ξ, r) ⊂ C. In
proving that x ∈ C◦, we may assume that ‖x − ξ‖ > r/2. Let

t =
r

‖x − ξ‖ + r
and z ≡ 1

1 − t
x − t

1 − t
ξ.

Then 0 < t < 1, x = tξ + (1 − t) z,

‖ξ − z‖ =
1

1 − t
‖x − ξ‖ < ‖x − ξ‖ + r,

and z 6= ξ. Now choose ζ ∈ C ∪ ∼C such that ‖z − ζ‖ < tr. If ζ ∈ ∼C, then by Proposition
2, there exist η ∈ [ξ, ζ] and y ∈ ∂C such that ‖η − y‖ < tr; in that case,

‖ξ − y‖ 6 ‖ξ − η‖ + ‖η − y‖
6 ‖ξ − ζ‖ + tr

6 ‖ξ − z‖ + ‖z − ζ‖ + r

6 ‖x − ξ‖ + r + tr + r < ρ (ξ, ∂C) ,

a contradiction. Hence ζ ∈ C ∩ B(z, tr). Applying Lemma 1, we now see that B(x, t2r) ⊂ C,
so x ∈ C◦.

Recall that the metric complement of a set S in a metric space X is the set

−S ≡ {x ∈ X : ρ (x, S) > 0} ,

and (from [9]) that S is coherent if −∼S ⊂ S.

Proposition 6 Let C be a coherent, convex subset of a normed space X such that C ∪∼C is
dense in X. Then C is tightly bordered.

Proof. Let x ∈ C with ρ (x, ∂C) > 0, and choose r > 0 such that ρ (x, ∂C) > 3r. Given
y ∈ B(x, r), suppose there exists z ∈ ∼C such that ‖y − z‖ < r. Since C ∪∼C is dense in X,
we can apply Proposition 2 to produce b ∈ [x, z] such that ρ (b, ∂C) < r; whence

ρ(x, ∂C) 6 ‖x − b‖ + ρ (b, ∂C)
6 ‖x − z‖ + r

6 ‖x − y‖ + ‖y − z‖ + r < 3r,

a contradiction from which we conclude that ρ (y,∼C) > r. It follows from the coherence of
C that y ∈ C. Hence B(x, r) ⊂ C and therefore x ∈ C◦.

We shall return to coherence towards the end of the next section.

3 Tightly bordered co-convex sets When can we be sure that the complement of a
convex subset of a normed space is tightly bordered? Our answer depends on some additional
results on convex geometry—in particular, one on boundary crossings (Proposition 11), improv-
ing Proposition 5.1.5 of [8].

Proposition 7 The interior of a convex subset C of a normed space X is convex. If also C◦ is
inhabited, then it is dense in C. Moreover, −C◦ = −C.
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Proof. If x, y ∈ C◦, then there exists r > 0 such that B (x, r) ⊂ C and B(y, r) ⊂ C. Given t
with 0 6 t 6 1, we see that z ≡ tx + (1 − t) y belongs to C. In order to prove that z ∈ C◦,
we may assume that ‖z − x‖ > r/2 and ‖z − y‖ > r/2, in which case 0 < t < 1. Since
y ∈ B(y, tr) ∩ C, we now see from Lemma 1 that B(z, t2r) ⊂ C; whence z ∈ C◦. Thus C◦ is
convex.

Now assume that there is a point ξ ∈ C◦. For each x ∈ C, either ‖x − ξ‖ is so small that
x ∈ C◦ or else x 6= ξ. In the latter case, Lemma 1 tells us that for each t ∈ (0, 1), the point
tξ + (1 − t)x belongs to C◦. Letting t → 0, we see that x ∈ C◦.

Finally, since −C ⊂ −C◦ and C◦ is dense in C, it readily follows that −C◦ = −C.

Proposition 8 Let X be a normed space, and C a convex subset of X with inhabited interior.
Then −C is dense in both ∼C and ∼C◦.

Proof. By Proposition 7, C◦ is convex, and −C◦ = −C. Applying Lemma 5.1.4 of [8] to C◦,
we find that −C is dense in ∼C◦. But −C ⊂ ∼C ⊂ ∼C◦, so −C is also dense in ∼C.

We digress briefly in order to establish the conclusion of the preceding proposition under
different hypotheses. This requires us to state the following ridiculously useful lemma (Lemma
5.1.3 of [8]):

Let X be a normed space, let x1, x2 be distinct points of X, and let x3 = λx1 +
(1 − λ)x2 with λ 6= 0, 1. For all α, β > 0, if ‖x − x1‖ 6 α/ |λ| and ‖y − x2‖ 6
β/ |1 − λ|, then ‖λx + (1 − λ)y − x3‖ 6 α + β.

Lemma 9 Let C be an inhabited, convex subset of a finite-dimensional Banach space X, and
let x ∈ − (−C). Then ¬¬ (x ∈ C).

Proof. Translating if necessary, we may assume that 0 ∈ C. Let n be the dimension of X;
if n = 0, then the conclusion is trivial; so we may assume that n > 1. Fix r > 0 such that
B(x, r) ⊂ − (−C). In order to derive a contradiction, assume that x /∈ C. Suppose that
C contains n linearly independent vectors x1, . . . , xn. Then if contains a nondegenerate ball
B(y, t) in the interior of the (convex) simplex with vertices 0, x1, . . . , xn. Since x /∈ C, we have
‖x − y‖ > t. Let z = λx + (1 − λ)y, where

λ = 1 +
r

2 ‖x − y‖

Then ‖z − x‖ = r/2 and

y =
λ

λ − 1
x − 1

λ − 1
z.

Pick s such that

0 < s < min
{

t,
r

2 (λ − 1)

}
,

and apply the ridiculously useful lemma with x1 = x, x2 = z, α = 0, and β = s. We find that
if ‖z − ζ‖ < s (λ − 1), then ∥∥∥∥(

λ

λ − 1
x − 1

λ − 1
ζ

)
− y

∥∥∥∥ < s < t,

so
λ

λ − 1
x − 1

λ − 1
ζ ∈ C.
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Also,

‖ζ − x‖ 6 ‖ζ − z‖ + ‖z − x‖

< s (λ − 1) +
r

2
< r,

so ζ ∈ − (−C). If ζ ∈ C, then, since

x =
1
λ

ζ +
(

1 − 1
λ

) (
λ

λ − 1
x − 1

λ − 1
ζ

)
,

the convexity of C yields x ∈ C, contradicting our assumption that x /∈ C. We conclude that
ζ /∈ C for each ζ ∈ B(z, s (λ − 1)); whence z ⊂ −C, which is also absurd, since B(z, r/2) ⊂
B(x, r) ⊂ − (−C). It follows from all this that that C cannot contain n linearly independent
vectors in X.

Next, suppose that for some k with 1 6 k 6 n, we have proved that C cannot contain k
linearly independent vectors in X. Suppose that C contains k − 1 linearly independent vectors,
and let V be the finite-dimensional subspace of X spanned by those vectors. If there exists
y ∈ C ∩−V , then C contains k linearly independent vectors, a contradiction. Hence C ⊂ V =
V . Since k − 1 < n, there exists a point z ∈ B(x, r) ∩ −V ; then z ∈ −C ∩ B(x, r), which is
impossible. This completes the inductive proof that C cannot contain k linearly independent
vectors for any k with 1 6 k 6 n. It now follows that C = {0}, so we can find an element y
of B(x, r) with positive norm. Then y ∈ −C ∩ B(x, r), a final contradiction that ensures that
¬ (x /∈ C).

Proposition 10 Let C be an inhabited, located, convex subset of a finite-dimensional Banach
space, such that ∼C is inhabited. Then ∼C is dense in −C.

Proof. Let x ∈ ∼C. If ρ (x,−C) > 0, then x ∈ − (−C), so, by Lemma 9, ¬¬ (x ∈ C), a
contradiction. Hence ρ (x,−C) = 0.

We now return to our main path, with the promised improvement on Proposition 5.1.1 of
[8].

Proposition 11 Let X be a Banach space, C a convex subset of X such that C ∪∼C is dense
in X, and ξ an interior point of C. Let z ∈ −C, and for each t ∈ [0, 1] write

zt ≡ (1 − t) ξ + tz.

Then the following hold:

(i) γ(ξ, z) ≡ inf {t ∈ [0, 1] : zt ∈ C} exists, and 0 < γ(ξ, z) < 1.

(ii) zγ(ξ,z) is the unique intersection of [ξ, z] with ∂C.

(iii) If γ(ξ, z) < t 6 1, then zt ∈ C◦.

(iv) If 0 6 t < γ(ξ, z), then zt ∈ −C.

Moreover, the mapping (ξ, z) Ã zγ(ξ,z) is continuous at each point of C◦ ×−C.
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Proof. By Proposition 7, C◦ is convex and dense in C, and −C◦ = −C. On the other hand,
Proposition 8 shows that −C is dense in ∼C. Hence C◦∪−C◦ is dense in C∪∼C and therefore
in X. Moreover, since Proposition 8 also gives −C◦ dense in ∼C◦, we have

∂C◦ = C◦ ∩ ∼C◦ = C ∩ −C◦ = C ∩ −C = C ∩ ∼C = ∂C.

Applying Proposition 5.1.5 of [8] to C◦, and again using both the density of C◦ in C and
the identity −C◦ = −C, we now see that γ(ξ, z) exists and satisfies (i)–(iv), and that γ :
C◦ ×−C → ∂C is pointwise continuous.

One more lemma and we are ready to deal with co-convex sets and tight borders.

Lemma 12 Let X be a Banach space, and C a convex subset of X with inhabited interior such
that C ∪ ∼C is dense in X. Then ∂ (∼C) = ∂C.

Proof. It is clear that ∂C ⊂ ∂ (∼C). For the reverse inclusion, first fix ξ in C◦ and r > 0 such
that B(ξ, r) ⊂ C. Given v ∈ ∂ (∼C), we have v 6= ξ. Set z ≡ 2v − ξ and note that v ∈ (ξ, z).
Taking x1 = v, x2 = z, x3 = ξ, λ = 2, and α = β = r/2 in the ridiculously useful lemma, we
see that for each y ∈ B(z, r/2) and each u ∈ B(v, r/4),

‖(2u − y) − ξ‖ <
r

2
+

r

2
= r

and therefore 2u − y ∈ C. It follows that if also y ∈ C, then

u =
1
2

((2u − y) + y) ∈ C

for each u ∈ B (v, r/4). But then ρ (v,∼C) > r/4, so v /∈ ∂ (∼C), a contradiction from which
we conclude that y /∈ C for each y ∈ B(z, r/2). Hence ρ (z, C) > r/2, and so z ∈ −C. By
Proposition 11, there exists a unique t ∈ (0, 1) such that w ≡ (1 − t) ξ + tz belongs to ∂C,
y ∈ C◦ for all y ∈ [ξ, w), and y ∈ −C for all y ∈ (w, z].

Given ε > 0, pick a point ζ in the open segment (ξ, v) such that 0 < ‖ζ − v‖ < ε and ζ 6= w.
Since ζ ∈ (ξ, z), either ζ ∈ (ξ, w) or ζ ∈ (w, z). In the latter case, since v ∈ (ζ, z), we have
v ∈ (w, z) and so v ∈ −C; but this is absurd, since it puts v in (∼C)◦ and thereby contradicts
the choice of v as an element of ∂ (∼C). Hence, in fact, ζ ∈ (ξ, w) and therefore ζ ∈ C◦.
Since ε is arbitrarily small and, by definition of ∂ (∼C), there are points of ∼C arbitrarily close
to v, it follows that v ∈ ∂C. Thus ∂ (∼C) ⊂ ∂C.

Proposition 13 Let X be a Banach space, and C a convex subset of X with inhabited interior
such that C ∪ ∼C is dense in X. Then ∼C is tightly bordered.

Proof. Consider any x ∈ ∼C with ρ (x, ∂(∼C)) > 0. By Lemma 12, ρ (x, ∂C) > 0. Let
0 < r < ρ (x, ∂C), and apply Proposition 8 to produce z ∈ −C ∩ B(x, r). Given ξ ∈ B(x, r),
suppose that ξ ∈ C◦. By Proposition 11, there exists a unique point y in [ξ, z] ∩ ∂C. But
then y belongs to the convex set B(x, r), so ρ (x, ∂C) < r—a contradiction. Hence ξ /∈ C◦,
so ξ ∈ −C◦ (since C◦ is an open set) and therefore, by Proposition 7, ξ ∈ −C. It now follows
that B(x, r) ⊂ −C ⊂ ∼C whence x ∈ (∼C)◦ .

The hypothesis that C ∪ ∼C be dense in X appears in most of the preceding results. One
situation in which it arises is when C is located; another is given by the next proposition.

Proposition 14 Let C be a coherent, convex subset of a normed space such that ∼C is located.
Then C ∪ ∼C is dense in X.
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Proof. Given x in X and ε > 0, we have either ρ (x,∼C) < ε or ρ (x,∼C) > 0. In the latter
case, x ∈ −∼C and therefore, by coherence, x ∈ C. Since ε > 0 is arbitrary, we conclude that
C ∪ ∼C is dense in X.

As a partial converse to Proposition 14, we have:

Proposition 15 Let C be a convex subset of a normed space X such that C◦ is inhabited and
C ∪ ∼C is dense in X. Then C is coherent; in fact, if ρ(x,∼C) > 0, then x ∈ C◦.

Proof. Fix ξ ∈ C◦. Given x ∈ −∼C, pick r > 0 such that B(ξ, 2r) ⊂ C◦ and ρ (x,∼C) > 2r.
In order to prove that x ∈ C, we may assume that ‖x − ξ‖ > r. Compute t such that 0 < t < 1
and

t

1 − t
‖x − ξ‖ < r,

and let

z =
1

1 − t
x − t

1 − t
ξ.

Then x = tξ + (1 − t)z and ‖x − z‖ < r. Hence

B(z, tr) ⊂ B(z, r) ⊂ B(x, 2r) ⊂ −∼C.

Since C ∪∼C is dense in X, it follows that B(z, tr) intersects C. Lemma 1 now shows us that
B(x, t2r) ⊂ C; whence x ∈ C◦.

We conclude this section with two more results about borders of convex subsets. The first
of these will be used in the Brouwerian examples in Section 4.

Proposition 16 Let C be an inhabited, located, convex subset of a Hilbert space H. Then for
each x ∈ ∼C, ρ(x, ∂C) exists and equals ρ(x,C).

Proof. Replacing C by C, we may assume that C is closed in H. Let x ∈ ∼C. By a well-known
extension of Theorem 4.3.1 of [8], there exists a unique z ∈ C such that ‖x − z‖ = ρ (x, C).
If ρ (x, ∂C) < ‖x − z‖, then there exists ζ ∈ C such that ‖x − ζ‖ < ρ (x, C), which is absurd;
hence ρ (x, ∂C) > ‖x − z‖. It remains to prove that z ∈ ∂C; for that, it will suffice to show
that for each ε > 0, there exists ζ ∈ ∼C with ‖z − ζ‖ < 3ε. Either ‖x − z‖ < 3ε, in which
case we can take ζ = x, or else, as we assume, ‖x − z‖ > 2ε. Letting

t =
2ε

‖x − z‖
and y = tx + (1 − t) z,

we see that 0 < t < 1 and ‖y − z‖ = 2ε. Since C is located, C ∪ ∼C is dense in H; so there
exists ζ ∈ C ∪ ∼C such that ‖y − ζ‖ < ε. Then

‖x − ζ‖ 6 ‖x − y‖ + ‖y − ζ‖
< (1 − t) ‖x − z‖ + ε

= ‖x − z‖ − 2ε + ε

< ‖x − z‖ = ρ (x,C) ,

from which it follows that ζ ∈ ∼C. Also,

‖z − ζ‖ 6 ‖y − ζ‖ + ‖y − z‖ < 3ε.

This completes the proof that z ∈ ∂C.
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Corollary 17 Let C be an inhabited, located, convex subset of a Hilbert space with ∼C inhab-
ited. Then ∂ (∼C) = ∂C.

Proof. Clearly, ∂C ⊂ ∂ (∼C). To prove the reverse inequality, consider x ∈ ∂ (∼C), and first
observe that, by definition of ∂ (∼C), there are points of ∼C arbitrarily close to x. Since C
is convex and located in the Hilbert space, there exists z ∈ C such that ‖x − z‖ = ρ (x,C).
Given ε > 0, we have either x 6= z or ‖x − z‖ < ε. In the first case, x ∈ −C ⊂ (∼C)◦, which
is impossible since x ∈ ∂ (∼C). Thus we have ‖x − z‖ < ε, and so, since z ∈ C, there exists
y ∈ C with ‖x − y‖ < ε. Hence, ε > 0 being arbitrary, there are points of C arbitrarily close to
x, which ensures that x ∈ ∂C. Thus ∂ (∼C) ⊂ ∂C, as required.

4 Limiting Brouwerian counterexamples In this section we present two Brouwerian
counterexamples.4 The first shows why we needed some of the hypotheses for the results in
Sections 2 and 3.

Brouwerian Example 1 [LEM]. A convex subset C of R that has inhabited interior, has
tightly bordered complement, but for which none of the following properties can be derived:

(i) C ∪ ∼C is dense in R.

(ii) ∂C is located in R.

(iii) ∂ (∼C) = ∂C.

(iv) C is tightly bordered.

Let P be any proposition such that ¬¬P holds, and define

C ≡ [0, 1] ∪ {x ∈ [0, 2] : P} .

This set is convex and contains 1/2 in its interior. If C ∪∼C is dense in R, then we can choose
x ∈ C ∪ ∼C with |x − 3/2| < 1/2. If x ∈ ∼C, then ¬P , which is absurd; so x ∈ C and
therefore P holds. If ∂C is located, then either ρ (3/4, ∂C) > 1/4 or ρ (3/4, ∂C) < 1/2. The
first case is ruled out, since it implies that 2 /∈ ∂C and hence that ¬P holds. Thus there exists
x ∈ ∂C with x > 1/2, and therefore P holds. Next we observe that 2 ∈ ∂ (∼C): indeed,
(2,∞) ⊂ ∼C, and, since ¬¬P holds, (1, 2) ⊂ ∼∼C. However, if 2 ∈ ∂C, then C ∩ (1, 2] is
inhabited, so P holds. On the other hand, if x ∈ ∼C and ρ (x, ∂ (∼C)) > 0, then either x < 0
or x > 2, so x ∈ ∼C. Thus ∼C is tightly bordered.

Finally, if x ∈ ∂C and |x − 1| < 1, then we must have ¬P , a contradiction; whence
ρ (1, ∂C) > 1; it follows that if C is tightly bordered, then 1 ∈ C◦, so C ∩ (1, 2] is inhabited
and therefore P holds.

For the remaining three Brouwerian examples, each connected with the hypothesis in Propo-
sition 5 that C has inhabited interior, we remind the reader of two essentially nonconstructive
classical principles:

The limited principle of omniscience, LPO: For each binary sequence (an)n>1,
either an = 0 for all n or else there exists n such that an = 1,

Markov’s principle, MP: For each binary sequence (an)n>1, if it is impossible that
an = 0 for all n, then there exists n such that an = 1.

4“A Brouwerian counterexample is not a counterexample in the usual sense; it is evidence that a statement
does not admit of a constructive proof” ([7], page 3).
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LPO is equivalent to the statement

∀x∈R (x = 0 ∨ |x| > 0) .

MP, which is weaker than LPO, is equivalent to

∀x∈R (¬ (x = 0) ⇒ x 6= 0) ,

where ‘x 6= 0’ means ‘|x| > 0’.

Brouwerian Example 2 [LPO]. An inhabited, balanced, convex subset C of R such that C
and ∂C are compact, ∼C is open and located, both C and ∼C are tightly bordered, but we
cannot determine that C◦ is either empty or inhabited.

Take any nonnegative, small real number a and let C = [−a, a]. Then C is inhabited by 0
and is compact; ∂C (= {−a, a}) is located; ∼C = −C is open and are located. However, if
C◦ is inhabited, then a 6= 0; and if C◦ = ∅, then a = 0.

We can turn this into a Markovian example—one in which the derivability of the property
under examination leads to that of Markov’s principle—by choosing a > 0 such that ¬¬(a = 0).
Then C◦ is open if and only if a 6= 0. Thus we have:

Brouwerian Example 3 [MP]. An inhabited, balanced, convex subset C of R such that C
and ∂C are compact, ∼C is open and located, both C and ∼C are tightly bordered, C◦ cannot
be empty, but we cannot determine that C◦ is inhabited.

We now give a much more complicated Brouwerian example, showing that if we replace R
by a Hilbert subspace of l2(R), then we can replace MP by LPO in Brouwerian Example 3:

Brouwerian Example 4 [LPO]. A balanced, compact, tightly bordered, convex subset C of a
Hilbert space such that ∂C is compact, ∼C is located and open (and hence tightly bordered),
C◦ cannot be empty, but we cannot determine that C◦ is inhabited.

Let (an)n>1 be a binary sequence with a1 = 1 and at most one other term equal to 1. Let
(en)n>1 be an orthonormal basis of unit vectors in the Hilbert space l2(R), and let H be the
linear subspace { ∞∑

n=1

an 〈x, en〉 en : x ∈ l2(R)

}
.

We first prove that H is closed in l2(R) and is therefore a Hilbert space. Let
(
x(n)

)
n>1

be a

sequence in H that converges to a limit x∞ ∈ l2(R). For each n, there exists zn ∈ l2(R) such
that x(n) =

∑∞
k=1 ak 〈zn, ek〉 ek. Thus for each k > 1, ak 〈zn, ek〉 → 〈x∞, ek〉 as n → ∞, and

so

ak 〈x∞, ek〉 = ak lim
n→∞

ak 〈zn, ek〉

= lim
n→∞

a2
k 〈zn, ek〉 = lim

n→∞
ak 〈zn, ek〉 = 〈x∞, ek〉 .

Hence x∞ =
∑∞

k=1 ak 〈x∞, ek〉 ek ∈ H.
Call a pair (λ+, λ−) of nonnegative sequences acceptable if there exists ν such that

B λ+
n = λ−

n = 0 for all n ≥ ν, and
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B
∑∞

n=1 (λ+
n + λ−

n ) =
∑ν

n=1 (λ+
n + λ−

n ) = 1
(where, for example, λ+

n is the nth term of λ+).

Let C be the closure in H of the set S of all points of the form

∞∑
n=1

n−1
(
λ+

n − λ−
n

)
anen,

where the sequence pair (λ+, λ−) is admissible. It is straightforward to prove the following
facts:

(a) C is a balanced, convex subset of H that contains 0.

(b) If x ∈ C, then |〈x, e1〉| 6 1.

(c) If an = 0 for all n > 2, then H = Re1, C = {te1 : −1 6 t 6 1}, which is both compact
and tightly bordered, ∂C = {−e1, e1}, and ∼C is both located and open in H.

(d) If there exists N > 2 such that aN = 1, then H = span {e1, eN}, C is the closed convex
hull of

{
±e1,±N−1eN

}
and is compact; ∂C is the compact closure of the parallelogram

with vertices ±e1,±N−1eN ; and ∼C is both located and open in H. Moreover, by
elementary Euclidean geometry, B(0, rN ) ⊂ C, where

rN = N−1 cos
(

tan−1 1
N

)
,

and ρ(x, ∂C) 6 rN for each x ∈ C.

(e) It is impossible that C has empty interior.

To prove that C is totally bounded, fix ε > 0 and let F be a finite ε-approximation to the
set C∩Re1. Pick N such that

∑∞
n=N+1 n−2 < ε2. If an = 1 for some n with 2 6 n 6 N , then

(as noted at (d) above) C is compact. So we may assume that an = 0 whenever 2 6 n 6 N .
Given an acceptable sequence pair (λ+, λ−), define

(1) x =
∞∑

n=1

n−1
(
λ+

n − λ−
n

)
anen ∈ S.

Since 〈x, e1〉 e1 ∈ C ∩ Re1, there exists y ∈ F with ‖〈x, e1〉 e1 − y‖ < ε. Then

‖x − y‖ 6 ‖〈x, e1〉 e1 − y‖ +

∥∥∥∥∥
∞∑

n=N+1

n−1
(
λ+

n − λ−
n

)
an

∥∥∥∥∥
< ε +

( ∞∑
n=N+1

n−2

)1/2

< 2ε.

Thus F is a finite 2ε-approximation to S. Since ε > 0 is arbitrary, we see that S is totally
bounded; whence C is totally bounded and hence, being complete, compact.

To prove that C is tightly bordered, let x ∈ C and 0 < r < ρ (x, ∂C). Since e1 ∈ ∂C, we
have

0 6= e1 − x = (1 − 〈x, e1〉) e1 −
∞∑

n=2

an 〈x, en〉 en
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so either 〈x, e1〉 6= 1 or there exists n > 2 with an 6= 0. Since in the latter event C is tightly
bordered and therefore x ∈ C◦, we may assume that 〈x, e1〉 6= 1; similarly, since −e1 ∈ ∂C, we
may assume that 〈x, e1〉 6= −1. Thus either |〈x, e1〉| > 1, in which case x /∈ C, a contradiction;
or else, as must be the case, −1 < 〈x, e1〉 < 1. Now choose an integer N > 1/r. If an = 1 for
some n > N , then ρ (x, ∂C) 6 rn < rN < r, a contradiction; hence an = 0 for all n > N . It
follows that

– either there exists n with 2 6 n 6 N and an = 1, in which case C is tightly bordered and
so x ∈ C◦;

– or else an = 0 for all n > 2, when x = 〈x, e1〉 e1 ∈ {te1 : −1 < t < 1} = C◦.

Thus C is tightly bordered.
Turning now to ∼C, we first observe that since C is located and therefore C ∪∼C is dense

in H, in order to prove that ∼C is located, it will suffice to prove that ρ (x,∼C) exists for each
x ∈ C. Given such x and ε > 0, choose a positive integer N such that rN < ε/2. If an = 1 for
some n with 2 6 n 6 N , then ∼C is clearly located, being the outside of a parallelogram; so
we may assume that an = 0 for 2 6 n 6 N . It follows that C is a subset of the closed convex
hull of

{
±e1,±N−1eN

}
. Given x ∈ X, and writing

T ≡ {te1 : −1 < t < 1} ,

we have either ρ (x, T ) > 0 or ρ (x, T ) < ε/2. In the first case, there exists m > N such that
am = 1, so ∼C is located. In the second case, pick y ∈ T such that ‖x − y‖ < ε/2. Then
y + N−1em ∈ ∼C and∥∥x −

(
y + N−1em

)∥∥ 6 ‖x − y‖ + N−1 <
ε

2
+

ε

2
= ε.

Putting all this together, we see that for each x ∈ C and each ε > 0, either ρ (x,∼C) exists or
there exists y ∈ ∼C such that ‖x − y‖ < ε. Hence ∼C is located. It follows from Proposition
11 of [9] that ∂C is located; since ∂C is a closed subset of the compact set C, it is therefore
compact.

To prove that ∼C is open, let x ∈ ∼C. Since C ∩Re1 is closed, located, and convex, there
exists z ∈ C ∩ Re1 such that ρ (x,C ∩ Re1) = ‖x − z‖; then x 6= z, so

0 < d ≡ ρ (x,C ∩ Re1) .

Either ρ (x,Re1) > 0 or ρ (x,Re1) < d/2. In the first case, choose a positive integer N >
1/ρ (x,Re1). We may assume that an = 0 for 2 6 n 6 N ; so C is a subset of the closed
convex hull of

{
±e1,±N−1eN

}
. If ‖x − y‖ < ρ (x,Re1) − 1/N , then ρ (y,Re1) > 1/N , so

y ∈ ∼C. Hence ρ (x,C) > ρ (x,Re1) − 1/N , and therefore x ∈ −C = (∼C)◦. This leaves us
with the case ρ (x,Re1) < d/2, in which, if |〈x, e1〉| < 1, then

ρ (x,Re1) = ‖x − 〈x, e1〉 e1‖ > ρ (x, C ∩ Re1) ,

a contradiction. Hence |〈x, e1〉| > 1 and therefore either 〈x, e1〉 6 −1 or 〈x, e1〉 > 1. We
illustrate with the latter alternative. We have

|〈x, e1〉| − 1 = ‖〈x, e1〉 e1 − e1‖

> ‖x − e1‖ − ‖x − 〈x, e1〉 e1‖ > d − d

2
=

d

2
,
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so |〈x, e1〉| > 1 + d/2. It follows that if ‖x − y‖ < d/2, then

|〈y, e1〉| > |〈x, e1〉| − |〈x, e1〉 − 〈y, e1〉|

> 1 +
d

2
− ‖x − y‖ > 1

and therefore y /∈ C. Hence B(x, d/2) ⊂ −C and therefore x ∈ −C = (∼C)◦. This completes
the proof that ∼C is open.

Finally, suppose that C◦ is inhabited; then, since C is convex and balanced, 0 ∈ C◦. Pick
r > 0 such that B(0, r) ⊂ C and compute N such that rN < r. If an = 1 for some n > N ,
then ρ (0, ∂C) = rN and there exist points of ∼C within r of 0, a contradiction. Hence an = 0
for all n > N . By testing a2, . . . , aN−1, we can show that either an = 0 for all n or else there
exists n < N such that an = 1.

5 A Final Remark In several of our results, we have used the hypothesis that C ∪ ∼C is
located, where C is an inhabited convex subset of the ambient normed space X. Could it be
that that hypothesis actually implies that C is located? If X = R, then the answer is ‘yes’.
To see this, first translate C to ensure that it contains 0, and set a1 = 0. Fixing x > 0, pick
b1 ∈ C ∪ ∼C such that 0 < b1 − x < x/2. If b1 ∈ C, then x ∈ [a1, b1] ⊂ C; so we may
assume that b1 ∈ ∼C. Let c1 = (b1 − a1) /2, and pick y1 ∈ C ∪ ∼C such that y1 > 0 and
|c1 − y1| < min

{
2−1ε, c1/6

}
. If y1 ∈ C, set a2 = y1 and b2 = b1. If y1 ∈ ∼C, set a2 = a1

and b2 = y1. At this stage, we have a2 ∈ C and b2 ∈ ∼C such that 0 < a2 < 2
3 (b1 − a1).

Continuing on in this way, we construct an increasing sequence (an)n>1 in C and a decreasing
sequence (bn)n>1 in ∼C such that 0 < bn − an → 0 as n → ∞. These sequences have a
common limit a∞ ∈ ∂C, and ρ (x,C) exists and equals x − a∞. The case x < 0 is handled
similarly. Since (−∞, 0) ∪ (0,∞) is dense in R, we conclude that C is located.

However, when we move from one to two dimensions, we have a Brouwerian counterexample
to the locatedness of C. Given any proposition P , take X = R2 and

C = ([0, 1] ∪ {x ∈ [0, 2] : P}) × {0} ⊂ R2.

Then ∼C contains the dense subset
{
(x, y) ∈ R2 : y 6= 0

}
of R2 and so is itself dense in R2.

But if C is located, then (cf. Brouwerian Example 1 above) we can easily derive P ∨ ¬P .
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